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Abstract. The approaches to global motion estimation have been nat-
urally classified into one of two main classes: feature-based methods and
direct (or featureless) methods. Feature-based methods compute a set of
point correspondences between the images and, from these, estimate the
parameters describing the global motion. Although the simplicity of the
second step has made this approach rather appealing, the correspondence
step is a quagmire and usually requires human supervision. In opposition,
featureless methods attempt to estimate the global motion parameters
directly from the image intensities, using complex nonlinear optimization
algorithms. In this paper, we propose an iterative scheme that combines
the feature-based simplicity with the featureless robustness. Our experi-
ments illustrate the behavior of the proposed scheme and demonstrate
its effectiveness by automatically building image mosaics.

1 Introduction

In this paper, we address the problem of estimating the global motion of the
brightness pattern between a pair of images.

1.1 Motivation and State of the Art

Efficient methods to estimate global motion find applications in diverse fields. For
example, in remote sensing and virtual reality, it is often necessary to build large
images from partial views, i.e., to register, or align, the input images. The key
step for the success of these tasks is the estimation of the global motion between
the images. In digital video, image alignment is also crucial, for stabilization and
compression [1,2] and content-based representations [3].

Under common assumptions about the camera motion or the scene geometry,
the motion of the image brightness pattern is described by a small set of para-
meters, see for example [4,5] for different parameterizations. In many situations
of interest, the scene is well approximated by a plane, e.g., when the relevant
objects are far from the camera. In this case, the image motion is described by an
8-parameter homographic mapping. The homography also describes the image
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motion when the scene is general, i.e., unrestricted, but the motion of the cam-
era is restricted to a (three-dimensional) rotation (an approximation is when
the camera is fixed to a tripod), see for example [6,7]. In this paper, we address
the estimation of the homographic mapping from a pair of uncalibrated input
images.

Two very distinct approaches to homography estimation are found in the liter-
ature: feature-based methods estimate the homography by first matching feature
points across the images; and featureless, direct, or image-based, methods esti-
mate the homography parameters directly from the image intensity values. Other
techniques include the use of integral projections [8] and Fourier transforms [9].

Feature-based methods, e.g., [6,7,10], became popular due to the simplicity of
the geometric problem of estimating the homography from the feature point cor-
respondences. In fact, the homography parameters are linearly related to simple
functions of the feature coordinates. Thus, given a set of point correspondences,
the Least-Squares (LS) estimate of the homography parameters is obtained in
closed-form by simply using a pseudo-inverse. The bottleneck of these methods
is the feature correspondence step, which is particularly hard in several practical
situations, e.g., when processing low textured images [11,12].

Featureless methods, e.g., [4,13,14], avoid pre-processing steps by attempting
to estimate the homography directly from the images. Naturally, these methods
lead to robust estimates. However, since the homography parameters are related
to the image intensities in an highly nonlinear way, featureless methods use com-
plex and time-consuming optimization algorithms, e.g., Gauss-Newton, gradient
descent. See [15,16] for a discussion on the feature-based/featureless dichotomy.

1.2 Proposed Approach

Our method splits the first image into four blocks (quadrants) and deals with
each one as if it was a pointwise feature, i.e., it determines the displacement of
each quadrant by using standard correlation techniques. Then, it computes the
homography described by these four displacements and registers the first image
according to this homography. The registered image is naturally closer to the
second image. The procedure is repeated (and the computed homographies are
successively composed) until the displacement of each quadrant is zero, i.e., until
the registered image coincides with the second image.

Our approach combines the simplicity of the feature-based methods with the
robustness of the featureless ones. It has the robustness of the image-based ap-
proaches because it matches the intensities in the entire image (rather than using
only a subset of pointwise features). Our method is however much simpler than
current featureless approaches because the nonlinear optimization is taken care
of by using an iterative scheme where each iteration is as trivial as estimating
the homography from feature point correspondences.

1.3 Paper Organization

In section 2, we introduce the notation needed to parameterize the image global
motion in terms of an homographic mapping. Section 3 details the method we
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propose in this paper to estimate the parameters of the homography describing
the global motion between a pair of images. In section 4, we present experimental
results that illustrate our approach and section 5 concludes the paper.

2 Global Motion Parameterization

An homography describing the global motion of the brightness pattern is char-
acterized by an 8-parameter vector

h =
[
a b c d e f g h

]T
. (1)

The homography parameter vector h relates the coordinates (x1, y1) of a point
in image I1, with the coordinates (x2, y2) of the corresponding point in image I2,
through {

x2 (h;x1, y1) = (ax1 + by1 + c) / (gx1 + hy1 + 1)
y2 (h;x1, y1) = (dx1 + ey1 + f) / (gx1 + hy1 + 1) . (2)

For simplicity, in projective geometry, the vector h is often re-arranged into a
3×3 homography matrix H and the equalities in (2) are written in homogeneous
coordinates p = [x, y, 1]T :

⎡

⎣
x2

y2
1

⎤

⎦ ∝
⎡

⎣
a b c
d e f
g h 1

⎤

⎦

⎡

⎣
x1

y1
1

⎤

⎦ ⇔ p2 ∝ Hp1 , (3)

where ∝ represents the projective space equality, i.e., it denotes equal up to a
scale factor [6,7].

Re-arranging (2,3), we see that the homography parameters in h, or in H, are
linearly related to simple functions of the image coordinates. In fact, (2,3) can
be written as

Ψh = ψ, (4)

where

ψ =
[
x2

y2

]
, (5)

and

Ψ =
[
x1 y1 1 0 0 0 −x2x1 −x2y1
0 0 0 x1 y1 1 −y2x1 −y2y1

]
. (6)

Given the correspondences of a set of N feature points, i.e., given the set
of pairs of coordinates

{
(x1, y1)i, (x2, y2)i, i = 1, . . . , N

}
, the LS estimate of the

homography parameter vector h is easily obtained by using the pseudo-inverse to
invert the set of 2N linear equations like (4). Since vector h is 8-dimensional (1),
at least 4 feature points are required to unambiguously determine the homogra-
phy between the images. In this case, which is the relevant one for the algorithm
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we propose in this paper, the homography describing the global motion of the 4
feature points, is simply obtained as

h =

⎡

⎢
⎢
⎣

Ψ1

Ψ2

Ψ3

Ψ4

⎤

⎥
⎥
⎦

−1

8×8

⎡

⎢
⎢
⎣

ψ1

ψ2

ψ3

ψ4

⎤

⎥
⎥
⎦

8×1

, (7)

where Ψ i and ψi denote matrices and vectors defined as in (4), now computed
with the coordinates of each feature point i.

A reader familiar with feature-based methods may note that usually the num-
ber of feature points is much larger than the minimum 4 required and the es-
timate of the homography is usually computed from the singular value decom-
position of a matrix that collects the observations, rather than from the gener-
alization of (7). In opposition, we use the simple closed-form solution in (7) for
4 features, because, as it will become clear in the sequel, the robustness of our
method comes from using the intensity values in the entire images, rather than
from using an huge number of pointwise features.

3 Global Motion Estimation

Although the homography describing the global motion is easily estimated from
point correspondences using (7), pointwise features are difficult to match from
image to image in an automatic way. This inspired us to develop an algorithm
that overcomes the difficulty without resorting to time-consuming nonlinear op-
timization, unlike current image-based, or featureless, methods. This section
describes our algorithm.

3.1 Feature-Based, Featureless, or Both ?!

Rather than attempting to match hundreds of pointwise features, we use the
minimum possible number, i.e., four, but with a much larger dimension—each
feature occupies one quadrant of the first image I1. This way we take into account
all the intensity levels of the entire images. Our method proceeds by matching
each of these four feature blocks to the second image I2, using standard corre-
lation techniques. Naturally, this results in a very rough matching, unless the
global motion between I1 and I2 is a pure translation. Then, using expression (7)
with the coordinates of the centers of the feature blocks1, we obtain a first es-
timate ĥ1 of the homography describing the global motion between images I1

and I2.
Now, apply the homographic mapping characterized by the estimate ĥ1, to

the first image I1. If ĥ1 was an accurate estimate, this would align I1 with I2.
1 Due to the chosen location for the feature blocks, the matrix inversion in (7) is well

conditioned. It is singular only in degenerate situations, e.g., when the centers of
three blocks become colinear or the centers of two blocks collapse into a point.
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Since in general ĥ1 will be a rough estimate, applying this homography to I1

will generate an image I′ that is just “closer” to being aligned with I2. This is
the fact exploited by our algorithm—we now use I′ as the first input image and
proceed again as just described, now to estimate h′, the homography describing
the motion between I′ and I2. The estimate ĥ′ will be more accurate than ĥ1

because the corresponding input images are closer to being aligned, thus the
block features (the image quadrants) will be better matched.

To obtain the second estimate ĥ2 of the homography between the original
image I1 and I2, we just need to combine the first estimate ĥ1 with the update ĥ′.
From (3), we see that this operation is easily expressed using the homogeneous
representation of the homographies in terms of the corresponding matrices Ĥ2,
Ĥ1, and Ĥ′:

Ĥi+1 ∝ ĤiĤ′ , (8)

where, at this point, i=1. The process is repeated until the displacements of the
block features is zero (in practice, until they are below a small threshold). The
update matrix Ĥ′ converges to the identity I3×3 and the sequence of estimates
Ĥi converges to the homography describing the global motion between images I1

and I2.
This paragraph summarizes our claims relative to the approach just described.

Like the feature-based methods, our approach exploits the fact that the homog-
raphy is easily estimated from a set of spacial correspondences but, unlike those,
it avoids matching hundreds of pointwise features. Like the image-based meth-
ods, we match the intensity levels in the entire images, but, unlike those, we
avoid complex and time-consuming optimization algorithms.

3.2 Multiresolution Processing

Naturally, attempting to match large regions, such as the image quadrants, with
a simple translational motion model may lead to a very poor match when the
global motion is far from a pure translation. As a consequence, in such situations,
the algorithm described above may exhibit slow convergence or even get stuck at
a point that does not correspond to the true solution. To speedup the convergence
and better cope with global motions far from pure translations, we use a coarse-
to-fine strategy.

We build a multiresolution pyramid [17] and start running the algorithm at its
coarsest level. The estimate of the homography at each level is used to initialize
the algorithm at the following (finer) level. The final estimate of the homography
is then obtained at the finest level of the pyramid, i.e., at the full resolution of
the input images. The loss of detail at the coarser levels of the pyramid is what
enables a fast convergence to the true solution, even with a model as simple as
the pure translation for the motion of each quadrant.

3.3 Summary of the Algorithm

In short, our method computes the homography describing the global motion
between images I1 and I2 through the following steps (image coordinates are
normalized such that x, y ∈ [0, 1]):
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1- Build multiresolution pyramids for I1 and I2. Initialize the resolution to its
coarsest level l = 0, the iteration number i = 0, and the estimate of the
homography Ĥ0 = I3×3.

2- Apply the current homography estimate Ĥi to image I1 at resolution l,
obtaining I′.

3- Split I′ into its four quadrants and compute their displacements that best
match image I2 at resolution l, using standard correlation techniques.

4- Compute the vector h′ that describes the motion of the centers of the image
quadrants, using (7).

5- Update the homography estimate Ĥi+1 by composing the previous esti-
mate Ĥi with Ĥ′ through (8).

6- If the displacements of the quadrants are below a small threshold, increase
the resolution level, l= l+1 (if it was already the full resolution of the input
images, then stop).

7- Increase the iteration number, i= i+1, and go to 2-.

4 Experiments

In this section, we describe experiments that illustrate the efficiency of the pro-
posed approach.

4.1 Chess Table Images

The first experiment illustrates the fast convergence of the algorithm by compar-
ing the images before and after the first iteration. We applied an homographic
mapping to an image of a chess table, obtaining an highly distorted version of
it, see the two images on the top of Fig. 1. These images were the input to our
algorithm. Superimposed with them, we represent the initial (very rough) cor-
respondences of the 4 quadrants of the image. Using these 4 correspondences,
our algorithm computes the corresponding homography and registers the first
input image according to it. This leads to the bottom left image. Note how closer
to the second input image is the bottom left one, when compared to the first
input image (top left one). The displacements of the new blocks are now much
smaller—see the rectangles superimposed to the bottom images of Fig. 1. Our
experience has shown that they converge to zero in a very fast way, which, in
turn, leads to a fast convergence of the estimated homography between the two
images.

In order to demonstrate the performance of the proposed algorithm with real
video, we built several mosaics from video sequences, in a fully automatic way.
Our system estimates the homographies between successive video frames and
composes them to align all the images. Then, the intensity of each pixel of the
mosaic is computed by averaging the intensities of the frame pixels that overlap
at the corresponding position. We now illustrate with two of these mosaics.
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Fig. 1. Behavior of the proposed algorithm. Top line: images to register, with corre-
spondences of the four quadrants superimposed. Bottom line: the same, after the first
iteration. Notice how the left image approximates the right one.

Fig. 2. Towel video sequence: three sample frames

4.2 Beach Towel Video Sequence

We used several 640×480 images showing partial views of a beach towel, see the
three sample images in Fig. 2. From our experience with images of this size, it
suffices to use a multiresolution pyramid with four resolution levels. The number
of iterations needed to estimate each homography was very small, typically less
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Fig. 3. Mosaic recovered from the towel video sequence in Fig. 2

Fig. 4. Carpet video sequence: eight sample frames

than 5. The recovered mosaic, shown in Fig. 3, illustrates that the homogra-
phies estimated by our algorithm are accurate and appropriate for this kind of
application.

4.3 Carpet Video Sequence

To demonstrate the performance of our method when dealing with long video
sequences, we used a 512×512 video stream with 26 frames of a carpet. Sample
images are shown in Fig. 4. Although these images, obtained with an ordinary
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Fig. 5. Mosaic recovered from the carpet video sequence in Fig. 4

camera, are rather noisy due to video compression and fast camera movement,
the recovered mosaic, shown in Fig. 5, confirms the good performance of our
method. Note that feature-based methods usually fail to automatically align low
contrast images, as the ones we use in this experiment, because it is very hard
to compute the correspondences of pointwise features in this scenario.

5 Conclusion

We proposed a new method to estimate the homography describing the global
motion between a pair of images. Our method combines the simplicity of the
feature-based approaches with the robustness of the featureless ones. We illus-
trate the efficiency of the proposed algorithm when building, in a fully automatic
way, image mosaics from uncalibrated video streams.

Acknowledgment

This work was partially supported by the (Portuguese) Foundation for Science
and Technology, under grant # POSI/SRI/41561/2001.



730 R.F.C. Guerreiro and P.M.Q. Aguiar

References

1. Dufaux, F., Konrad, J.: Efficient, robust, and fast global motion estimation for
video coding. IEEE Trans. on Image Processing 9(3) (2000) 497–501

2. Petrovic, N., Jojic, N., Huang, T.: Hierarchical video clustering. In: Proc. of IEEE
Multimedia Signal Processing Workshop, Siena, Italy (2004)

3. Aguiar, P., Jasinschi, R., Moura, J., Pluempitiwiriyawej, C.: Content-based image
sequence representation. In Reed, T., ed.: Digital Video Processing. CRC Press
(2004) 7–72 Chapter 2.

4. Mann, S., Piccard, R.: Video orbits of the projective group: a simple approach
to featureless estimation of parameters. IEEE Trans. on Image Processing 6(9)
(1997) 1281–1295

5. Kim, D., Hong, K.: Fast global registration for image mosaicing. In: Proc. of IEEE
Int. Conf. Image Processing, Barcelona, Spain (2003)

6. Faugeras, O.: Three-Dimensional Computer Vision. MIT Press, Cambridge, MA,
USA (1993)

7. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cam-
bridge University Press (2000)

8. Lee, J., Ra, J.: Block motion estimation based on selective integral projections.
In: Proc. of IEEE Int. Conf. Image Processing, Rochester NY, USA (2002)

9. Reddy, B., Chattery, B.: An FFT-based technique for translation, rotation, and
scale-invariant image registration. IEEE Trans. on Image Processing 5(8) (1996)
1266–1271

10. Perez, P., Garcia, N.: Robust and accurate registration of images with unknown
relative orientation and exposure. In: Proc. of IEEE Int. Conf. Image Processing,
Genova, Italy (2005)

11. Shi, J., Tomasi, C.: Good features to track. In: IEEE Int. Conf. on Computer
Vision and Pattern Recognition. (1994)

12. Aguiar, P., Moura, J.: Image motion estimation – convergence and error analysis.
In: Proc. of IEEE Int. Conf. on Image Processing, Thessaloniki, Greece (2001)

13. Altunbasak, Y., Merserau, R., Patti, A.: A fast parametric motion estimation
algorithm with illumination and lens distortion correction. IEEE Trans. on Image
Processing 12(4) (2003)

14. Pires, B., Aguiar, P.: Featureless global alignment of multiple images. In: Proc. of
IEEE Int. Conf. Image Processing, Genova, Italy (2005)

15. Irani, M., Anandan, P.: About direct methods. In: Vsion Algorithms: Theory and
Practice. Volume 1883 of Springer Lecture Notes in Computer Science. (1999)

16. Torr, P.: Feature based methods for structure and motion estimation. In: Vsion
Algorithms: Theory and Practice. Volume 1883 of Springer LNCS. (1999)

17. Rosenfeld, A., ed.: Multiresolution Image Processing and Analysis. Volume 12 of
Springer Series in Information Sciences. Springer-Verlag (1984)


	Introduction
	Motivation and State of the Art
	Proposed Approach
	Paper Organization

	Global Motion Parameterization
	Global Motion Estimation
	Feature-Based, Featureless, or Both ?!
	Multiresolution Processing
	Summary of the Algorithm

	Experiments
	Chess Table Images
	Beach Towel Video Sequence
	Carpet Video Sequence

	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Europe ISO Coated FOGRA27)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


