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Av. Rovisco Pais, 1049-001 Lisboa, Portugal

{marko,jxavier,vab }@isr.ist.utl.pt

ABSTRACT

We address the problem of codebook design for the low signal-to-
noise ratio (SNR) fast non-coherent MIMO block fading channel.
The channel matrix is assumed deterministic (no stochastic model
attached) and unknown at both the receiver and the transmitter. To
handle the unknown deterministic space-time channel, a generalized
likelihood ratio test (GLRT) receiver is implemented. The case of
single transmit antenna is considered and it is shown that the prob-
lem of finding good codes corresponds geometrically to a packing
problem in the complex projective space. We provide new constel-
lations and demonstrate that they perform substantially better than
state-of-art known solutions which assume equal prior probabilities
for the transmitted codewords. Our results are also of interest for
Bayesian receivers which decode constellations with non-uniform
priors.

1. INTRODUCTION

In slowly fading scenarios, channel stability enables the receiver to
be trained in order to acquire the channel state information (CSI)
necessary forcoherent detectionof the transmitted codeword. Rely-
ing on the availability of CSI at the receiver, specific codebook de-
sign techniques have been introduced for coherent systems. In [1, 2],
it has been shown that at high SNR the capacity of the multiple-
antenna link increases linearly (when the rich scattering environment
assumption holds) with the minimum number of transmitters and re-
ceivers. On the other hand, in fast fading scenarios, channel stability
is lost, CSI is no more accessible, and the receiver must then operate
in a non-coherentmode. It is known that the high SNR requirement
implies low power efficiency which due to the power limitations in
the mobile device cannot always be satisfied. This motivates the con-
struction of communication schemes which can cope with the low
SNR regime. See [3] for a more thorough discussion of this topic.

Previous work. In the literature, the problem of codebook design
for noncoherent receivers facing low signal-to-noise (SNR) channels
has been considered from two distinct points of view: the information-
theoretic and the symbol error probability viewpoints. In either view-
point, a statistical description of the channel is generally postulated.
The particular case of an independent and identically distributed (iid)
Rayleigh channel under an average power constraint has been ana-
lyzed from an information theoretic viewpoint in [4, 5]. The results
in [4, 5] show that the capacity achieving input distribution becomes
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peaky at sufficiently low SNR. Jafar in [6] extended the characteriza-
tion of the capacity achieving distribution for the correlated Rayleigh
channel fading model. It is also known that, [4, 7], at low SNR,
the mutual information is maximized by using only one transmit an-
tenna.

The symbol error probability point of view for the analysis of
low SNR non-coherent iid Rayleigh channel is more recent, although,
Hochwald, et al. [8] had reported that in the low SNR and Rayleigh
fading channel it seems one should employ only one transmit an-
tenna. Borran et. al. [3], under the assumption of equally prob-
able codewords, presented a technique that uses Kullback-Liebler
(KL) divergence between the probability density functions induced
at the receiver by distinct transmitted codewords as a design crite-
rion for codebook design. In low SNR condition, their constellation
points occupy multiple level (signal points lie in concentric spheres)
with a point usually in the origin. The codes thereby constructed
were shown to perform better than some existing non-coherent code-
book constructions in low SNR, namely [8]. Recently, Srinivasan, et.
al. [9], considered the case of single transmit antenna in the low SNR
regime. Using the information theoretic results over the low SNR
non-coherent iid Rayleigh fading channel under an average power
constraint (c.f. [4, 5]), they allow for codewords with unequal priors
in a code and optimize over prior probabilities to achieve better per-
formance. This results in constellations that assume a point in the
origin with probability 1

2
, with the probabilities of the points lying

in the sphere being equal. By doing this, notable gain is reported as
compared to codes designed with equal priors proposed by Borran.
In [10], the correlated Rayleigh fading model was studied and it was
shown that at any SNR, any single antenna performs better when
used with suitable precoding in a MIMO correlated Rayleigh fading
than in a single-input multiple output SIMO channel. Consequently,
code designs that exploit the correlations in the transmit antennas in
the MIMO case to provide gains over the corresponding SIMO case
in the low SNR regime were presented.

Contribution. Contrary to other approaches for the low SNR regime,
the channel matrix is assumed deterministic. We focus onM = 1
transmit antenna case. To handle the unknown space-time channel, a
GLRT receiver is implemented. A low SNR analysis of the pairwise
error probability (PEP) is introduced. We show that the problem of
finding good codes corresponds to a packing problem in the complex
projective space. New packings are designed and we demonstrate
that our constellations perform substantially better than state-of-art
known solutions which assume equal prior probabilities for the trans-
mitted codewords. We also show that our codes can be incorporated
in communication schemes with unequal priors.

Paper organization. In section 2, we describe the data model and
our non-coherent receiver We introduce a low SNR analysis of PEP



with a single transmit antenna in order to obtain a codebook design
criterion. In Section 3, we present some codebook constructions
and compare their performance with state-of-art solutions. Section
4 presents the main conclusions of our paper. Section 5 contains
some mathematical details.

2. PROBLEM FORMULATION

Data model and assumptions.The communication system com-
prisesM = 1 transmit andN receive antennas and we assume a
block fading channel model with coherence intervalT . In complex
base band notation we have the model

Y = xhH + E,

wherex is theT × 1 vector of transmitted symbols (the vectorx
is called hereafter a codeword),Y is theT × N matrix of received
symbols,h is theN × 1 vector of channel coefficients, andE is the
T × N matrix of zero-mean additive Gaussian observation noise.
The symbolH denotes complex conjugate transpose. InY , time
indexes the rows and space indexes the columns. We work under the
following assumptions:

1. The channel vectorh is not known at the receiver neither at
the transmitter, and no stochastic model is assumed for it;

2. The codewordx is chosen from a finite codebookX = {x1,
x2, . . ., xK} known to the receiver, whereK is the size
of the codebook. We impose the power constraint||xk|| =p

xH
k xk = 1 for each codeword;

3. The observation noise is spatio-temporally white. In words,
the noise covariance matrix isΥ = E[vec(E) vec(E)H ] =
INT (vec(E) stacks all columns of the matrixE on the top
of each other, from left to right, andINT denotes the identity
matrix of dimensionNT ×NT ). The matrixΥ is known at
the transmitter and at the receiver. Note that we have normal-
ized the noise power. This entails no loss of generality.

GLRT receiver. Under the above assumptions, the conditional prob-
ability density function of the received vectory = vec(Y ), given
the transmitted vectorx, is given by

p(y|x, g) =
exp{−||y − (IN ⊗ x)g||2}

πTN
,

whereg = vec
�
hH
�

is the unknown realization of the channel and
⊗ denotes Kronecker product.

Since no stochastic model is assumed for the channel propaga-
tion matrix, the receiver faces a multiple hypothesis testing problem
where the channelh is a deterministic nuisance parameter. We as-
sume a GLRT receiver which decides the indexk of the codeword
as bk = argmax p(y|xk, bgk)

k = 1, 2, . . . , K

wherebgk =
�
IN ⊗ xH

k

�
y. In words, the GLRT [11] consists in

a bank ofK parallel processors where thek-th processor computes
the likelihood of the observation assuming the presence of thek-
th codeword with the channel replaced by its maximum likelihood
(ML) estimate.

Low SNR analysis.For the special case of unitary codebooks (M >
1) and spatio-temporal white Gaussian noise and iid Rayleigh fading,
the exact expression and the Chernoff upper bound for the PEP have

been derived in [12]. However, the calculus of these expressions for
general non-coherent systems seems to be untractable. Instead, in
this paper we resort to the PEP in low SNR regime.

Let Pxi→xj be the probability of the GLRT receiver deciding
xj whenxi is sent. It can be shown (details omitted) that

Pxi→xj = P
�
X + Z > ||g||2 sin2 αij

�
(1)

where
X = eH (IN ⊗ (Πj −Πi)) e, (2)

Z = −2< �eHP ijg
�
, P ij= IN ⊗Π⊥

j xi with Πi = xix
H
i and

Π⊥
i = IT − Πi. The operator< (z) denotes the real part of the

complex numberz, ande = vec(E). The angleαij is the acute
angle between the codewordsxi andxj . Unfortunately, it seems that
the PEP expression in (1) cannot be simplified, but we can analyze
it at low SNR. At sufficiently low SNR, the noise quadratic term
of e is the dominant one. Hence, we make the (admittedly crude)
approximation

Pxi→xj = P
�
X > ||g||2 sin2 αij

�
. (3)

In the Appendix, section 5, we show that forT ≥ 2

P
�
X > ||g||2 sin2 αij

�
= P

 
NX

n=1

�|ai|2 − |bi|2
�

> ||g||2 sin αij

!
,

(4)
wherean, bn are iid circular complex Gaussian random variables

with zero mean and unit variance,an,bn
iid∼ CN (0, 1) for n = 1, . . . , N .

Combining the expressions (3)-(4) we have the expression for the
PEP at sufficiently low SNR (we assumedsin αij 6= 0)

Pxi→xj = P

 
NX

i=1

�|ai|2 − |bi|2
�

> ||g||2 sin αij

!
. (5)

In our work [15] we derive the expression for the PEP in the high
SNR regime. ForM = 1, it is given by

Pxi→xj = Q
�

1√
2
||g|| sin αij

�
(6)

whereQ(x) =
R +∞

x
1√
2π

e−
t2
2 dt. Equations (5)-(6) show that

the probability of misdetectingxi for xj depends on the channel
g = vec

�
hH
�
, but more important, on the relative geometry of the

codewordsxi andxj . SincePxi→xj = Pxj→xi (a feature of the
scenarioM = 1), the PEPs are symmetric which gives rise to a
intuitive distance measure. Hence, by analyzing the PEP in both ex-
treme cases (low and high SNR) it is clear that one wishes to make
the codewordsxi andxj as separate as possible, i.e., the problem
of finding good codes corresponds to the very well known packing
problem in the complex projective space [14].

3. RESULTS

Considering the results of the previous section, a codebook construc-
tion translates naturally into a packing problem in the complex pro-
jective space. Denoting a codebook byX = {x1, x2, ..., xK} we
are led to the following optimization problem

X ∗ = arg max
X ∈M

f(X ) (7)



wheref : M→ R, X = {x1, . . . , xK} 7→ f(X ) and

f(X ) = min{fij(X ) : 1 ≤ i 6= j ≤ K}

with fij(X ), = xH
i Π⊥

j xi. The constraint spaceM= {(x1,. . .,xK):
||xk|| = 1 for all k} can be viewed as a multi-dimensional torus,
i.e, the Cartesian product ofK unit-spheres:M= S2T−1× · · · ×
S2T−1 (K times) and each codewordxk belongs toS2T−1. Note
thatfij(X ) = sin2 αij , hence, our goal is to make the codewords of
the codebook as separate as possible. From (7), we see that the de-
sign of the codebook consists in a high-dimensional nonlinear non-
smooth optimization problem. To solve (7) we employ the algo-
rithm presented in [15, 16]. Due to space constraints we just give
a brief overview of the method presented therein. It contains two
main steps. Step1 starts by solving a convex SDP (Semi Definite
Programming) relaxation to obtain a rough estimate of the optimal
codebook. Step2 refines it through a geodesic descent optimization
algorithm which efficiently exploits the Riemannian geometry of the
constraint spaceM. Please refer to [15, 16] for more details.

We are not aware of any work concerning the low SNR non-
coherent MIMO scenario employing a GLRT receiver. Hence, we
shall compare the performance of our codes and our GLRT receiver
with the codes assuming a Rayleigh fading channel with equally
probable codewords [3] and ML receiver. We also show that our
codes are of great interest for the constellations with unequal priors
[9].

Constellations with equal priors. In all simulations we assume a

Rayleigh fading model for the channel, i.e.,hi
iid∼ CN �0, σ2

�
. In

figures 1- 2 we compared our codes and our GLRT receiver against
the codes found in [3] with the ML receiver proposed therein. In
figure 1, we considered the case where the coherence intervalT=2,
SNR=7 dB and a codebook withK=8 codewords. The solid and
dashed curves represent our codes, and Borran codes respectively.
As we can see, although the Borran’s codes assume the knowledge
of actual SNR= E{||xkhH ||2}/E{||E||2} = 7dB, our codebook
constructions can save up to 3 receive antennas at symbol error rate
(SER) of2 · 10−3. The followingK × T matrix (each row corre-
sponds to a codeword) represents our codebook which was generated
by the optimization algorithm in [15, 16]:

26666666664

−0.6831 + 0.5082i 0.4771 + 0.2179i
0.1255− 0.8888i 0.1643 + 0.4090i

−0.6630 + 0.5108i −0.1683 + 0.5208i
0.2507 + 0.4084i 0.2176 + 0.8503i
0.5019− 0.7276i 0.4673− 0.0211i
0.4715− 0.2047i −0.8272 + 0.2269i

−0.5429 + 0.0964i 0.0504− 0.8327i
−0.0728 + 0.4296i 0.8440 + 0.3128i

37777777775
.

Figure 2 plots the results of a similar experiment forT=2, SNR=7
dB andK=16. It can be seen that for SER= 2 · 10−2, our codes
demonstrate a saving of 6 receive antennas when compared with
Borran’s codes. The following matrix represents our codebook, which

we used in the figure 2,266666666666666666666666664

−0.1424 + 0.7221i 0.3490− 0.5800i
0.8352 + 0.4117i 0.1901− 0.3111i
0.0091 + 0.1448i −0.8493 + 0.5075i
0.5890 + 0.7523i −0.1535− 0.2522i

−0.0178 + 0.7553i 0.4480 + 0.4780i
0.3061 + 0.4903i −0.7628 + 0.2900i
0.4328− 0.0549i 0.2059− 0.8759i

−0.0694 + 0.5020i −0.0147 + 0.8620i
0.1163 + 0.3732i 0.3510− 0.8509i
0.7910 + 0.3286i −0.1021 + 0.5058i
0.4420− 0.8826i 0.1290− 0.0946i
0.3624− 0.7354i 0.1788 + 0.5440i

−0.6304− 0.3140i −0.0999 + 0.7029i
0.5160 + 0.0691i −0.8253 + 0.2188i

−0.6139 + 0.0525i −0.5840− 0.5285i
0.8232 + 0.0231i 0.5597 + 0.0926i

377777777777777777777777775

.

Constellations with unequal priors. Now, we depart from our
GLRT receiver and show that our codebook designs forM = 1
are nevertheless of interest for schemes that allow for non-uniform
priors. e.g.,the Bayesian receiver in [9]. In figure 3 we show the re-
sults of the simulations. We considered the case where the coherence
intervalT=2, SNR=0 dB and rate = 1 bps/Hz. The solid and dashed
curves represent our codes, and Srinivasan’s 5 point constellations
with unequal priors [9] respectively. The dash-dotted curve repre-
sents our 4 point constellation with equal priors and is plotted only
to confirm that if the receiver knows the channel statistics, then con-
stellations with non-unifom priors are the best option. The gain of
our 5 point constellations with unequal priors compared with Srini-
vasan’s codes is due to the fact that we use optimal packings in com-
plex projective space (in the outer sphere), whereas Srinivasan uses
optimal packings in the real projective space (one can expect larger
gains asK increases, whereK represents the number of the code-
words on the sphere). The improvement obtained can be explained
by the optimality of our designed packings. Rankin bound is an up-
per bound on the packing radius ofK subspaces in the Grassmanian
spaceG(M, CT ). WhenM = 1, the bound applies to packings in
the projective space, and in this case it holds

min{sin2 αij : 1 ≤ i 6= j ≤ K} ≤ T − 1

T

K

K − 1

whereαij is the acute angle between codewordsxi andxj . Please
refer to [14] for more details. One can easily check that our designed
codebook indeed meets the Rankin bound which is2

3
for T = 2 and

K = 4. Our codebook is represented in the following matrix264 0.4946− 0.6268i −0.2375 + 0.5533i
−0.8183− 0.4446i −0.3392 + 0.1328i

0.4908− 0.4101i 0.7326 + 0.2329i
−0.0955− 0.2776i −0.8817 + 0.3693i

375 .

Constellations with equal priors andM ≥ 1 . Finally, we present
some results to study the impact of employingM > 1 transit anten-
nas in the low SNR regime. First, we compare our codebook con-
structions obtained by the method presented in [15, 16] forM = 1
against Borran’s codes withM = 2. Next, we compare the sce-
nariosM = 1, M = 2, M = 3 using only our codes. We as-

sume a Rayleigh fading model for the channel matrix, i.e.,hij
iid∼

CN �0, σ2
�
. Figure 4 shows the result of the performance compar-

isons for16 and32-point constellations withT = 3 andT = 4,



respectively, and SNR = 0 dB. The solid signed and the solid circled
curve show the performance of our codes forK = 32, T = 4, M =
1, andK = 16,T = 3, M = 1, respectively. The dashed signed and
the dashed circled curve represent the performances of the Borran’s
codes forK = 32, T = 4, M = 2 andK = 16, T = 3, M = 2, re-
spectively. For32-point constellation and at SER =4 · 10−2, we see
that our codes can save7 receive antennas. For16-point constella-
tion, we witness the gain of more than10 receive antennas at SER =
10−1. Figure 5 plots the result of the experiment forT=8, SNR=0
dB andK=256. It can be seen that for SER= 2 ·10−3, our codes for
M=1 can spare 1 receive antennas when comparing with our codes
constructed forM=2, and nearly 4 receive antennas compared with
our codes constructed forM=3. We think that the results presented
in the figures 4- 5 further strengthen the motivation of using a sin-
gle transmit antenna codebooks in the low SNR regime when GLRT
receiver is employed.
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Fig. 1. M=1, T=2, K=8, SNR = 7 dB. Solid curve:our codes with
our GLRT receiver. Dashed curve:Borran codes designed for SNR =
7dB with ML receiver [3].
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Fig. 2. M=1, T=2, K=16, SNR = 7 dB. Solid curve:our codes with
our GLRT receiver. Dashed curve:Borran codes designed for SNR =
7dB with ML receiver [3].
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Fig. 3. T=2, M=1, SNR = 0 dB, Rate = 1 b/s/Hz. Solid curve-our
5 point constellation with unequal priors, dashed curve-Srinivasan’s
5 point constellation with unequal priors [9], dash-dotted curve-our
4 point constellation with equal priors. Our and Srinivasan’s 5 point
constellations usemaximum a-posteriori(MAP) receiver, our 4 point
constellation uses GLRT receiver.

4. CONCLUSIONS

Contrary to other approaches for the low SNR regime, in this work,
the channel matrix is assumed deterministic, i.e., no stochastic model
is attached to it. To handle the unknown space-time channel, a gen-
eralized likelihood ratio test (GLRT) receiver is implemented. A
low signal-to-noise (SNR) analysis of the pairwise error probabil-
ity (PEP) and a single transmit antenna is introduced. We show
that the problem of finding good codes corresponds to the very well
known packing problem in the complex projective space. We pro-
vide some good packings and demonstrate that our constellations
perform substantially better than state-of-art known solutions which
assume equal prior probabilities, and are also of interest for the con-
stellations with unequal priors.
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5. APPENDIX

In this appendix, we establish expression (4). We start by using the
known fact from [13]: Ifxi, xj ∈ CT such that||xi|| = ||xj || = 1
(T ≥ 2), then there exist unit-magnitude complex numbersu andv,
and anT × T unitary matrixQ such that

Qxi u =

�
1

0(T−1)×1

�
, Qxj v =

24 cos αij

sin αij

0(T−2)×1

35
whereαij is the acute angle between the codewordsxi andxj . Let

eT =
�
eT

1 eT
2 . . . eT

N

�
with ek

iid∼ CN (0, IT ) for k = 1, . . . , N .
Now, it is not difficult to see thatX defined in (2) satisfies

X
d
=

NX
k=1

cH
k

� − sin2 αij sin αij cos αij

sin αij cos αij sin2 αij

�
| {z }

Z

ck,
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Fig. 4. Solid signed curve-our codes forK = 32, T = 4, M = 1,
dashed signed curve-Borran codes forK = 32,T = 4, M = 2, solid
circled curve-our codes forK = 16, T = 3, M = 1, dashed circled
curve-Borran codes forK = 16,T = 3,M = 2.

whereck
iid∼ CN (0, I2) for k = 1, . . . , N , and

d
= means equal

in distribution. Now, defineck =

�
ak

bk

�
, with ak, bk

iid∼ CN (0, 1)

and note that± sin αij are the eigenvalues of the square symmetric
matrixZ. Hence, we shall have

X
d
=

NX
k=1

�|ak|2 − |bk|2
�

sin αij . (8)

Combining (4) with (8) results in (5).
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