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ABSTRACT

We address the problem of space-time codebook design for non-
coherent communications in multiple-antenna wireless systems. The
channel matrix is assumed deterministic (no stochastic model as-
sumed) and unknown at both the receiver and the transmitter. In
contrast with other approaches, the Gaussian observation noise has
an arbitrary correlation structure, known by the transmitter and the
receiver. To handle the unknown deterministic space-time channel,
a GLRT receiver is implemented. We propose a new methodology
for space-time codebook design under this non-coherent setup. This
optimizes the probability of error of the receiver’s detector in the
high SNR regime, thus solving a high-dimensional nonlinear non-
smooth optimization problem in a two-step approach:(i) firstly, a
convex SDP relaxation yields a rough estimate of the optimal code-
book; (ii) this is then refined through a geodesic descent optimiza-
tion algorithm that exploits the Riemannian geometry imposed by
the power constraints on the space-time codewords. Computer sim-
ulations demonstrate that, for the specific case of spatio-temporal
white observation noise, our codebooks are marginally better than
those provided by state-of-art known solutions. However, the most
relevant conclusion is that, for correlated noise environments, our
method provides codes that significantly outperform other known
codes.

1. INTRODUCTION

In slowly fading scenarios, channel stability enables the receiver to
be trained in order to acquire the channel state information (CSI)
necessary forcoherent detectionof the transmitted codeword. Spe-
cific codebook design techniques have been developed for coher-
ent systems, relying on the availability of CSI at the receiver. It is
known [1] that, for this kind of codes, the capacity of the multiple-
antenna link increases linearly (for rich scattering environments) with
the minimum number of transmitters and receivers. In fast fading
scenarios, channel stability is lost, CSI is no more available, and the
receiver must then operate in anon-coherentmode.

Previous work. The capacity of non-coherent multiple systems was
studied in [2, 3]. Under the additive white noise and Rayleigh chan-
nel assumptions, it has been shown that the high reception SNR sce-
nario is sufficient to guarantee thatunitary constellationsare capac-
ity optimal. In [4, 5], a systematic method for designing unitary
space-time constellations was presented. However, the techniques
therein can not be readily extended to the correlated noise scenario,
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under which it is unlike that unitary space-time constellations can be
optimal.

Contribution. The main contribution of this paper is a new al-
gorithm that systematically designs space-time codebooks for non-
coherent multiple-antena communication systems. Contrary to other
approaches, the Gaussian observation noise may have an arbitrary
correlation structure. In this general case, computer simulations
show that the space-time codes obtained with our method signifi-
cantly outperform those already known.

Paper organization. In section 2, we formulate the problem ad-
dressed in this paper. We describe the non-coherent receiver and
discuss the selection of the codebook design criterium. In section 3
we propose a new algorithm that systematically design non-coherent
space-time constellations for arbitrary noise covariance matrix and
anyM , N , K andT , respectively, number of transmitter antennas,
number of receiver antennas, size of codebook, and channel coher-
ence interval. In Section 4, we present codebook constructions for
several important special cases and compare their performance with
state-of-art solutions. Section 5 presents the main conclusions of
our paper.

2. PROBLEM FORMULATION

Data model and assumptions.The communication system com-
prisesM transmit andN receive antennas and we assume a block
fading channel model with coherence intervalT . In complex base
band notation we have the modelY = XHH + E, whereX is
the T × M matrix of transmitted symbols (the matrixX is called
hereafter a space-time codeword),Y is theT×N matrix of received
symbols,H is theN ×M matrix of channel coefficients, andE is
theT × N matrix of zero-mean additive observation noise. InY ,
time indexes the rows and space indexes the columns. We work un-
der the following assumptions: (A1) The channel matrixH is not
known at the receiver neither at the transmitter, and no stochastic
model is assumed for it; (A2) The codewordX is chosen from a
finite codebookX = {X1, X2, . . . , XK} known to the receiver,
whereK is the size of the codebook. We impose the power con-
straint tr(XH

k Xk) = 1 for each codeword; (A3) The noise covari-
ance matrixΥ = E[vec(E) vec(E)H ] is known at the transmitter
and at the receiver (vec(E) stacks all columns of the matrixE on
the top of each other, from left to right). In assumption (A3), we
let the data model depart from the customary assumption of spatio-
temporal white Gaussian observation noise, which is clearly an ap-
proximation. In general, in realistic scenarios theE term may have
very rich correlation structure, e.g, see pp.10,159,171 in [6]. The
generalization to arbitrary noise covariance matricesΥ encompasses



many scenarios of interest as special cases: spatially coloured or not
jointly with temporally coloured or not observation noise, multiuser
environment, etc.

Receiver. Under the above assumptions, the conditional probabil-
ity density function of the received vectory = vec(Y ), given the
transmitted matrixX, is given by

p(y|X) =
exp{−||y − (IN ⊗X)g||2Υ−1}

πTN detΥ
,

whereg = vec
�
HH

�
is the unknown realization of the channel,

IN is theN × N matrix and⊗ denotes Kronecker product. Also,
we use the notation||z||2A = zHAz.

Since no stochastic model is attached to the channel propaga-
tion matrix, the receiver faces a multiple hypothesis testing prob-
lem with the channelH as a deterministic nuisance parameter. We
assume a generalized likelihood ratio test (GLRT) receiver which
decides the indexk of the codeword as the indexbk such thatbk =
argmax{p(y|Xk, bgk) : k = 1, 2, . . . , K} wheregXk = IN ⊗Xk

andbgk = (gXk

H
Υ−1gXk)−1gXk

H
Υ−1y . In words, the GLRT [7]

consists in a bank ofK parallel processors where thek-th processor
computes the likelihood of the observation assuming the presence of
thek-th codeword and the channel is replaced by its ML estimate.

Codebook design criterion. In this paper, our goal is to design
a codebookX = {X1, X2, . . . , XK} of sizeK for the current
setup. A codebookX is a point in the spaceM = {(X1, . . . , XK) :
tr(XH

k Xk) = 1}. Note thatM can be viewed as multi-dimensional
torus, i.e, the Cartesian product ofK unit-spheres. First, we must
adopt a merit functionf : M → R which gauges the quality of
each constellationX . The average error probability for a specificX
would be the natural choice, but the theoretical analysis seems to be
intractable. Instead, as usual [3], we rely on a pairwise error proba-
bility study to construct our merit function. For the special case of
unitary codebooks (XH

k Xk = 1
M

IM ) and spatio-temporal white
Gaussian noise (Υ = ITN ) and iid Rayleigh fading, the exact ex-
pression and Chernoff upper bound for the pairwise error probability
have been derived in [3]. However, the calculus of these expressions
for the general case, i.e, arbitrary matrix constellationsX and noise
correlation matrixΥ, seems to be burdensome. Instead, in this paper
we resort to the asymptotic expression of the pairwise error proba-
bility in the high signal-to-noise-ratio (SNR) regime, for arbitrary
X andΥ. Let PXi→Xj be the probability of the GLRT receiver
decidingXj whenXi is sent. It can be shown (details omitted) that

PXi→Xj ≈ P (−2<{eHP H
j Υ−1∆g} > gH∆HΥ−1∆g)

= Q
�

1√
2

p
gH Lijg

�
, (1)

whereP i = ITN − fXi(fXi

H
Υ−1fXi)

−1fXH

i Υ−1, ∆ = P j
fXi,

Lij = fXi

H
Υ− 1

2 Π⊥
j Υ− 1

2 fXi, Q(x) =
R +∞

x
1√
2π

e−
t2
2 dt, e =

vec(E), Π⊥
j = ITN −Υ− 1

2 fXj(fXj

H
Υ−1 fXj)

−1 fXj

H
Υ− 1

2 and
<{x} denotes the real part of complex numberx. The proof is omit-
ted due to paper length constraints (can be found in the companion
paper [8]). Equation (1) shows that the probability of misdetecting
Xi for Xj , depends on the channelg = vec

�
HH

�
and the relative

geometry of the codewordsfXi andfXj .We can decouple the action
of g andLij as follows: asgHLijg ≥ λmin(Lij) ||g||2 andQ(x)
is monotonically non-increasing, we have the upper bound on the

approximate pairwise error probability for high SNR

PXi→Xj ≤ Q
�

1√
2
||g||

p
λmin(Lij)

�
.

We cannot control the power of the channelg = vec(HH), but we
can design codebooks aiming at maximizingλmin(Lij).

Problem formulation. We are led to define the merit functionf :
M→ R, X = {X1, . . . , XK} 7→ f(X ) asf(X ) = min{fij(X ) :
1 ≤ i 6= j ≤ K} wherefij(X ) = λmin(Lij(X )). Constructing an
optimal codebookX = {X1, X2, ..., XK} amounts to solving the
following optimization problem

X ∗ = arg max
X ∈M

f(X ) (2)

The problem defined in (2) is a high-dimensional, non-linear and
non-smooth optimization problem. As an example, for a codebook
of size K = 256 the number offij functions isK(K − 1) ≈
62500. Also, forT = 8 andM = 2, there are2KTM = 8192 real
variables to optimize. Moreover, note that we have

f(X1, X2, . . . , XK) = f(X1e
iθ1 , X2e

iθ2 , . . . , XKeiθK )

for any θk ∈ R andk = 1, . . . , K. This means thatf depends
on eachXk (‖Xk‖ = 1) only through the line spanned by it (i.e.,
{λXk : λ ∈ C}). Thus, we can interpret the optimization problem
in (2) as a packing problem in a product of projective spaces [5, 12].

3. CODEBOOK CONSTRUCTION

We propose a two-phase methodology to tackle the optimization
problem in (2). In phase one, we start by solving a convex semi-
definite programming (SDP) relaxation to obtain a rough estimate
of the optimal codebook. Phase two refines it through a geodesic
descent optimization algorithm (GDA) which efficiently exploits the
Riemannian geometry of the constraints.

Phase 1: SDP relaxation. This phase constructs a sub-optimal
codebookX ∗ = {X∗

1, ..., X
∗
K}. The codebook is constructed in-

crementally. There are several strategies for choosing first code-
word X∗

1, e.g, randomly generated, filling columns of the matrix
with eigenvectors associated to the smallest eigenvalues of the noise
covariance matrix,etc. We have found them equally efficient. Ad-
dition of a new codeword consists in solving a SDP. LetX ∗k−1 =

{X∗
1, ..., X

∗
k−1} be the codebook at thek − 1th stage. The new

codeword is found by solving

X∗
k = arg max

tr(XH
k Xk) = 1

f(X∗
1, . . . , X

∗
k−1, Xk)

= arg max
tr(XH

k Xk) = 1
min

1≤i≤ k−1
{λmin(Lik), λmin(Lki)}

(3)

We can show (details omitted, see [8]) that the optimization problem
defined in (3) is equivalent to

(Y ∗,fX∗
, t∗) = arg max t (4)

with the following constraints264tr(N iA1Y B1)− t · · · tr(N iAMNY B1)
...

...
tr(N iA1Y BMN ) · · · tr(N iAMNY BMN )− t

375 º 0,



�
M Zi

ZH
i P i

�
º 0 ∀1≤i≤ k−1 , SY SH = KfXKH , tr(fX) = 1,

A Y AH = 1, Y = Y H , Y º 0, rank(Y ) = 1

wherefX = vec(Xk)vecH(Xk), b2 = 1 and Y = zzH with

z =
h
vecT (gXk) b

iT

. The matricesM , Zi are linear inY , while

N i, P i, K, S, A, Ai andBi are constants (not defined here due to
the length constraint, but can be found in [8]). Because of the rank
condition in (4), i.e. rank(Y ) = 1, the design of the codewords,
once again, translates into a high-dimensional difficult nonlinear op-
timization problem. However, ignoring this restriction the optimiza-
tion problem becomes a convex one. The rank1 relaxation is usually
known as the Shor relaxation. Remark that forK = 256, M = 2,
N = 2, T = 8 and in the last passage through the loop, i.e., for
k = K, the output variableY is of dimension69 × 69 (does not
depend onK) and the number of linear matrix inequality constraints
that needs to be defined is of orderK. To solve the optimization
problem (4) we select theSelf-Dual-Minimizationpackage SeDuMi
1.1 [9]. Once the problem defined in (4) is solved we need to
extract thekth codeword from the output variablefX. Toward this
end, we adopt a technique similar to [10]. The technique consists
in generating independent realizations of vectors that obey Gaussian

distribution with zero mean and covariance matrixfX, i.e., zl
iid∼

CN
�
0,fX� , for l = 1, 2, ..., L, whereL is a parameter to be cho-

sen. After forcing norm1, i.e.,vl = zl/||zl|| for l = 1, 2, ..., L, we
choose thek − th codeword,X∗

k = ivec(v∗l ) where

l∗ = arg max
l = 1, 2, ..., L

f(X∗
1, X

∗
2, ..., X

∗
k−1, ivec(v)). (5)

The operation “ivec” operates as an inverse of “vec” (reshapes the
TM -dimensional vector into aT × M matrix). Note thatX∗

k is a
valid codeword because tr(X∗H

k X∗
k) = 1. We are clearly dealing

with a suboptimal solution for a codebook.

Phase 2: Geodesic Descent Algorithm.Problem (4) requires the
optimization of a non-smooth function over the smooth manifold
M. Phase 1 gives us a rough estimate of a codebook of sizeK.
To refine this estimate we resort to an iterative algorithm, which we
call GDA (geodesic descent algorithm). Due to the paper length
constraint, we can only overview this iterative scheme. LetXk be
thekth iterate (the initializationX0 is furnished by phase 1). First,
we identify the index setA of “active” constraint pairs (i,j), i.e.,
A = {(i, j) : f(Xk) = fij(Xk)}. Then, we check if there is an as-
cent direction∆ simultaneously for all functionsfij with (i, j) ∈ A.
This ascent direction∆ is searched withinTXkM, the tangent space
to M atXk, and consists in solving a linear program. If there are
no such ascent direction, the algorithm stops. Otherwise, we per-
form an Armijo search forf(X ) along the geodesic which emanates
from Xk in the direction∆. This Armijo search determinesXk+1

and we repeat the loop. A geodesic is nothing but the generaliza-
tion of a straight line in Euclidean space to a curved surface [11].
In loose terms, GDA resembles a sub-gradient method and conse-
quently, the algorithm usually converges slowly near local minimiz-
ers. Note however that this is not a serious drawback since the code-
books are generated off-line.

4. RESULTS

We have constructed codes for three special categories of noise co-
variance matricesΥ. In all simulations we assumed a Rayleigh fad-

ing model for the channel matrix, i.e.,hij
iid∼ CN �0, σ2

�
. (1) The

first category is spatio-temporal white observation noise, i.e.,Υ =
E[vec(E) vec(E)H ]= INT . We compared our codes with the best
known found in [4]. We considered the case where the coherence
intervalT=8, M=3 transmit antennas,N=1 receive antennas and a
codebook withK=256 codewords. In figure 1, we show the sym-
bol error rate (SER) versus SNR= E{||XkHH ||2}/E{||E||2} =
Nσ2/tr(Υ) . The solid-plus and dashed-circle curves represent per-
formances of codes constructed by our method, and unitary codes
respectively. As we can see, our codebook construction is only mar-
ginally better for this particular case. ForM=1, in table 1 we com-
pare our results with [5] forT=5. We manage to improve the best
known results and in some cases actually provide optimal packings
which attain the Rankin upper bound. (2) The second category cor-
responds to spatially white-temporally coloured observation noise,
i.e., Υ = IN ⊗ Σ(ρ) where the vectorρ : T × 1 is the first col-
umn of the Toeplitz matrixΣ(ρ). In figures 2–3 the solid curves
represent performance of codes constructed by our method, while
the dashed curves represent performance of unitary codes. In ei-
ther case, the plus sign indicates that the GLRT receiver is imple-
mented. The square sign indicates that the Bayesian receiver is im-
plemented (takes in account the statistics of the channel). Figure 2
plots the result of the experiment forT=8, M=2, N = 1, K=67
andρ=[ 1; 0.85; 0.6; 0.35; 0.1; zeros(3,1) ]. It can be seen that for
SER= 10−3, our codes demonstrate a gain of3dB when compared
with the unitary codes. (3) In the third category, we considered the
case where the noise matrix is of the formE = s αT + Etemp.
This models an interfering sources (with known covariance ma-
trix Υs) where the complex vectorα is the known channel attenu-
ation between each receive antenna and the interfering source. The
matrix Etemp has a noise covariance matrix belonging to the sec-
ond category. Thus, the noise covariance matrix is given byΥ =
ααH⊗Υs+IN⊗Σ(ρ). Figure 3 plots the result of the experiment
for T=8, M=2, N = 2, K=32, s=[1;0.7;0.4;0.15;zeros(4,1)],ρ =
[1;0.8;0.5;0.15;zeros(4,1)] andα = [-1.146 + 1.189i;1.191- 0.038i].
For SER= 10−3, once again our codes demonstrate a gain of more
than2dB gain when compared with the unitary codes.
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Fig. 1. Category 1 - spatio-temporally white observation noise:T=8,
M=3, N=1, K=256,Υ= INT . Plus-solid curve-our codes, circle-
dashed curve-unitary codes.



PACKING RADII (DEGREES)
T K MB JAT Rankin
5 6 78.46 78.46 78.46
5 7 74.55 74.52 75.04
5 8 72.83 72.81 72.98
5 9 71.33 71.24 71.57
5 10 70.53 70.51 70.53
5 11 69.73 69.71 69.73
5 12 69.04 68.89 69.10
5 13 68.38 68.19 68.58
5 14 67.92 67.66 68.15
5 15 67.48 67.37 67.79

Table 1. PACKING IN COMPLEX PROJECTIVE SPACE: We
compare our best configurations (MB) ofK points inPT−1(C)
against the Tropp codes (JAT) and Rankin bound [5]. The packing
radius of an ensemble is measured as the acute angle between the
closest pair of lines.
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Fig. 2. Category 2 - spatially white - temporally coloured:T=8,
M=2,N = 1, K=67,ρ=[ 1; 0.85; 0.6; 0.35; 0.1; zeros(3,1) ]. Solid
curves-our codes, dashed curves-unitary codes, plus signed curves-
GLRT receiver, square signed curves-Bayesian receiver.

5. CONCLUSIONS

We addressed the problem of codebook construction for non-coherent
communication in multiple-antenna wireless systems. In contrast
with other related approaches, the Gaussian observation noise may
have an arbitrary correlation structure. The non-coherent receiver
operates according to the GLRT principle. We proposed a methodol-
ogy for designing space-time codebooks for this non-coherent setup,
taking the probability of error of the detector in the high SNR regime
as the code design criterion. We proposed a two-phase approach to
solve the resulting high-dimensional, nonlinear and non-smooth op-
timization problem. Computer simulations show that our codebooks
are marginally better than state-of-art known solutions for the spe-
cial case of spatio-temporal white Gaussian observation noise but
significantly outperform them in the correlated noise environments.
This shows the relevance of the codebook construction tool proposed
herein.
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Fig. 3. Category 3:T=8, M=2, N = 2, K=32. Solid curves-
our codes, dashed curves-unitary codes, plus signed curves-GLRT
receiver, square signed curves-Bayesian receiver.
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