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Abstract: This paper introduces an integrated approach to Guidance, Navigation and 
Control (GNC) of formation flying spacecraft. The design process considers a 3-spacecraft 
mission in a reference Geostationary Transfer Orbit (GTO). A detailed definition of the 
mission framework, in terms of GNC modes and corresponding science and technology 
requirements, is provided. This, together with an analysis of the dynamic environment of 
the mission, establishes the inputs to the design of a low-thrust optimal relative 
configuration that minimises the fuel consumption and overall complexity. The obtained 
solution is assessed in detail by means of an analysis considering perturbations acting over 
a spacecraft in Earth GTO. The GNC closed loop uses the results of the mission analysis 
and design process as specifications. An algebraic closed-loop algorithm is proposed for the 
Guidance and Control (GC) subsystem, minimizing the propellant consumption and 
ensuring collision avoidance. Using Pontryagin’s Maximum Principle, the GC algorithm 
provides the optimal trajectories from the current state until the target state, as well as the 
optimal control inputs to follow these trajectories. A full-order decentralized filter 
implements the Navigation algorithm. It estimates the full state of the involved spacecraft 
and is based on an Extended Kalman Filter (EKF) for local measurements, and on a 
Covariance Intersection algorithm (plus the EKF prediction part) for the fusion between 
local state estimates and state estimates communicated by other spacecraft. Results of 
applying the GNC algorithms to a realistic simulation of the specified mission are 
presented. The main original contribution of the work presented here is the design of the 
formation flying mission and algorithms using a top-down approach. From a requirement to 
maximize the time which can be used for experimentation at the apogee the orbits of the 
three spacecraft, as well as the propellant optimal manoeuvres for formation (re)acquisition 
have been determined. A novel approach to the covariance intersection method has been 
used to estimate the relative positions between the spacecraft. The algorithms have been 
implemented and tested in an end-to-end mission simulation tool. 
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Glossary of acronyms and symbols: 
FEMDS = Formation Estimation Methodologies for Distributed Spacecraft 
FF-FES = Formation Flying Function Engineering Simulator 
GNC = Guidance, Navigation and Control 
GC = Guidance and Control 
GTO = Geostationary Transfer Orbit 
LVLH = Local Vertical Local Horizon frame 
IPQ = Inertial Planet Frame 
FAC = Formation Acquisition mode 
LFM = Loose Formation Mode 
IFM = Interferometer Construction Mode 
BCM = Baseline Control Mode 
PMP = Pontryagin’s Maximum Principle 
EKF = Extended Kalman Filter 
CI = Covariance Intersection algorithm 
TF = Telescope Flyer 
RF = Radio Frequency 
s/c = spacecraft 
 

[ ]Tijijijij zyx=ρ  = relative position vector between spacecraft i and spacecraft j 

ijρ′  = relative velocity vector (derivative of ρij with respect to the true anomaly ν) 
ν = true anomaly at time t 
a = orbit’s semi-major axis 
e = eccentricity of the orbit 
Ω = right ascension of the ascending node (RAAN) 
i = inclination of the orbit 
ω = argument of perigee 
M = mean anomaly 
tp = the passage time at perigee 
n = natural frequency of the reference orbit 
kx, ky, kz = axes of the Local Vertical Local Horizon frame 
xIPQ, yIPQ, zIPQ = axes of the Inertial Planet Frame 
D = distance between satellites 
α = angle at the reference spacecraft 
X = state vector of the spacecraft formation 
Λ = co-state vector introduced by the PMP formulation 
U = control inputs vector for the spacecraft formation 
umin, umax = control inputs limitations (minimum and maximum values) 
J = cost function to be minimized in order to reduce the propellant consumption 
ˆ iX  = state estimate vector at s/c i 

Q = covariance matrix of the process noise 
Φk = transition matrix 
Ts = sampling period used to propagate the estimate 
Hi = observation matrix at s/c i 
Si = innovation covariance matrix at s/c i 
Ki = Kalman Gain at s/c i 
Pi = error covariance matrix at s/c i 

j
iρ  = code phase between transmitting spacecraft i and receiver spacecraft j 

ji,
ρε  = pseudo-range measurement noise due to the receiver thermal noise 

ji
multipathE ,  = multi-path error  
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1  INTRODUCTION 

A current and/or future trend in space science missions is the usage of several spacecraft flying 

in formation, in order to achieve higher accuracy in Earth and extra solar planetary observations, or 

higher region coverage when monitoring science data, than what would be possible by using 

monolithic platforms. Examples of this interest are the ESA DARWIN, LISA and NASA Earth 

Observing-1, Origins’ NGST and TPF planned missions. 

The goal of the ESA “Formation Estimation Methodologies for Distributed Spacecraft” 

(FEMDS) project was to extend the traditional Guidance, Navigation and Control (GNC) loop for a 

single spacecraft (s/c) to a set of s/c flying in formation. This paper summarizes the main results of the 

project. The mission design process, considers a 3-spacecraft formation flying demonstration mission 

in Geostationary Transfer Orbit (GTO). This study provided the formation design, the required modes 

for the mission, as well as initial and final formation state conditions for each mode. Those conditions 

were then used in the functional design and Matlab/Simulink implementation of the developed GNC 

algorithms. The algorithms were implemented and tested in DEIMOS’ orbital dynamics simulator, 

known as the Formation Flying Function Engineering Simulator (FF-FES). The GNC tests described 

here were mainly concerned with the formation acquisition mode (FAC), the initial mode of the 

mission, where the 3 s/c are brought from a random disposition in a sphere of 8km diameter to a circle 

of 250m radius. 

In order to have a mission frame defined with the required detail level, one of the first 

accomplished tasks was the design of a mission timeline with the definition of formation topology and 

the corresponding GNC modes. The definition of the formation topology consisted of searching for 

stable formation configurations around the apogee of the GTO reference orbit. Considering the typical 

set of pointing requirements for Darwin-like missions, stability is understood as: minimum variance of 

distances between s/c; minimum variance of angles between s/c; and minimum variance of spacecraft 

plane orientation. These configurations allow for a certain time interval for experimentation around 

apogee where minimum control action is required. An analytical design methodology has been used, 

based on a formulation relating the relative evolution of the Cartesian coordinates on a local frame 
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with the corresponding variations in the Keplerian elements between s/c. After obtaining a nominal 

design based on Keplerian dynamics, a numerical optimisation method is used to derive optimal low 

thrust profiles to fulfil imposed requirements on formation geometry. 

Published work on formation flying GNC (for a practical engineering approach to s/c dynamics 

and control, see [16]; relative motion equations, relevant for formation flying s/c, and their solution are 

covered in [1],[15]) does not usually include a mission analysis part (with a few exceptions, e.g., [3], 

but for simplified scenarios), and typically concentrates on guidance and control ([4], [5], [8], [9], 

[10]) or navigation ([11], [12], [14]).  

In [8] a methodology for deep space missions based on algebraic methods is used to allow the 

selection of the minimum amount of communication links between the spacecraft. This work considers 

a rigid formation of a set of spacecraft where linear dynamics is assumed. Each spacecraft is assumed 

to sense its position relative to the other spacecraft. An approach for the control of a spacecraft 

formation is reported in [5], where Linear Programming is used together with constraints to achieve a 

desired mission, using dynamics for the relative position of the spacecraft and again assuming perfect 

range sensing. The goal is to optimize the trajectories of the formation given an initial location and 

taking a reasonably small amount of time. Fuel optimized formation-keeping control is required to 

maintain the vehicles within a specified tolerance of the desired locations for each spacecraft in the 

fleet. In [9] a linear vehicle dynamics is used together with the minimization of a cost functional, 

which ensures stability, performance and obstacle/collision avoidance. Separate costs are assigned to 

the formation stabilization, obstacle avoidance and tracking of a desired trajectory. The technique is 

based on a two-dimensional triangular graph and on the definition of subgroups of core and follower 

vehicles. The optimal path for each vehicle is obtained in a centralized way, but the distribution of the 

computational load over the vehicles is also discussed. Singh and Hadaegh [10] introduced an optimal 

formulation of the guidance problem for spacecraft formations, which allows formation 

reconfiguration and is based on splines. The optimal spline parameters are determined by their 

method. 

In reduced-order decentralized filters, to reduce the communication among the entire fleet, only 

local observations are used for the updating procedure, in a local filter, of the local state part of the 
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entire formation state. The local state is then sent to another s/c. The procedure repeats cyclically in a 

loop around all s/c, until the changes to the entire fleet state are small. By doing so, a fully connected 

communications network is avoided and also the computational load related to the computation of the 

entire fleet state estimates. This way, the measurements obtained from the formation flying spacecraft 

are used in a decentralized manner since the local filter in each spacecraft uses only local 

measurements reducing the computational load for computing the measurement update procedure. 

However, for most GC algorithms, a full state estimate is needed at each spacecraft. Thus, it is 

convenient to devise algorithms that estimate the full state without a fully connected communications 

network, and without a central estimator spacecraft that joins all the local information, as in [14]. 

Another problem is that the local measurements are function of other spacecraft state. Thus, the local 

observation equation update depends on the estimation of other spacecraft states. The solution for this 

problem consists of decoupling the local measurements which are function of more than one vehicle 

state. However the updating process takes 3-4 iterations [12] around the entire fleet, before the fleet 

state converges. 

Given the mission requirements, GNC algorithms were designed, implemented and tested with 

the goal of enforcing the mission specifications along the orbit, in the presence of several differences 

with respect to the nominal design, e.g., perturbations acting over a spacecraft in Earth GTO, 

mismatches between actual and modelled relative dynamics, and sensor noise. For Guidance and 

Control (GC) of formation flying spacecraft, an optimal trajectory planning algorithm that minimizes 

the propellant consumption is used [6]. This closed-loop GC algorithm computes the s/c trajectories 

from the knowledge of the formation linearised dynamics and full state, and is similar to Tillerson’s 

algorithm [5], although the optimal solutions are obtained using Pontryagin’s Maximum Principle 

(PMP) [7], providing some advantages with respect to Tillerson’s linear programming method, such as 

a simpler way of finding the solutions of the problem, and improved ability to consider non-linear 

perturbation models. To take the unmodeled perturbations into account, as well as the state estimation 

errors, the closed-loop GC algorithm is recomputed periodically, the planned trajectory being updated, 

as well as the associated control solutions. 
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For Navigation, a low-communication decentralised architecture is proposed. The full estimates 

of the relative state are computed at each s/c, avoiding a fully-connected communication network. In 

GTO, the access to GPS signals is not possible or very limited, and thus absolute positioning sensors 

are not available onboard. The navigation algorithm obtains its relative distance measurements from a 

RF system installed onboard. In order to update the estimates that are not locally estimated through the 

RF measurements, the state estimates communicated by another s/c are used as measurements. A 

correlation problem arises when the local states estimates are combined with the communicated state 

estimates, leading the Extended Kalman filter (EKF) to diverge. This problem can be avoided by using 

the Covariance Intersection (CI) algorithm [11]. However, the use of CI algorithm leads to reduced 

accuracy, since the error of the combined estimates is lower bounded by the error of the EKF. The 

filtering part of the estimation filter is divided in two steps: the calculation of the local state estimates 

through the local sensor measurements performed by the EKF, and the update of the remaining state 

vector variables, by using state estimates communicated by other s/c and combining them with the 

local estimates using the CI algorithm. Thus, a full-order filter, in the sense that the states estimates of 

all the formation s/c are computed at each s/c, is proposed. 

The paper is organized as follows: in Section 2 we describe in detail the mission analysis and 

design for a 3 formation flying s/c in GTO. The GC algorithm is detailed in Section 3, while Section 4 

focuses on the Navigation algorithm. Results of realistic simulations are presented for the GNC 

algorithms in Section 5. Section 6 provides conclusions and topics for work extensions. 

 

2  ANALYSIS AND DESIGN OF FORMATION FLYING IN GTO 

2.1  Design of a Demonstration Mission in GTO 

A demonstration mission must recall both “Science requirements” and “Technology 

demonstration requirements”. The resulting mission timeline should be a consequence of merging the 

two set of requirements, in such a way that Formation Flying experiments are located in a specific and 
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convenient portion of the GTO orbit to enable interferometer observation. As one of the design 

drivers, the mission timeline shall be compatible with an exhaustive experiment implementation. 

The set of requirements taken as inputs to the Mission Design task are hereafter outlined: 

• Science requirements based on ESA’s science cornerstone DARWIN, devoted to: 

o Detection and analysis of Earth-like planets orbiting nearby stars and 

o High resolution imaging by aperture synthesis. 

• Technology demonstration requirements. 

o Flying precise formation manoeuvres. 

o Inter-satellite radio frequency ranging. 

o Inter-spacecraft high precision range (rate) laser metrology. 

o Micro-Newton thrusters (FEEP or cold gas). 

o Associated control software. 

Considering these inputs, and after several iterations with ESA, a set of mission GNC modes 

was defined in the frame of the FEMDS study. These modes and their interrelationship are graphically 

depicted in Figure 1. Please note that the BCM mode only contemplates in this study the coarse 

acquisition of the spacecraft in order to be able to align and lock more accurate relative sensors 

(optical metrology) required to perform the scientific experiments. Fine relative control sub-modes 

within the BCM have not been considered as part of the study. The required conditions for mode 

transitions are defined in Table 1. 

 

 

 

Figure 1: Mode sequence definition for FEMDS demonstration mission (left). Reference orbit for 

demonstration mission at GTO (right) with modes superimposed. 
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Table 1: Modes transition conditions 

From To Formation 
configuration 

Rel. position & vel. 
error transition 

conditions 

Abs. attitude & 
attitude rate error 

transition conditions 

Time/event 
condition GNC equipment 

From 
FAC 

To ICM 

(To LFM) 

Distance between 
s/c < 500 m.          
s/c plane orient. 
error < 5º 

N/A N/A Fixed time 
to apogee 

RF + star tracker (N) 
mN thrusters (C) 

From 
LFM 

To ICM N/A N/A N/A Fixed time 
to apogee 

RF + star tracker (N) 
mN thrusters (C) 

From 
ICM 

To BCM Distance between 
s/c 250m. 
Formation plane as 
observing plane 

0.1 m, 1 cm/s 1 deg , 0.1 deg/s Fixed time 
to apogee 

RF + star tracker + 
divergent laser (N); 
mN thrusters (C) 

From 
BCM 

To LFM N/A N/A N/A Time of 
experiment 

RF + star tracker; mN 
thrusters (C) 

 

It is important to remark that the location in the orbit of the FAC mode is not fixed in advance 

and depends on many operational issues out of the scope of the study. Depending on its location FAC 

can be followed either by the ICM (situation called “FAC placed close-to-perigee”) or the LFM 

(“FAC centred on the apogee”). In this study, the second case was found to be more appropriate. 

 

2.2  Formation Design Objectives and Drivers 

The formation flying operation can be broadly grouped in two types of experiment: tight 

formation around apogee (during the experiment intervals) and loose formation out of apogee. 

For the tight formation phase, the shape and orientation of the triangle formed by the three s/c 

is dictated by the direction of the target to be observed and by the imaging mode definition. Hence, in 

order to maximise the observation time, it is necessary to: 

• Maintain constant the distances between s/c; 

• Maintain constant the angle at reference s/c; 

• Maintain constant the orientation of the formation plane; 

• Facilitate, at exit of the experiment arc, the natural return of s/c to a configuration 

similar to the one needed to start the experiment at next apogee passage. 
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For the loose formation phase, the main driver was to maintain s/c in the range of the RF 

sensors still guaranteeing a collision safe configuration during perigee passage. 

 

2.3  Design Process 

Since the relative evolutions of s/c, in terms of positions and velocities, cannot be considered as 

design variables, it is preferable to rely the formation design on a constant (under Keplerian motion 

assumption) set of parameters, such as the relative Keplerian elements between the s/c composing the 

formation. The “Keplerian motion” assumption is valid in the case under consideration, since it is used 

for short periods of time (experiment durations around 2 or 4 hours) at the farthest point of orbit from 

the Earth (apogee). It is possible to establish a direct relationship between the relative Cartesian 

position and velocity (in the formation objectives side) and the variations δa, δe, δΩ, δi, δω and δM 

around the s/c nominal Keplerian elements (in the formation design process side), which are constant 

under the assumption of Keplerian motion, adopted for the first stages of design. This relationship is as 

follows [1]: 
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Figure 2: Reference frame of the relative motion used for Formation Design purposes 

where the Keplerian elements are: the true anomaly ν, the semi-major axis a, the eccentricity of the 

orbit e, the right ascension of the ascending node Ω, the inclination of the orbit i, the argument of 

perigee ω and the mean anomaly M. The relative position coordinates x1j, y1j, z1j, j=2,3 (assuming that 

the hub is s/c 1 and that it is used as the reference) are referred to a frame as the one shown in Figure 
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2, centred at the hub, and with zk  axis pointing to nadir, yk  axis pointing in the same direction and 

opposite sense that the reference orbital angular motion vector ϖ0, and xk  axis forming a right-

handed system. This frame is designated as the Local Vertical Local Horizon (LVLH) frame. 

Another frame of interest is the Inertial Planet Frame (IPQ), with the origin in the Earth mass 

centre, with IPQx  axis parallel to the Earth vernal equinox direction, IPQz  axis oriented towards 

North, and IPQy  axis completing the frame. 

Assuming a formation composed by three s/c, i.e., a hub and two telescope flyers, and that 

reference is set on the hub, the collection of conditions to impose are: 

• Distance and distance evolution conditions. 

• Angles between s/c and angles between s/c evolution conditions. 

• Plane orientation and evolution conditions. 

 

2.4  Design Results 

Considering an inertial direction from central body to the apogee direction, and assuming a null 

difference in s/c mean semi major axes (δa2,=0, δa3,=0), the above conditions derive into a system of 

10 non linear equations in [δe2, δi2, δΩ2, δω2, δM2] ; [δe3, δi3, δΩ3, δω3, δM3] that can be solved, after 

linearisation and particularisation at apogee, in the following way: 
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where D is the distance between satellites and α the angle at the reference s/c. λ is a design parameter. 

For the scope of this paper, selection of parameters is α=120º and λ=60º, with a commanded distance 

D=250m between the hub and the telescope flyers. The reference orbit shall have: 

.2and7,0,73039.0,km1.26624 πω −===== oiΩea  
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It is important to highlight that due to particularisation of equations around apogee, imposed 

conditions are not obtained for every anomaly value: the closer the anomaly to ν=π, the better fulfilled 

are the imposed conditions. Moreover, imposed conditions on distance, angles and plane orientations 

are not achieved at all far from apogee. This is shown in Figure 3, where evolution of distance 

between s/c, angle at the hub (reference angle) and plane orientation is shown for different values of 

the mean anomaly. What these plots demonstrate is that, as required, the obtained design represents a 

stable option around apogee. 

 

Figure 3: Open-loop evolution of distances (upper left), reference angle (upper right) and plane 

orientation (lower) propagating the spacecraft from an initial configuration provided by the design 

solution. 

 

2.5  Optimisation of a Low-Thrust Control Law 

An optimisation problem was stated as follows: find the optimal low thrust guidance laws for a 

set of three s/c flying in formation, such that for a time period of 4 hours centred on the apogee, the 

distance from the two telescope flyers to the hub keeps constant and equal to 250m; the angle at the 

hub keeps constant and equal to 120º; and the plane formed by the three s/c keeps constantly oriented 

towards apogee inertial direction. 

In order to avoid s/c divergences during their travel out of apogee region, equality of semi major 

axes at the exit of the experiment phase was imposed as one additional condition. Results for the 

optimisation problem are shown in Figure 4a, in terms of figures of merit. Low thrust laws for these 

results resulted to be in the 0.1 to 1 mN level, for a S/C sized around 250 kg. Regarding the no-

degradation condition out of the apogee region, Figure 4b also demonstrates the natural return, at 

apogee and after having run the experiment in the precedent orbit, to a relative state close to that 

corresponding to the start of a new experiment execution. 
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Figure 4a: Evolution of distances, reference angle and plane orientation of the spacecraft around 

apogee during a four hours experiment using optimal guidance profiles (to be used as feedforward 

commands) that tend to keep the observation parameters while simultaneously reaching a suitable 

configuration at the end.  

 

 

Figure 4b: Evolution of distances, reference angle and plane orientation around the perigee 

starting from the end of a four hours experiment around apogee up to the start of next experiment. 

 

3  GUIDANCE AND CONTROL 

3.1  Relative formation Dynamics for Eccentric Orbits 

The differential dynamics equations will be expressed with respect to the true anomaly ν, rather 

than to t. For elliptic orbits, the relation between t and ν  is: 
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where tp is the passage time at perigee, and n is the natural frequency of the orbit. 

Using the leader-follower technique [5], i.e., LVLH origin coincides with hub’s mass centre 

(see Figure 2), we are interested in the relative motion of telescope flyers TF2 and TF3 with respect to 

the hub. As specified in Figure 5, [ ]T
iiiii zyx 1111 == ρρ  is the relative position vector between 

the hub (assumed as s/c 1) and TF2 (i=2) or TF3 (i=3), where iii xxxx =−= 11 , iii yyyy =−= 11  

and iii zzzz =−= 11 , since 0111 === zyx .  The relative positions x1i, y1i and z1i and the relative 

velocities 
νd

dx
x i

i
1

1 =′ , 
νd

dy
y i

i
1

1 =′  and 
νd

dz
z i

i
1

1 =′  characterize the state of TF2 or TF3 with respect to 

the hub. 
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Figure 5: Representation of the relative states between hub, TF2 and TF3 

 

In LVLH, the set of linearised ν-varying equations describing the relative motion of telescope 

flyers TF2 and TF3 with respect to the hub is ([4], [5]): 
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where As/c(ν) is the following 6×6 matrix: 
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Each external forces vector [ ]Tiziyixi fff ,,,=f  (i=1,2,3) includes the control inputs iu  acting on 

s/c i and the differential perturbations experienced by s/c i: ∑+= iii wuf . The differential 

perturbations are the relative perturbations experienced by TF2 and TF3 with respect to the 

perturbations affecting the hub. In this paper, we consider 0=∑ iw . Nevertheless, the GC 

algorithms were tested in the presence of simulated perturbations, as reported in Section 5. Assuming 

also 0u =1  (hub no controlled), then:  iii uuuff =−=− 11 , for i=2,3. 
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3.2 Model-Based Optimal Trajectory Planning 

During FAC, the trajectories of TF2 and TF3 must minimize the propellant consumption, 

avoiding collisions. The state vector used in this GC section is: 

[ ]
[ ]T

TTTTT

zyxzyxzyxzyx 131313131313121212121212

13131212 )()()()(

′′′′′′=

′′= ρρρρX
 

All control inputs are gathered into vector U: 

[ ]T
zyxzyx uuuuuu ,3,3,3,2,2,2=U  

By gathering together the relative dynamics equations (4) for TF2 and TF3, the state equations of 

the optimal trajectory planning problem are: 

UBXAX )()( νν
ν

+=
d
d

     (6) 

where: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

×

×

)(

)(
)(

/66

66/

ν

ν
ν

cs

cs

A0

0A
A  

with As/c(ν) expressed by (5). From (4), B(ν) follows immediately. 

The optimal trajectory planning problem is studied between ν1 and ν2, with ν1=ν(t1) and 

ν2=ν(t2) as provided by (3). Both the initial and the final state are given: 

aX =)( 1ν   and  bX =)( 2ν      (7) 

Each control inputs component Uj must satisfy: 

maxmin || uUu j ≤≤ ,  for 6,,1K=j     (8) 

The cost function to be minimized is [6]: 

∫∑
=

=
2

1

6

1

2
ν

ν

νdUJ
j

j      (9) 
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By minimizing J, the overall control inputs are minimized. Since the control inputs are proportional to 

the propellant consumption, the propellant consumption is minimized. 

3.3  Application of Pontryagin’s Maximum Principle 

We search for the optimal trajectories )(νoptX  and the associated optimal control inputs 

)(νoptU , which: respect the state equations (6), meet the two-boundary conditions (7), satisfy the 

control inputs limitations (8), and minimize the cost function (9). This optimal trajectory planning 

problem is solved by using PMP [7], where a co-state vector Λ is introduced: 

[ ]T
121110987654321 λλλλλλλλλλλλ=Λ  

and 12 co-state equations are generated: 

)()( kk
d
d ΛCΛ

=
ν

,     (10) 

The PMP states that the control inputs which satisfy, for all 21 ννν ≤≤ , the stationarity conditions 

[6]: 
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are the optimal control inputs, the corresponding trajectory being optimal as well. By taking into 

account the linear relation (11) between the optimal control inputs and the co-state variables, the state 

equations (6) at νk become: 

)()()()()()1( kkkkkk
d
d

k

ΛBXAXXX Λ+=
−+

=
δνν

 

where 
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. Finally, the recurrent 

expression of the state vector is: 
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)()()()()1( kkkkk ΛBXAX +=+     (12) 

where 12)()( IAA +⋅= kk δν  and )()( kk Λ⋅= BB δν . 

Similarly, the co-state equations (10) become: 

)()()1( kkk ΛCΛ =+      (13) 

where 12)()( ICC +⋅= kk δν . 

 

3.4  Algebraic Closed-Loop GC Algorithm 

The two-boundary equations system to be solved consists of the state equations (12) and the co-

state equations (13). Both initial and final state vectors are known (7), but no boundary condition is 

available for the co-state variables. This two-boundary equations system is solved by using the purely 

algebraic algorithm derived below, denoted “closed-loop GC algorithm”. To take the unmodeled 

perturbations into account, as well as the state estimation errors, the closed-loop GC algorithm is 

recomputed periodically, at regularly spaced time instants (e.g., every 150s), and the planned optimal 

trajectory is updated. 

Based on the recurrent expressions (12) and (13), )1( +kX  and )1( +kΛ  can be expressed 

directly as function of )0(X  and )0(Λ : 

)0()()0()()1( ΛQXPX kkk +=+     (14) 

)0()()1( ΛNΛ kk =+       (15) 

where P(k), Q(k) and N(k) are given by the following recurrent sequence: 

(1) )0()0( AP = , )0()0( BQ = , )0()0( CN =  

(2) FOR  k=1  TO  n-1 

)1()()( −= kkk PAP  

)1()()1()()( −+−= kkkkk NBQAQ  

)1()()( −= kkk NCN  
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This recurrent sequence is nothing else than propagating dynamics between 01 == kνν  and 

nk ==νν 2 . The number of steps n is related to δν  by: n
12 ννδν −= . We have: )(ˆ)0( 1νXX =  and 

)(ˆ)( 2νXX =n , so expression (14) written for k=n-1 becomes: 

)(ˆ)1()()0()1( 12 νν XPXΛQ −−=− nn    (16) 

where )1( −nQ  and )1( −nP  are provided by the recurrent sequence. (16) is an algebraic system of 

12 linear equations in )0(Λ , i.e., the initial co-state variables at ν1. This linear system is easily solved. 

Then, by means of (15), knowing )0(Λ  we know all )(νΛ , for 21 ννν ≤≤ . Finally, using the 

stationarity conditions (11), all optimal control inputs )(νoptU  are found. The optimal trajectories 

)(νoptX  are determined from (14). 

The control inputs limitations (8) are considered only a posteriori. The obtained )(νoptU  are 

just not allowed to exceed the limitations: if component max)( uopt
j >νU , then max)( uopt

j =νU  is 

imposed. Collision avoidance is also ensured a posteriori: if the relative distance between two s/c 

becomes less than a safety distance, e.g., m40min =D , then repulsive potential forces are applied to 

move them in opposite directions. 

 

4  NAVIGATION 

In the previous section, the GC algorithm was described, assuming noise-free full state 

availability. This section presents the algorithm used to estimate the formation flying s/c full state. A 

decentralized scheme is used, under which the state is fully estimated by each s/c of the fleet, based on 

measurements from the RF subsystem, and state estimates communicated by some neighbour s/c. 

4.1 Formation Flying State Vector 

Relative states are more convenient to represent the formation state than absolute states because 

measurements refer to relative distances between s/c and, should we consider the absolute state, the 

number of equations and variables to be determined by each s/c would lead to an undetermined 
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system, since there would be 6 variables, jx , jy , jz , jx′ , jy′ , jz′ , to be determined and 3 measurements 

only per s/c (see subsection 4.3). 

Therefore, the following extended version of the formation relative state vector for three s/c (see 

Figure 5) will be considered in this section: 

[ ]TTTTTTT )()()()()()( 323213131212 ρρρρρρX ′′′=  

where 32ρ  and 32ρ′  are only used in the navigation subsystem, but not passed to the GC algorithm, 

and 

• ´ denotes the derivative with respect to the true anomaly ν, 
νd

dρρ =′  

• [ ]Tijijijij zzyyxx −−−=ρ  is the relative vector between s/c i and s/c j, where i,j=1,2,3. 

Also, as already illustrated in Figure 5: jiijij ρρρρ −=−= , with [ ]T
iiii zyx=ρ . 

4.2 Full-Order Decentralized Filter 

From the navigation standpoint, a formation flying s/c fleet endowed with relative distance 

sensors and RF communications can be considered to have two underlying networks: a communication 

network, where linked s/c communicate state estimates, and a measurement network, linking each s/c 

to all the s/c it measures the relative distances to. In general, a s/c measures distances and 

communicates to any of its fleetmates. Nevertheless, it is desirable to reduce the number of 

measurements and especially the number of links in the communication network. The concept 

proposed in this work is to have each s/c measuring locally the distance to another fleet s/c (as 

expressed in the fleet measurements network), and transmitting its updated state estimates to another 

s/c (as expressed in the fleet communications network). The two networks are depicted in Fig. 6. The 

measurement network concerns the RF measurements of the distance with respect to another s/c, made 

every 20 seconds. The communication network concerns the communication between pairs of s/c, in 

order to send/receive the full state estimate between two spacecraft of the fleet. The state estimates are 

considered as observations in the receiving s/c.  
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The Navigation algorithm is based, at each s/c, on an EKF for local measurements, and on a CI 

algorithm (plus the EKF prediction part) for the measurements communicated by its linked s/c in the 

communications network. The CI algorithm [11] avoids the possible divergence of the EKF at the 

receiving s/c, due to correlation between measurements of the s/c in the fleet, especially when a token 

ring communication network topology is used (as it is the case for a 3-spacecraft fleet) by computing 

an upper bound for the covariance matrix of the fused variables. The price to pay is reduced estimation 

accuracy. Therefore, in the filtering step, the EKF is used when observations are measurements from 

the sensors, and the CI algorithm is applied whenever the observations are the state vector estimates 

from a s/c linked by the communications network. 

   

  

 

Figure 6: a) Communication network b) measurement network 

 

The full-order decentralized algorithm consists of two parts: prediction, similar to an EKF, and 

filtering, where the EKF filtering equations are replaced by the CI algorithm, when local 

measurements are replaced by state estimates communicated by another s/c. 

Prediction  

1. ))/(ˆ,()/1(ˆ kkkkk ii XFX =+ , where ))|(ˆ,( kkk iXF is approximated by a 4th-order four-

stage Runge-Kutta method. 

2. )1/())(/()/1( ++=+ kkkkkk T
k

i
k

i QΦPΦP , where Q is the covariance matrix of the 

process noise, mainly due to unmodeled dynamics, and Φk is the transition matrix 

!2
))),(ˆ(()),(ˆ(

2
s

i

s
i

k
TttTtt XFXFIΦ ++≈ , where Ts is the sampling period used to propagate 

the estimate and i stands for the ith s/c.  

 

Filtering  



 20

For i=1,2,…, N-1, circularly (i.e., 1 comes after N-1) 

Sensor Observation, yi(k) 

1. Compute the local observation matrix: ))1|(ˆ,( −kkk ii XH  (the linearization of the 

original observation function – see subsection 4.3 - denoted by )(kiH  for simplification). 

2. Compute the local innovation covariance matrix: 

)())()(1|()()( kkkkkk Tiiii RHPHS +−=  

3. Compute the local Kalman Gain: 1))()(()1|()( −−= kkkkk iiii SHPK  

4. Update local state estimate: )(ˆ)1|(ˆ)/(ˆ kkkkk iii XXX δ+−=  

5. Re-compute the local observation matrix: ))|(ˆ,( kkk ii XH  

6. Compute the error covariance matrix: 

  TiiiTiiiiii kkkkkkkkkkk ))()(()())()()(1|())()(()|( KRKHKIPHKIP +−−−=  

State estimate from predecessor s/c, )()1|()( 1 kkkk ii −+−= vXz  

1. Compute the error covariance matrix: 

     
1111 ))1|()(1())1|(())|(( −−−− −−+−= kkkkkk iii PPP ωω  

2. Update local state estimate: 

     ))())1|()(1()1|(ˆ))1|(()(|()|(ˆ 111 kkkkkkkkkkk iiiii zPXPPX −−− −−+−−= ωω , 

where the parameter ω is chosen at every step such that the trace of the matrix +
ik ,P  is 

minimized. 

4.3 RF Measurements 

The relative distance measurements are based on pseudo-range RF signals, with the following 

mathematical model: 

iji
jiji

multipathji
j

i Eρ ζε ρ +=++−= ρρρ ,,    (17) 

where: 
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• j
iρ  is the code phase between transmitting spacecraft i and receiver spacecraft j,  

222 )()()( ijijijji zzyyxx −+−+−=− ρρ  is the equation that relates the true 

distance, between s/c i at time of signal transmission and s/c j at measurement time, with the 

formation state, in body reference frame (see Figure 7), 

• ji,
ρε is the pseudo-range measurement noise due to the receiver thermal noise, 

• ji
multipathE ,  represents the multi-path error. 

When s/c j is receiving signals from s/c i, one must take into account the disposition of the three 

receiving antennas in the s/c, as depicted in Figure 7: for receiving antenna k:  

jiji
multipath

R

ji
Rj

i Eρ kk ,,,
ρε++−= ρρ . 
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Figure 7: The three antennas, R1, R2, R3, are placed in the sides of the s/c in the positions [ap 0 0], 

[0 ap 0], [0 0 ap] meters respectively with respect to the body frame. The measurement 

signals, 321 ,,, ,, Rj
i

Rj
i

Rj
i ρρρ , transmitted from s/c i, are received by each antenna, R1, R2, R3, on s/c j. 

 

However the receiver antennas are not placed in the centre of the s/c, but placed ap meter ahead 

on each side of the s/c, as shown in Figure 7. Thus, there are three measurements instead of just one. 

Therefore, the relations between measurements received in the three antennas, 321 ,,, ,, Rj
i

Rj
i

Rj
i ρρρ and 

states expressed in the body reference frame are: 

222

222

222

)()()(

)()()(

)()()(

3

2

1

apzyx

zapyx

zyapx

b
ij

b
ij

b
ij
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ji
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b
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b
ij

R

ji

b
ij

b
ij

b
ij

R

ji

−++=−

+−+=−

++−=−

ρρ

ρρ

ρρ

    (18) 

 

Since the state vector is expressed in LVLH, the variables that are referred in the observations 

should be transformed into LVLH reference frame. Given the matrix IPQ
bR  transforming a position 

vector from the body frame to IPQ frame, the matrix transforming a relative position vector from 

LVLH to the s/c body frame is: 

IPQ
LVLH

TIPQ
b

b
LVLH RRR )(=  

Thus, any position vector x can be transformed from the body reference frame to LVLH frame by: 

bLVLH
b

LVLH xRx =  

In particular: 

[ ] [ ]TLVLH
ij

LVLH
ij

LVLH
ij

b
LVLH

Tb
ij

b
ij

b
ij zyxzyx R=  or  

LVLH
ij

LVLH
ij

LVLH
ij

b
ij

LVLH
ij

LVLH
ij

LVLH
ij

b
ij

LVLH
ij

LVLH
ij

LVLH
ij

b
ij

zayaxaz

zayaxay

zayaxax

333231

232221

131211

++=

++=

++=
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Applying the previous equation to the measurements given by equation (18), the observations obtained 

by receiving antenna 1 are then expressed in LVLH frame as follows: 

2
333231

2
232221

2
131211

)(

)()(
1

LVLH
ij

LVLH
ij

LVLH
ij

LVLH
ij

LVLH
ij

LVLH
ij

LVLH
ij

LVLH
ij

LVLH
ijR

ji zayaxa

zayaxaapzayaxa

+++

+++−++
=− ρρ  

and similarly for 2R

ji ρρ −  and 3R

ji ρρ − . 

 

 

5 GNC RESULTS 

The performance of the GNC algorithms was tested in the FF-FES realistic orbit dynamics 

simulator, developed by DEIMOS. With FF-FES it is possible to simulate open and closed-loop 

scenarios, calculating budget capabilities; Monte-Carlo processing and 2D&3D plots for analysis are 

also provided. Natural environment is simulated using a set of realistic and detailed models for the 

relative motion perturbations: solar radiation pressure, micro-meteoroids, atmospheric loads and 

higher order of Earth Gravity Field. 

The results described in this section concern a GTO characterised by: 

.2,7,0,73039.0,km1.26624 πω −===== oiΩea  

The duration of FAC is chosen to be 6h, in order not to saturate the control inputs, which limitations 

are: N1.0min µ=u , mN20max =u . The FAC centred on the apogee part of the orbit (see subsection 

2.1) was chosen, because perturbations are less significant than close to perigee. More precisely, FAC 

starts at s94.108161 =t  and ends at s94.324162 =t , where the passage time at perigee 0=pt . The 

corresponding true anomalies are (3): o5557.1561 =ν , o4442.2032 =ν . 

The initial state aX =)( 1ν  corresponds to a disposition of the three s/c within a sphere of 8km 

diameter, with velocities of maximum ±0.1m/s. In the estimation filter, this initial state has an error of 

1m for the positions and 1m/rad for the velocities. 
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The final conditions bX =)( 2ν  have been obtained using results from the optimal formation 

design task, in Section 2. Starting from these bX =)( 2ν , after drift-free natural motion during next 

LFM, the goal is to attain, up to 1h before the next orbit’s apogee, an isosceles triangle formation with 

250m equal edges and a 120º angle between them. Table 2 presents aX =)( 1ν  and bX =)( 2ν , in 

IPQ. 

Table 2. Initial and final states, in IPQ 

 aX =)( 1ν bX =)( 2ν

]m[2x  -2400.0 203.56 

]m[2y  2018.5 -38.36 

]m[2z  -54.6 -20.40 

]m/s[2x&  -0.0473 -0.009191 

]m/s[2y&  -0.1038 -0.010179 

]m/s[2z&  0.0275 -0.002671 

]m[3x  -1273.8 -96.39 

]m[3y  -2557.0 -12.78 

]m[3z  -440.0 193.63 

]m/s[3x&  0.1401 0.005042 

]m/s[3y&  -0.0919 0.0045848 

]m/s[3z&  0.0089 -0.007274 

 

The GNC closed-loop system integrates all the project work contributions. The formation flying 

s/c block is simulated by FF-FES, and provides sensor readings to the Navigation sub-system, which 

estimates the relative state and passes the relevant components to the GC subsystem. The latter uses 

mission specifications to provide the optimal torques to the formation flying s/c. In the closed-loop 

case, perturbations were disabled in the simulator, but the GNC algorithm had to handle sensor noise 

and mismatches between the dynamics model used by the GNC algorithms and the dynamics 

simulation. 

Figures 8 and 9 show the GNC algorithms results. Figure 8 presents a projection in the x-y plane 

of the s/c optimal relative trajectories of TF2 and TF3, in IPQ. Figure 9 illustrates the performances of 
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the navigation algorithms, showing the evolution of the relative position error between the hub and 

TF2. The plot shows that, though the estimator does not diverge, its relative stability is small. This is 

due to the difficulty in tuning the [18x18] covariance matrices of the measurement and the process 

noise and to the fact that, the covariance matrices not being diagonal, the change of a matrix term 

influences the estimation error for all the other state vector components. Furthermore, tuning the ω 

parameter of the CI algorithm has similar drawbacks, as improving the estimates for some state 

components will worsen others, if not done appropriately. 

 
Figure 8: Projection in x-y plane of the optimal trajectories in IPQ of TF2 (solid) and TF3 (dashed) 

 
 

Figure 9: Evolution of the relative position, between the hub and TF2,, estimation error  

 

In terms of performance using closed-loop GNC, the error between the obtained final state 

)( 2νX  and the desired one b is maximum 8m for position components and of 0.0012m/s for 

velocities. Simulations were also done without the estimator in the loop. In this case only GC is 

considered and, with all types of perturbations enabled in the simulator, the error is of the order of 

0.1m for positions and of 0.0001m/s for velocities, which meets the mission conditions specified in 

Table 1 for the transition from FAC to BCM modes, with LFM and ICM included. 

 

6  CONCLUSIONS 

This paper introduced an integrated approach to GNC for a GTO formation flying spacecraft 

mission, encompassing novel mission design and analysis results, as well as guidance, navigation and 

control algorithms.  

In this work, mission analysis has shown that it is possible for a typical GTO to obtain a highly 

stable 3 formation flying s/c for up to ~4 hours around apogee with low thrust laws in the order of 10-

6m/s². This enforces the feasibility of a possible scientific demonstration mission to be deployed at an 

Earth orbit, instead of targeting a more complex libration point orbit for these demonstration purposes. 
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Furthermore, it was demonstrated that, with appropriate formation design, it is possible to leave the 

spacecraft uncontrolled around perigee, between experiments, without risk of collision or need to 

spend excessive fuel to bring them together. 

Concerning guidance and control, this paper presented a model-based optimal trajectory 

planning algorithm, our guidance-oriented approach consisting in regularly re-computing this 

algorithm. This (re)planning leads to trajectories that require less control effort during the trajectory 

tracking phase of the mission. The proposed optimal trajectory planning algorithm is based on the 

application of Pontryagin’s Maximum Principle which, to the best of our knowledge, is novel for 

formation flying spacecraft GC. 

As for the Navigation part, the formation state estimation is handled by a full-order 

decentralized estimator, based on the covariance intersection (CI) algorithm and an Extended Kalman 

Filter (EKF). The EKF is used for local measurements, while CI combines the local full state estimate 

with the estimate provided by a linked s/c in the communications network, eliminating EKF 

divergence. Our current work concerns the improvement of navigation performance, namely 

developing a multiple-weighted CI, by increasing the weights of relative distance and velocity 

estimates from predecessor s/c for state components not measured locally, as well as the weight of 

local estimates of state components measured locally. We are also studying individual s/c estimator 

stability, as well as the performance bounds of the problem [17], so as to evaluate how close to the 

optimal estimate is the suboptimal EKF and conclude on whether it is possible to meet the specified 

requirements when such an estimator is included in the loop. This is an important issue, often 

overviewed in the literature, which seldom considers the estimator in the loop. The solution for 

possible problems may be based on the usage of 2nd order terms in the EKF or of particle filters, 

which do not assume any particular probability distribution. Regarding formation stability [18], an 

analysis will be performed to ensure that the cooperation among the s/c is stable and robust to changes, 

despite the limitations in communications between s/c [19]. 

Simulation results with all GNC algorithms in closed loop have been presented, for a 3-

spacecraft formation flying in a GTO, showing the ability to bring the three s/c from an initial 

location, inside a sphere of 8km in diameter, down to the specified triangle with distances in the order 
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of 200m between s/c. The GC results, without the estimator in the loop, meet the mission analysis 

specifications. The introduction of the estimator brings additional errors, which must be reduced in 

future work. Both absolute and relative attitude estimation and control will also be included in future 

work, based on sensor fusion between RF and star-tracker measurements. Additionally, the full 

implementation and test of the GNC algorithms for all the mission modes is envisaged. 
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Figure 1: Mode sequence definition for FEMDS demonstration mission (left). Reference orbit for 

demonstration mission at GTO (right) with modes superimposed. 
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Figure 2: Reference frame of the relative motion used for Formation Design purposes 
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Figure 3: Open-loop evolution of distances (upper left), reference angle (upper right) and plane 

orientation (lower) propagating the spacecraft from an initial configuration provided by the design 

solution. 
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Figure 4a: Evolution of distances, reference angle and plane orientation of the spacecraft around 

apogee during a four hours experiment using optimal guidance profiles (to be used as feedforward 

commands) that tend to keep the observation parameters while simultaneously reaching a suitable 

configuration at the end.  
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Figure 4b: Evolution of distances, reference angle and plane orientation around the perigee 

starting from the end of a four hours experiment around apogee up to the start of next experiment. 
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Figure 5: Representation of the relative states between hub, TF2 and TF3 



 35

 

2

3 

1 

2 

3

1

a) b) 
  

Figure 6: a) Communication network b) measurement network 
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Figure 7: The three antennas, R1, R2, R3, are placed in the sides of the s/c in the positions [ap 0 0], 

[0 ap 0], [0 0 ap] meters respectively with respect to the body frame. The measurement 

signals, 321 ,,, ,, Rj
i

Rj
i

Rj
i ρρρ , transmitted from s/c i, are received by each antenna, R1, R2, R3, on s/c j. 



 37

 
Figure 8: Projection in x-y plane of the optimal trajectories in IPQ of TF2 (solid) and TF3 (dashed) 
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Figure 9: Evolution of the relative position, between the hub and TF2,, estimation error  
 


