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Abstract

In computer vision, occlusions are almost always seen as undesirable singularities that pose difficult challenges
to image motion analysis problems, such as optic flow computation, motion segmentation, disparity estimation, or
egomotion estimation. However, it is well known that occlusions are extremely powerful cues for depth or motion
perception, and could be used to improve those methods.

In this paper, we propose to recover camera motion information based uniquely on occlusions, by observing
two specially useful properties: occlusions are independent of the camera rotation, and reveal direct information
about the camera translation.

We assume a monocular observer, undergoing general rotational and translational motion in a static environ-
ment. We present a formal model for occlusion points and develop a method suitable for occlusion detection.
Through the classification and analysis of the detected occlusion points, we show how to retrieve information
about the camera translation (FOE). Experiments with real images are presented and discussed in the paper.
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1. Introduction

Finding correspondences is one of the central
problems in stereo and motion analysis. To per-
ceive depth and motion, the human binocular vi-
sion uses surface and edge representations and
performs correspondences between two or more
images, captured along time. However, a non-
correspondence, such as an occlusion, can play
an important role in motion and depth interpre-
tation. Anderson and Nakayama [1] have shown
that occlusion is one of the most powerful cues
to perceive depth and motion, and influence the
earliest visual stages of stereo matching. Figure 1
illustrates this idea with samples of a well-known
image sequence, where the occlusions (together
with the image motion) give a clear perception of
depth and camera motion.
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Nevertheless, in computer vision, occlusions are
often considered as artifacts, undesirable in many
applications, mainly for the image motion compu-
tation and the stereo matching. Consequently a
number of algorithms have been designed to han-
dle occlusions in order to estimate either multiple
image motions [12,2,10,7] or the disparity field of
a stereo pair [8,3,4,6].

In this paper we do not focus on the explicit
estimation of image motion (or disparity) but
rather, on the role played by occlusions in mo-
tion perception. Assuming a moving monocular
observer, we study the relation between the ob-
servable occlusions and the camera motion. Thus,
we will show how the occlusions provide, per se,
fundamental information for motion estimation.

To approach this problem, we first develop a
sufficient condition for the existence of an oc-
clusion, and thereafter a direct relation between
camera translation and occlusion classification is
presented. Finally, we report some results with



Figure 1. Three sequential samples of the Flower Garden Sequence. The camera is going to the right.
Occlusions and image motion give both a depth and camera motion perception.

real image sequences.

2. A Definition for Occlusion Points

In the previous section, we have argued that oc-
clusions convey important information about the
camera motion and scene structure. In this sec-
tion we propose a formal definition of occlusion
points and a methodology for detecting occlusions
in image sequences.

Geometrically, an occlusion is caused by an oc-
cluding surface moving in front of an occluded
surface. Additionally, if the observer is moving
in a static environment, occlusions correspond to
discontinuities both in the perceived motion and
depth. However, unless we impose prior mod-
els to the image motion field, 3D structure or to
global image features, we can only decide about
the existence of a local occlusion in two consecu-
tive frames, if the photometric properties change
significantly in a local neighborhood. Thus, we
can associate an occlusion point to a photomet-
ric value that perceptually “appears” or “disap-
pears” between two consecutive frames, classified
respectively as emergent or submergent occlusion
point.

Hence, an occlusion has to be studied both as
a geometric and photometric phenomenon. We
propose to define occlusion points through a suf-
ficient condition based on a local photometric dis-
similarity over time, with precise geometric prop-
erties. This sufficient condition can be character-
ized rigorously for the continuous case.

First of all, we denote the spatial and tempo-
ral coordinates of an image sequence (see Fig-
ure 2(a)(b)) by z and ¢, represented by a vector
k = (%), where x is the spatial coordinate of an
arbitrary scanline of the image. Additionally let
us define the following auxiliary sets of space-time
coordinates, representing two halves of a circle in

2-t-space?:

Kt = {k:|k]l=1At>0}
K= = {k:||k[|=1At<0}

As we have already discussed, an occlusion
point corresponds to photometric values that ap-
pear and disappear between frames. Let f(k) de-
note such photometric measure of the image in
k (for example the brightness value). Based on
this notation, we present the following sufficient
condition for the existence of an occlusion.

The point kg = (zo, tp) is an emergent occlu-
sion if

Ikt e Kt :Vk- e K,
lim f(ko +~k™) # lm f(ko +~k). (1)
y—0+ y—0+

Similarly, kg is a submergent occlusion point if
Ik~ e K- :Vkt € KT,
lim f(ko + k™) # lim f(ko+~k~). (2)
'y—>0+ 'y—>0+

Figure 2(a) illustrates the meaning of the suffi-
cient condition proposed here, with a simple ex-

2 Assume for simplicity that the units of z and ¢ are meters
and seconds respectively.
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Figure 2. (a) Emergent Occlusion Point: Surface R appears between surfaces Y and B; (b) Image motion
over time t, for a horizontal line parameterized by z. (c) Example of a real sequence with translation
and rotation; (d) Image motion over time, for the horizontal scanline selected in the left pictures.

ample of an emergent occlusion point. The sur-
face R appears between surfaces Y and B. Con-
sidering a given horizontal scanline, the surface R
emerges at the point (zo, ¢o), as shown in Figure
2(b). According to the condition defined before,
this point is an emergent occlusion point, because
there is a vector kT (with positive ¢) associated
to a region (R), which photometric value does not
exist on the half-plane ¢ < tg, in a neighborhood
of the point (zg,%p). Figure 2(c) shows an ex-
ample of a real sequence, where the submergent
and emergent occlusion surfaces are visible on the
temporal evolution of a given horizontal scanline
(Figure 2(d)).

This sufficient condition is useful as formal
model for a generic occlusion definition. How-
ever, in order to guarantee its applicability in the
discrete case, we have to define more carefully the
associated inequality relation. Consequently, we
have developed a dissimilarity criterion inspired
on a function developed by Tomasi and Manduchi
[11] that was originally designed to smooth a sin-
gle image, preserving the photometric discontinu-

ities. We have changed this function in order to
measure the similarity between two consecutive
frames.

Suppose that pixel xg in frame ty is charac-
terized by a photometric value f(xg,tp). The
problem to solve is to verify the existence of a
similar photometric value (preferably through a
perceptually meaningful way) within a given re-
gion in frame ¢t;. We start by defining a func-
tion S(xg,to,x1, 1) that compares the similarity
of f(xg,t0) to fx1,t1):

2
S(wo,to, v1,11) = exp (— ||f(x1’t1)2_02f(m0’t0)|| )

where 2 corresponds to the variance of the asso-

ciated gaussian filter. Next, we apply this simi-
larity function to all pixels z; in a neighborhood
V(xo) around pixel zq in frame ¢;:

> flx1,t1) - S(xo,t0, 21,11)
1€V (x0)

> S(xo,to,x1,t1)
1:16‘/(10)

fro (zo,t0) = (3)
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Figure 3. (a) Brightness function of a scanline in frame ¢¢; (b) Brightness function of the same scanline
in frame t;, after applying a shift in x, adding some gaussian noise in the brightness axis and introducing
new brightness information (simulating an occlusion). (c-d) Computation of || fi, (z,t0) — f(z,to)|| and
| feo (x,t1) — f(z,t1)| for all  in frames ¢y and ¢; respectively. We assumed that V' (z) is the set of points

within the interval [x — 20 z + 20] and o = 1.

When o — 0, this function yields (except
for some pathological configurations) the pho-
tometric value f(z*,t1), * € V(xzg), that is
closest to f(xo,tp). There exists dissimilarity
(and therefore (xg,tg) is an occlusion point), if
Il fe, (zo,to) — f(xo,t0)|| is above a certain accept-
able threshold 7T'. This threshold and the variance
o2, defined in function S, depend on perceptual
criteria based on the photometric range of the im-
ages.

Figure 3 illustrates the performance of this dis-
similarity criterion in detecting the presence of
an occlusion between two simple functions (Fig-
ures 3a-b) which differ additionally by a transla-
tion. By subtracting directly both functions, we
cannot detect easily the occlusion, because the
difference is affected indistinctly by both occlu-
sions and translation. On the contrary, by using

the proposed approach, we can detect exactly the
dissimilar region which corresponds to the occlu-
sion region. Hence, ||f¢, (z,t0) — f(z,to)|| (Fig-
ure 3c) is almost zero for all x, meaning that all
photometric information in frame ¢ is present in
frame ¢;. On the other hand, the computation
of ||fi,(z,t1) — f(=,t1)|| (Figure 3d) shows that
there is a region in frame ¢; which is dissimilar
from the information present in frame tg, reveal-
ing then an occlusion region. Furthermore, if the
frame t; appears temporally after the frame tg
(t1 > to) then we can conclude that the detected
occlusion is emergent, otherwise (t; < ) the oc-
clusion is submergent. Notice that the occlusion
detection only becomes effective if an adequate
threshold is applied (in the example, 7= 1 is an
acceptable value).



3. Occlusions and Egomotion Perception

In the previous section we have proposed a for-
mal definition of emergent and submergent occlu-
sion points, together with a photometric criterion
for their detection.

In this section we analyze how these occlusion
points can be used to retrieve information regard-
ing the observer’s 3D motion (egomotion). We
consider a monocular observer under a perspec-
tive camera model, moving with arbitrary trans-
lation and rotation, in a scene with static objects.

Associated to the egomotion estimation prob-
lem, one observes one of the most important prop-
erties of the occlusions:

Property 1 — The camera rotation does not
produce occlusion points. Consequently, the occlu-
ston points are uniquely due to the camera trans-
lation.

Property 1 states a well known fact. Only the
translational part of the image motion depends
on the scene depth. As occlusions are produced
by depth discontinuities, only the translational
component of the camera motion will give rise to
occlusion effects.

Notice that one of the most important diffi-
culties when estimating the camera motion us-
ing optic flow consists in decoupling the effects of
translation from those of rotation [9]. This prob-
lem does not exist when considering occlusions.

The translation of an observer is usually identi-
fied by the projection of the linear velocity on the
image plane, known by the Focus of Expansion
(FOE). In order to explore the relation between
the FOE and the behavior of the occlusions, let
us consider a single scanline camera to simplify
the problem.

Assume that = parameterizes the scanline de-
fined before and v(x) describes the image velocity
along that line. The flow v(z) can be represented
as a function of the camera motion parameters [5],
as follows:

w

v(x) = m(x — zrog) +7(2), (4)

where r(x) is the motion component due to the
camera rotation, xpog is the FOE projection on

the scanline considered, W is the camera velocity
component along the optical axis (let us assume
that it is positive), and finally Z(x) is the depth
of the corresponding 3D point.

Assuming that zg is an occlusion point, one
observes a discontinuity in v(zg) and a disconti-
nuity in Z(xo) — this means v(zy ) # v(zd) and
Z(zy) # Z(x]) respectively. However these dis-
continuities have a different physical meaning as
described by the following two properties:

Property 2 : Emergent/Submergent Occlusion

When x¢ is an emergent occlusion point,
v(rg) < v(zg); when xo is a submergent occlu-
sion point, v(zy ) > v(zg).

Property 3 : Left/Right Occlusion

If Z(zy) > Z(xg) then the occluding surface is
on the right® of the occluded surface (because the
occluding surface is naturally nearer than the oc-
cluded one). If Z(zy) < Z(x{), then the occlud-
ing surface is on the left of the occluded surface.

Figure 4 illustrates these properties with a sim-
ple example, where the occluding surface is on the
left of the occluded surface (Z(zy) < Z(z{)),
and xg is an emergent occlusion point (v(z, ) <
o(a)-

In summary, when an occlusion is observed, it
can be classified within four classes which consist
of the combination of getting a right or left oc-
cluding surface and an emergent or submergent
occlusion point.

In the following property we show the direct re-
lation between the camera translation (measured
on the scaline by zrog) and the occlusion classi-
fication presented before.

Property 4 : Fundamental Relation between
Camera Translation and Occlusions

o An occlusion point xg is on the right of
xrog if either (1) xq is emergent and the
occluding surface is on the left side, or (2)
xo is submergent and the occluding surface
is on the right side.

3stipulating xar on the right of x .
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Figure 4. Example of an occlusion situation: (a) z( is an emergent occlusion point; (b) the projected

occluding surface is on the left of xg.

e The occlusion point xg is on the left of xrogr
if either (1) xq¢ is emergent and the occlud-
ing surface is on the right side, or (2) xg is
submergent and the occluding surface is on
the left side.

Proof: To prove the property described above,
let us define a notation for the classification of
occlusion points, based on functions L£(zy) and
E(xo) described as follows:

o L(xzg) =1 or L(zg) = —1 if the occlusion
point xy has respectively a left or a right
occluding surface;

o E(xg) = 1 or E(xg) = —1 if zo is respec-
tively an emergent or a submergent occlu-
sion point;

o L(z9) and E(xg) are zero if xy is not an
occlusion point.

By using Properties (2, 3) and Equation (4), then
we can determine whether the FOE (zpog) is lo-
cated to the left or right of the occlusion point

L(wo) - Exo) =1 =
= (v(zg) —v(zg)) (Z(xg) ™" = Z(ag) ") <0 =
= To < TFOE

L(zg) - E(xg) = -1 =
= (v(xg) - v(x(‘f)) (Z(ﬂco_)_1 — Z(a:f)")_l) >0=
= To > TFOE

QED

This result shows that classifying the occlusion
point x( corresponds to detecting its location rel-
atively to a projection of the FOE.

Moreover the occlusions are not affected by the
camera rotation as described by Property 1. This
is a huge advantage when compared to other ap-
proaches that use the optic flow to estimate the
egomotion, where decoupling the rotation and
translation components is a difficult problem.

However it remains the question about the
algorithmic procedure to classify the occlusion
point. In fact, the occlusion classification could
be performed by the optic flow and depth de-
scription in a certain neighborhood. Assuming
that both the optic flow and depth are unknown
(and hardly computable), we propose to use ex-
clusively the dissimilarity function developed in
Section 2.

First of all, remind that Section 2 describes a
method to classify an occlusion as emergent or



submergent. This alleviates the need to explicitly
determine the local optic flow v(zy) and v(zg)
Secondly, to determine whether we have a left or
right occluding surface, we monitor the temporal
photometric changes at the left and right side of
the occlusion point. The obvious advantage is
that we no longer need to know Z(xy) or Z(zy)
to reason about the nature of the occlusion.

The method we use seeks the image contour
closest to the occlusion point, that preserves both
photometric and geometric properties over time,
thus belonging to the occluding surface. An alter-
native equivalent procedure consists of studying
the evolution of points which do not preserve their
photometric properties over time, thus belonging
to the occluded surface. Notice that the com-
plete occlusion classification can rely uniquely on
the dissimilarity criterion presented before.

In order to detect automatically the location of
the FOE projection along a scanline, we designed
a function that integrates, along x, the value of
the dissimilarity relations from (3) taking into ac-
count £(z)-&(x). This function can be described
for the discrete case as follows:

Flz,t) = 3o o LIOE(S, 1)

d(Cat) = ||ft+l(<at) - f(<7t)|| +
+ fe-a(Gt) = F(G D)

where t — 1 and t 4+ 1 correspond to the previous
and the next frames.

This function decreases if x is on the right of
the FOE and increases if it is on the left of the
FOE. Thus the FOE is located at the absolute
maximum of F'(x,t). By integrating the informa-
tion over the image, the method becomes more
robust to eventual false occlusion detections.

4. Results

In this Section, we apply the occlusion detec-
tion and classification process to four image se-
quences. The first sequence (the Lock Sequence,
Figure 5(a)) shows the performance of the dis-
similarity function in order to find the occlusion
points. The Focus of Expansion is roughly at the
center of the image and emergent occlusions are
found on the boundaries of the lock hole, as ex-
pected. Considering an arbitrary line along the

image, the relation between the occlusions and
the FOE location can be observed: first the oc-
clusions are emergent, second the occluded points
are inside the lock hole (or the occluding surface
is outside), thus completing the occlusion classifi-
cation and indicating that the FOE is somewhere
in a restricted area at the center of the image
(Figure 5(b)).

The second sequence (the Penguin Sequence,
Figure 5(c)) was performed with static objects
and a leftward moving camera with rotation. In
this experiment we show how the occlusion points
are immune to rotational contamination of the
image motion. In Figure 5(c) we present three
samples of the sequence where the emergent oc-
clusions appear mainly on the left side of the
penguin whereas the submergent occlusions dis-
appear on the right side (Figure 5(d)). This clas-
sification indicates that the FOE is on left of each
occlusion point detected.

The third sequence (Figure 6-left) was per-
formed with a static camera with the penguin
moving to the right. In this experiment we see
that occlusions can be used for the segmentation
of a moving object. The function F(z, t) was
computed integrating the information included in
the set of all horizontal scanlines (summing the
contributions of all F(x, t) over the vertical co-
ordinate). Notice both the occlusion boundaries
of the penguin and its velocity direction, given by
the decreasing behavior of the function.

The last sequence (the Tree Sequence, Figure 6-
right) consists in a leftward moving camera, with
a large number of occlusions. Since the FOE is
on the left of the image (at infinity), the function
F' has a decreasing behavior.

The photometric parameter used here was the
brightness value, in a range of 0-255. In all experi-
ments, we applied the same dissimilarity function
with ¢ = 5 and the occlusion detection threshold
T = 5. These values were chosen empirically ac-
cording to the global distribution of the bright-
ness along the sequences. In the future we plan
to define o and T' automatically using local prop-
erties of the image.



Figure 5. (a) Three sequential samples of the Lock Sequence and associated emergent occlusion points
(white squares). (b) Last frame of the Lock Sequence with previously detected emergent occlusion points
superimposed on the image (more recent ones represented by larger squares). The ellipse in the figure
illustrates qualitatively the expected region for the FOE location. (c¢) Samples of the Penguin Sequence,
with associated emergent occlusion points. Each occlusion point found indicates the same FOE direction
(arrow direction) given by its classification. (d) Same images with submergent occlusion points.
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Figure 6. Left: Three sequential samples of the Penguin Sequence — on the bottom the function F(z,y)
along z (notice that the decreasing steps correspond to penguin occlusion boundaries). Right: Three
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5. Conclusions

In this paper we have studied the importance
of the occlusions for motion detection. Based on
a theoretical framework for the definition of oc-
clusions in the continuous case, we developed a
dissimilarity function for the discrete case, using
local photometric and geometric properties of the
image. Assuming a moving monocular camera,
we show that the occlusion classification is equiv-
alent to the detection of a translational direction.
Thus, we design a method to recover egomotion
information, according to the following observa-
tions:

e Occlusions are extremely important cues for
the egomotion perception.

e With a moving camera, only translation
produces occlusion points. Therefore, the
rotation does not influence the translational
estimation.

e To detect the camera translation, no special
models for motion or structure are needed.

e The camera translation can be detected
even if its projection is outside the image
field.

e The occlusion classification can be per-
formed by using uniquely dissimilarity cri-
teria (more robust than similarity criteria).

A number of experiments with real images have
been performed, for various kinds of motion, that
illustrate the capabilities of our approach.

As future work, we plan to extend the method
for color images, developing an appropriate pho-
tometric function, and to incorporate the occlu-
sion information of all image directions in a global
function in order to estimate robustly the FOE lo-
cation. We intend also to use the occlusion cues
for a navigation system, associated with other
sources of local and global information.
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