
SELF-LOCALIZATION BASED ON KALMAN FILTER AND MONTE CARLO FUSION OF 
ODOMETRY AND VISUAL INFORMATION 

 
David Cabecinhas, João Nascimento, João Ferreira, Paulo Rosa, Pedro Lima 

 
Instituto de Sistemas e Robótica – Instituto Superior Técnico 

Av. Rovisco Pais, 1, 1049-011 Lisboa, PORTUGAL 
 
 

 
Abstract: The main goal of this paper is to describe the application of two self-localization 
methods, based on Kalman filter and Monte Carlo fusion of odometry and visual information, to 
omni-directional soccer robots. The two methods are compared, and the usage of several 
candidates for the robot posture, provided by the vision-based observation step, is discussed. 
Simulated and real robot results are presented. 
 
Keywords: self-localization, Kalman filter, Monte Carlo localization, sensor fusion, robot vision. 

 
 

1. INTRODUCTION AND MOTIVATION 
 

One of the most important problems in mobile 
robotics is the self-localization of the robot in 
specific environments. In Robotic Soccer this is 
highly important because the robot needs to “know” 
its position on the field, to perform adequately most 
of its tasks. 
This paper introduces Kalman Filter (KF) based 
localization and MCL methods [2][4][5], taking 
advantage of them to fuse sensor information, and 
applying it to an omni-directional robot. By fusing 
different sensor measurements, such as image 
features and odometry, the robot should be able to 
get a better estimate of its location, rather than just 
using one of the two measurements separately. 
Furthermore, the KF and the MCL also output a 
measure of uncertainty of the estimate. This might be 
useful in some tasks. For instance, the robot should 
not get close to the lateral lines of the field if the 
estimate variance is too high, since it could be closer 
than it would expect. 
In the next section, we describe a vision-based 
self-localization algorithm, introduced in [6] and 
improved in [3], which determines the robot’s 
posture, and that will be called the “self algorithm” 
throughout this paper. Finally, some results and 
conclusions are presented, and a few suggestions for 
future work on this area are presented. 
 
 

2. KALMAN FILTER 
 
The Kalman filter block diagram is shown in Fig. 1. 

 
Figure 1- KF block diagram (reprinted from [1]) 

 
The KF is an optimal recursive data processing 
algorithm, as explained in the sequel. In this paper, 
only its discrete time version will be used. The KF is 
the optimal estimator in the minimum mean square 
error sense, for linear systems driven by Gaussian 
noise. 
The following equations describe a (non-linear) 
discrete-time dynamic system and its sensors’ 
measurements: 

 
What the extended version of the KF does is to 
estimate the state of the dynamic system, based on its 
linear model, as it will be shown later on this paper, 
which can be written as 
 

)()()1( kuBkxAkx kk +=+  
Where 

kkkk wuxf
u

Bwuxf
x

A ),,(),,(
∂
∂

=
∂
∂

=  

 
The KF algorithm is recursive in the sense that it 
does not need to process all the previous data to 
estimate the next state. To estimate the state at k + 1 
only the estimate at k, and the measurement in k + 1, 
are needed. 
There are two matrices that define the behaviour of 
the Kalman filter, expressing the covariance of the 
measurements errors, and the covariance of the 
model noise. These are the matrices R and Q, 
respectively, and can be seen as adjustment factors of 
the filter. Formally, they can be defined by: 
 

 
 
 



2.1 Kalman Filter Algorithm 
 
Prediction Cycle Given the state estimate at k, 

)|(ˆ kkx , the predicted state estimate at the next 
sampling time is: 
 

kkk uBkkxAkkx +=+ )|(ˆ)|1(ˆ  
 
Furthermore, the conditional covariance is given by: 
 

T
kkk

T
kk GQGAkkPAkkP +=+ )|()|1(  

 
It should be noticed that the matrix P is important not 
only to get a measure of the uncertainty of the state 
estimate, but also because it will be used to calculate 
the Kalman gain, in the update (or filtering) cycle. 
 
Filtering Cycle The state estimate is updated with the 
current measurement in the following way: 
 

( ))|1(ˆ)1(
)|1(ˆ)1|1(ˆ

11 kkxCzkK
kkxkkx

kk +−++
++=++

++

 

 
K(k + 1) is the Kalman gain, given by: 

 

[ ] 1

1111 )|1()|1(

)1(
−

++++ +++=

=+

k
T

kk
T

k RCkkPCCkkP

kK
 

 
In addition, the conditional covariance of the state is: 
 

[ ] )|1()|1()|1(

)|1()1|1(

11111 kkPCRCkkPCCkkP

kkPkkP

k
T

k
T

kk
T

k ++++−

−+=++

+++++

 
The discrete Kalman filter provides an unbiased 
estimate of the state, and it is a consistent estimator, 
for linear systems and Gaussian white noise. 
 
 

3. MONTE CARLO LOCALIZATION 
 
The MCL algorithm [4] is a particle filter combined 
with probabilistic models of robot perception and 
motion. The working principle of the MCL algorithm 
is Bayes filtering, which is the estimation of the state 
of a dynamical system based on information from 
sensor measurements. Bayes filters assume that the 
environment is Markov, that is, past and future data 
are (conditionally) independent if one knows the 
current state. 
The key idea of Bayes Filtering is to estimate the 
posterior probability density over the state space 
conditioned on the data available from sensor 
measurements. This posterior is usually denoted as 
belief. 

 
 0...( ) ( | )t t tBel x p x d=  (1) 

 
Here x denotes the state, xt is the state at time t, and 
d0..t denotes the data starting at time 0 up to time t. 
Using the Bayes rule and the Markov assumption 
(which states that measurements yt are conditionally 
independent of past measurements and odometry 
readings given knowledge of the state xt) equation (1) 
can be rewritten as a recursive estimator for Bel(xt) 
known as Bayes Filter. 

1 1 1 1( ) ( | ) ( | , ) ( )t t t t t t t tBel x p y x p x x u Bel x dxη − − − −= ∫
(2) 

 
where η is a normalizing constant and data d was 
separated in perceptual data, y, and control/odometry 
data, u. 
Bayes Filtering is usually known in mobile robotics 
as Markov Localization. As one can see from 
equation (2) we need to know three distributions: the 
initial belief, Bel(x0) (which is usually an uniform 
distribution because in the beginning the robot does 
not know where it is, i. e., the global localization 
problem), the next state probability or motion model, 
p( xt | xt – 1, ut – 1), and the perceptual likelihood or 
perceptual model, p(yt | xt). 
 
 
3.1 Particle Filter Implementation 
 
In continuous state space, implementing the belief 
update equation (2) is not trivial and can become a 
serious problem in terms of efficiency. Using a grid 
representation is not practical either because to obtain 
greater precision one has to use smaller grids, making 
the calculations computationally heavy and 
impractical to use for real-time purposes. 
To tackle this problem, MCL represents the belief 
over the state space of x as a set of m weighted 
samples distributed according to Bel(x). 
 

 ( ) ( )
1,...,( ) { , }i i

i mBel x x p ==  (3) 
 

Here each x(i) represents a sample (state) and p(i) 
represents its corresponding importance factor. The 
importance factors sum up to 1 and determine the 
weight of each sample. 
With this approach one can approximate a large 
range of probability distributions and, once a robot’s 
belief is focused on a subspace of the space of all 
postures, it is computationally efficient, since they 
focus their resources on regions of state space with 
high likelihood. This method proves to be 
advantageous when compared with grid-
representation for the belief, because it is more 
computationally efficient and accurate. 
The MCL algorithm implemented is based on the 
particle filter with the following proposed 
distribution to approximate Bel(xt) via importance 
sampling: 

 
 1 1 1: ( | , ) ( )t t t tq p x x u Bel x− − −=  (4) 



 
The particle filter is implemented in 4 steps: 

 
1. A state x(i)

t–1 is sampled from Bel(xt–1) 
according to the discrete distribution defined through 
the importance factors p(i)

t – 1 
2. The sample x(i)

t-1 and the action ut-1 are used 
to sample x(j)

t from the distribution  p( xt | xt – 1, ut – 1). 
3. Samples x(j)

t are weighted by the non-
normalized importance factors p( yt | x(j)

t), the 
likelihood of the sample x(j)

t  given the measurement 
yt. 

4. Normalize the new importance factors, so 
that they sum up to 1. 

 
This procedure implements equation (2) using an 
approximate sample-based representation. This 
algorithm is just one possible implementation of the 
particle filter method. Other sampling schemes exist. 
A MCL algorithm was developed for simulation 
according to these steps. Good results where obtained 
on the position tracking and global localization 
problems, when using a monomodal distribution for 
the sensor model. Not so satisfactory results where 
obtained for the kidnapped robot problem [5] or 
when using a multimodal distribution for the sensor 
model. 
This was mainly because the proposal distribution, 
which is used to generate the samples, places too 
little samples in regions where the desired posterior 
Bel(xt) is large, i.e., after kidnapping the robot the 
particles will be concentrated mainly around the old 
robot position and there are not enough particles near 
the new robot position, where the desired posterior 
probability is high. 
This problem has also been noticed by other authors 
[4] who noted that the MCL performs poorly when 
the noise level of the perceptual sensors is too small, 
because the distribution which is used for sampling is 
an approximation of the product distribution  

 

1 1 1

0... 1 1

( | ) ( | , ) ( )
( | , )

t t t t t t

t t t

p y x p x u x Bel x
p y d u

− − −

− −

 (5) 

 
and not the real one, since sampling from the original 
distribution is too difficult. When sensors are 
completely uninformative, i.e., p(yt | xt) is uniform 
and (4) equals (5), for low noise sensors, the 
distribution is usually quite narrow hence MCL has a 
slow convergence. 

 
 

3.2 Improved Sampling Method 
 
The solution for this problem is to use an alternative 
distribution for sampling in order to accommodate 
highly accurate sensors. This can be done by 
sampling accordingly to the most recent sensor 
measurements yt, which is proposed in [4]. That is, 
instead of getting a reading from odometry and 
propagate it to the particles and then sample 

according to the belief, what is done is to back 
propagate the odometry reading from the pose given 
by the latest perceptual sensor reading, and then 
sample according to the belief. This procedure is a 
dual of the regular MCL algorithm. 
In order to do this xt is sampled directly from a 
distribution that is proportional to the perceptual 
likelihood p(yt | xt). 

 
( | ): with ( ) ( | )

( )
t t

t t t t
t

p y xq y p y x dx
y

π
π

= = ∫
 (6) 

 
These new generated samples are highly consistent 
with the most recent sensor measurement but 
ignorant of the belief Bel(xt-1) and the control ut-1. 
The alternative proposal distribution can be obtained 
following these steps: 

 
1. Build a kd-tree [7] based on Bel(xt-1) 
2. Generate a set x(i)

t of samples according to 
the distribution p(yt | xt) / π(yt) 

3. For each sample in x(i)
t , generate a sample 

x(i)
t-1 according to  

 
( )

1 1
( )

1

( | , )
( | )

i
t t t

i
t t

p x u x
x uπ

− −

−

 (7) 

where  
( ) ( )

1 1 1 1( | ) ( | , )i i
t t t t t tx u p x u x dxπ − − − −= ∫ (8) 

thus back propagating the odometry results. 
4. Set the importance factors of each sample to 

a value proportional to the posterior probability of 
x(i)

t-1 under the kd-tree that represents Bel(xt-1), built 
in step 1. 

 
It is necessary to build a kd-tree because Bel(xt-1) is 
only defined for poses occupied by one or more 
particles, and the back propagation of the motion 
model causes the particles to be in poses for which 
Bel(xt-1) does not exist and thus must be 
approximated. 

 
 

3.3 Mixture Sampling 
 
Neither distribution alone (the original one and the 
alternative one) is satisfactory because the first fails 
if the perceptual likelihood is too peaked and the 
other because only considers the most recent sensor 
measurements. The solution is to use a mixture of 
both proposed distributions: 

 
 (1 )q qφ φ− +  (9) 
 

where φ (with 0 ≥ φ  ≥ 1) denotes the mixture ratio 
between regular and dual MCL. 
This mixture proposal distribution gives good results 
and was the distribution used in the course of this 
work. 



 
 

4. APPLICATION TO AN OMNI-DIRECCTIONAL 
SOCCER ROBOT 

 
Having described the KF and the MCL method, it is 
now necessary to describe the robot kinematics. 

 
In Figure 2 is shown the kinematic structure of the 
omni-directional robot with 3 Swedish wheels. 

 
Figure 2 – Omni-directional kinematics structure 

 
The kinematics model can be stated in the following 
equations, relating the angular velocity of the wheels 
with the linear and angular velocities of the robot 
itself. 
 

 
 
L is plotted in Figure 2 and r is the radius of the 
wheels. wi is the angular speed of the ith wheel. 
To relate the velocities in the robot frame with the 
corresponding ones in the world frame, we use the 
following matrix J: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

100
0cossin
0sincos

θθ
θθ

J  

 
This way, the posture of the robot can be determined 
by integrating the velocity of the robot, if the initial 
state is known.  
At this point, there are several ways to use the 
odometry in the prediction cycle. For instance, one 
can use the angular velocity of each wheel to predict 
the posture in the next sampling time. Another way 
of doing this, which is the one used throughout this 
paper, is to measure the position directly from the 
odometry, and then run the prediction and the update 
cycles at the same sampling time. This has several 
advantages, e.g., the possibility to use a variable 
sampling time, since one only needs to know the time 
interval after the sampling. 
However, there are several ways of implementing 
this latter method. If one measures the angular 

velocities of the wheels, making them the u vector in 
the KF, then the model of the system is clearly non-
linear, because of the matrix J. In this case, the 
Extended KF is required. 
Nonetheless, the EKF is not guaranteed to converge 
and to be the optimal filter. So, the result may not be 
the expected, and is typically dependent of the initial 
state. In this case, several simulations and 
experimental tests should be made, to ensure the 
correct operation of the self-localization algorithm. 
Another approach to this problem is to linearize the 
readings from the odometry, by first calculating the 
posture of the robot and then using the posture 
dynamic equations in the prediction cycle of the KF. 
This is similar to feedback linearization methods 
used in control theory, sharing with them the problem 
of might having unexpected results if the parameters 
of the inverse function used deviate even a little from 
the real inverse function. Moreover, if the noise is 
white and Gaussian in the measured wheels speed, 
then it will not be in the calculated posture, due to the 
non-linearities. 
One way to reduce the problems of biased odometry 
errors is to add the increments of odometry to the 
Kalman estimate at each sampling time, instead of 
having a different accumulator. However, one should 
be aware that this does not guarantee better results, 
so simulation and experimental tests have to be done.  
For the MCL implementation a motion model is 
needed. The odometry update for each particle was 
obtained sampling each wheel angular displacement 
from a normal distribution with mean given by the 
odometry readings from the wheels and a standard 
deviation of 5% of the wheel angular displacement, 
modelling the noise in the readings. The kinematics 
model was then used to convert the wheel angular 
displacement to the robot displacement in its body 
frame. This displacement was then converted to the 
field (global) frame, using the procedure described 
previously for the KF, and the position of each 
particle is then updated. This provides a much more 
accurate motion model then to just sample the 
displacements in x, y and θ. 
 
 

5. SELF ALGORITHM 
 

The robot used is shown in Figure 3. A catadioptic 
vision system can be seen on the top of the robot. 
This way, at least half of the field can be seen from 
every point, and thus the posture of the robot can be 
estimated according to some known characteristics of 
the soccer field. 
In this work the self algorithm, originally described 
in [6] and improved in [3], has been used. It detects 
features, lines and goal colours, in the field image 
taken from the catadioptic system to locate the robot.  
Due to the field symmetry, the self algorithm cannot 
always disambiguate the robot posture, therefore 
returning several possible postures. 



  The self algorithm can sometimes fail to determine 
the robot posture. In such situations, no output is 
given. In those cases, the update cycle of the KF is 
omitted and in the MCL algorithm the importance 
factors are not updated. In the KF, a matching step is 
inserted before the update cycle, to check if the result 
is in a neighbourhood of the expected posture. This 
ensures no outliers are taken into account. The self 
algorithm has also been modified to output a 
probability of the given result to be correct. This can 
be used in the KF to change the matrix R at each 
sampling time. Nevertheless, this does not guarantee 
better results, though it is expected that the filter 
converges faster. With the MCL algorithm this could 
be used to change the parameters of the distribution 
p(y | x). 
 

 
Figure 3 – Omni-directional Soccer Robot 

 
The self algorithm measurement probabilistic model 
was estimated according to several factors, such as 
the number of field lines detected, the number of 
points defining each of those lines, the accuracy of 
the distances between them, and the accuracy of the 
goals estimated positions. 
 
 

6. SIMULATION RESULTS 
 

6.1 Simulation results for KF 
 
Some prior simulations of the KF have been made in 
MATLAB. Four state vectors have been kept at each 
iteration: one for the real posture of the robot, one for 
the self algorithm measured posture, one for the 
posture calculated with the odometry, and finally one 
for the KF estimate. 
The real posture of the robot is calculated using a 
pre-defined vector of angular velocities for each 
wheel, which generate the linear and angular 
velocities of the robot, using the kinematics model 
and the Jacobian, J. 
The odometry noise has been modelled in two 
different ways. The radiuses of the wheels and the 
distance L differ from the real ones about 5 per cent. 
This is a reasonable assumption, since it is what 
happens in practice, where one cannot have infinite 
precision about any parameters. To turn the noise 
model more realistic, zero mean white and Gaussian 
noise with a standard deviation of 0.05 rad/s has been 

added to the measured angular velocities of the 
wheels. This is intended to model mainly slippage 
and terrain irregularities. 
The self algorithm has been simulated as an unbiased 
white and Gaussian estimate of the real posture with 
a standard deviation of 0.1 m for the position, and of 
0.1 rad for the orientation. This is a fairly good 
approximation to the real model. 
In the simulations described next, the KF estimate 
has been initialized with zeros, and the matrix P with 
ones. This means the actual estimate of the position 
has a standard deviation of 1 m, and the estimate of 
the orientation has a standard deviation of 1 rad. The 
matrices Q and R are diagonal. At each iteration, the 
prediction and the update cycle are executed. Each 
result presented corresponds to 10 000 iterations. 

 
Simulation 1: 
Initial posture: x = 0, y = 0, θ = 0 
Diag(Q) = Diag(R) = 0,01; 0,01; 0,1 

 

 
Figure 4 – Simulation 1 results 



 
First of all, it is important to notice that the odometry 
and the KF estimates are very close. This is due to 
the fact that, as stated before, the increments of the 
posture read from the odometry are added to the last 
KF estimate, instead of having a different 
accumulator. As can be seen in Figure 4, the results 
are clearly better than using only the self algorithm to 
estimate the posture of the robot. If only odometry 
were used, then the error of the estimation would 
increase with the complexity of the trajectory taken 
by the robot. 
 

Simulation 2: 
Initial posture: x = 0, y = 0, θ = 0 
Diag(Q) = 0,01; 0,01; 0,1 
Diag(R) = 1; 1; 1 

 

 
Figure 5 – Simulation 2 results 

 
In the second simulation is quite clear that the 
posture of the robot is better estimated with the 
sensor fusion than using the sensorial information 

separately. However, since the matrix R has greater 
values in the diagonal than Q, the KF relies more on 
the odometry. As a consequence, the error of the 
estimation may not have zero mean, since odometry 
is usually biased because of hardware asymmetries. 
This can be seen in Figure 5, for the orientation 
errors. Hence, the parameters in matrices Q and R 
should take into account a tradeoff between having a 
small variance of the estimate error, and ensuring that 
it is unbiased. 
 
6.2 Simulation results for MCL 
 
Simulations of the MCL algorithm were made to test 
the implementation of the algorithm and the various 
parameters that influence its behavior. Simulation 
results will be shown for normal and mixture 
sampling with 1 and 4 results returned from the self 
algorithm. Some simulations were also ran to test the 
MCL algorithm robustness to robot kidnapping. 
In all the simulations the initial pose was unknown. 
Because the initial distribution is unknown, the belief 
samples were sampled randomly according to a 
uniform distribution in x, y and θ. The simulations 
were ran with 1000 particles. The standard deviation 
used in the perceptual model was of 10 cm for x and 
y position values, and 1.3 degrees for the orientation. 
The axes are labeled in centimeters. 
In this first test a monomodal perceptual model was 
used, i.e., only one result from the self algorithm was 
used. Readings from odometry had a 2% standard 
deviation and the motion model had a 10% standard 
deviation. The robot starts its sinusoidal path from 
left to right and is processed in 70 steps. As can be 
seen in Figure 7, the MCL algorithm solves the 
global localization problem. The path the robot 
follows is shown in red and the posture estimations 
are shown in blue. 

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

300

350

400

450

 
Figure 6 – Global localization using MCL 

 
The average localization error of the MCL estimation 
throughout a series of tests was 2.14 cm, while the 
odometry error was 1.78 cm. 
Using a larger standard deviation for the odometry 
results, 10%, one can see how the MCL improves on 
odometry alone. Using that, MCL’s average 
localization error was 3.54 cm, while using just 
odometry was 13.9 cm. 



As one can see, given the initial sample disposition, 
the first estimation still has a large error. This error is 
then minimized according to the MCL algorithm. 
The noise of the motion model controls the rate of 
convergence of the estimation but a larger noise will 
worsen its accuracy. 
However, the kidnapped robot problem has presented 
some problems, due to the slow convergence rate. 
Using 4 results from the self-algorithm was not very 
helpful because, should the MCL algorithm localize 
the robot near one of the false possible localizations, 
it would be almost impossible for it to escape and 
direct towards the robot true position. 
Using the mixture sampling, however, proved to be 
the solution to both of these problems. Figure 7 
depicts a run of the MCL algorithm, with the robot 
being “kidnapped” along its path and the MCL 
algorithm quickly estimating the robot new pose. 
Again, the path the robot follows is shown in red and 
the posture estimations are shown in blue. 

 

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

 
Figure 7 – Kidnapped robot using MCL 

 
Here the robots begins his walk on the upper left side 
(100,380), being “teleported” to a new location (450, 
300) when it arrives at (300,150). The error obtained 
is identical to the one obtained without the kidnap, 
because once the robot position is well estimated, 
both runs become a position tracking problem. 
Runs using a perceptual model considering 4 
postures returned by the self algorithm results were 
also made, having identical results to the one using 
just 1 self algorithm returned posture. 

 
 

7. EXPERIMENTAL RESULTS 
 

In this section we report on the results of applying 
the KF and MCL to the robots, shown in Fig. 3. 
 
 
7.1 Experimental results for KF 
 
First of all, as it is usually done in Kalman filter 
applications, several tests had to be done to find out 
matrices R and Q that give reasonable results. For 
the sake of simplicity, these matrices were 
considered diagonal. The variance of the position 
error was considered larger for the self algorithm 
than for the odometry, since the last one is more 

accurate for short distances. However, the self 
algorithm is more precise for the orientation. 
Moreover, the matrix R depends on the probability of 
the estimate given by the self algorithm. In this case, 
each element was considered to be proportional to 
the inverse of the referred probability. This way, 
larger variances are used when the estimate is less 
probable to be correct. 
The elements of the matrix P were initialized with 
high values, meaning that initially the robot does not 
“know” where it is located. This matrix is supposed 
to be diagonal, like R and Q. However, it does not 
need to be initialized like that since the algorithm 
will make it tend to a diagonal matrix. 
In a first test the odometry was correctly initialized. 
The errors for 5 random experiments are given in 
Table 1. The experiments were done making the 
robot follow a path with a few turns around the field 
(9 m x 4.5 m), in different trajectories, allowing time 
for the KF to converge. The errors were found 
calculating the difference between the approximately 
(hand measured) real posture and the last estimate. 

 
Test Nr. Error in x Error in y Error in θ 

1 1.4 m 0.1 m 0 º 
2 1.7 m 0.0 m 0 º 
3 0.5 m -0.4 m 0 º 
4 0.8 m -0.3 m 0 º 
5 0.4 m -0.6 m 5 º 

Table 1 
 

In a second test the posture of the robot differed from 
the initial odometry estimate (and from the KF). The 
results obtained are summarized in Table 2, noting 
that the final posture is also different from the one of 
the previous tests. 

 
Test Nr. Error in x Error in y Error in θ 

1 0.3 m -0.7 m 0 º 
2 0.2 m -0.4 m 0 º 
3 1.0 m 0.3 m 0 º 
4 0.6 m 0.3 m 0 º 
5 -1.0 m 0.3 m 0 º 

Table 2 
 
If only odometry were used, then the errors would be 
quite larger. In the previous trials, the average error 
for the odometry was about 3 m for x and y, and 100º 
for the orientation. On the other hand, if only the self 
algorithm were used, then the posture of the robot 
would only be estimated a few times per minute, 
since the algorithm often fails to return a posture. 
The results show that there is bias in the error in x, 
which can be due to miscalibration of the catadioptric 
vision system. However, the KF algorithm is quite 
accurate concerning the orientation. 
 
7.2 Experimental results for MCL 
 
Similar tests were made using the MCL algorithm as 
well. Tests were made for the global location 



problem, i.e., the robot did not know its initial 
localization, and using a different number of 
particles. The results after the robot moved for some 
time around the field are shown in Tables 4 and 5. 
More results were obtained for different number of 
particles, but are not reported here. 
 

Test Nr. Error in x Error in y Error in θ 
1 0.1 m 0.7 m -1 º 
2 0.15 m -0.35 m 1 º 
3 0.2 m 0.0 m 5 º 
4 -0.5 m 1.2 m 5 º 
5 0.2 m -0.3 m 0 º 

Table 4 – 10 particles 
 
 

Test Nr. Error in x Error in y Error in θ 
1 0.0 m 0.3 m 0 º 
2 0.1 m -0.85 m 3 º 
3 -0.1 m 0.95 m 0 º 
4 0.0 m 0.0 m 5 º 
5 -0.3 m 0.3 m 0 º 

Table 5 – 1000 particles 
 
The results obtained with the MCL algorithm were 
similar to those previously obtained with the Kalman 
filter. The results for x and y are accurate to the meter 
and the orientation is correct to 5 degrees. Moreover, 
the bias in the x error does not occur. Also worth 
noticing is that the error is similar in all the tests, 
regardless of the number of particles used. 
 
 

8. CONCLUSIONS AND FUTURE WORK 
 

This paper presented the application of self-
localization methods based on odometry and visual 
measurements applied to omnidirectional soccer 
robots. The Kalman filter showed to be a solution for 
integrating different sensorial information, which can 
be expanded in future, by adding accelerometers, 
gyroscopes, etc. 
The MCL algorithm also proved to be a good 
approach to the robot localization problem. The 
results obtained were a big improvement on using the 
sensor information separately. Fusion with more 
sensors is also possible, requiring however an 
adjustment of the motion model and perception 
model, to reflect information from the additional 
sensors. 
Several improvements can be done to the presented 
KF algorithm. The Extended KF was not tested when 
the prediction cycle is made with the readings of the 
angular displacement of the wheels. The results could 
be better since the non-linearity of the kinematics 
model of the robot is explicitly in the EKF. However, 
there are no guarantees of convergence of the filter. 
The matching step implemented checks if the 
estimate of the self algorithm is in a predefined 
neighbourhood of the latest KF estimate. This 
neighbourhood could also change over time, since in 

the beginning it is expected that the KF estimate is 
further away of the real posture of the robot, so this 
neighbourhood could be bigger. Another solution is 
to decrease it when the values of the diagonal of P 
also decrease. 
Finally, the initialization could be different than the 
one used. In this case, the initial estimate of the 
posture is (0, 0, 0). This may lead to slow 
convergence of the filter. Another way of doing this 
step is to tryout the self algorithm initially, and then 
use this estimate as the initial state. 
As for the MCL, future developments in this area are 
concerned with the problem of dynamical 
environments and cooperative multiple robot 
localization (with a team of robots). Although the 
robotic soccer environment is dynamical in order that 
other robots and the ball are also moving, the objects 
used by the self-algorithm for localization (football 
field, its lines, goals and posts) are static, so it would 
not influence the MCL results. 
Cooperative multiple robot localization is much more 
interesting for soccer robots. Its aim is to speed up 
the convergence of the process of self-localization 
(for the robots to “know” their positions as early as 
possible). Although relatively good precision is 
already obtained with a simple robot, the added 
precision obtained by cooperative work would be 
beneficial. Based on these facts, the cooperative 
multiple robot localization problem is a natural 
extension of the problems handled in this paper and 
is likely to be worked upon in the future. 
 

REFERENCES 
 
[1] Maria Isabel Ribeiro,  (2000). Introduction to Kalman 
Filtering: a set of two lectures, IST. 
[2] Moshe Kam, Xiaoxun Zhu, and Paul Kalata (1997). 
Sensor Fusion for Mobile Robot Navigation, Proceedings 
of the IEEE,  85, No. 1, pages 108-119 
[3] Hugo Costelha (2002). A Modified Localization 
Method for a Soccer Robot Using a Vision-Based Omni-
directional Sensor, ISR/IST report 
[4] D. Fox, S. Thrun, W. Burgard and F. Dellaert, (2000). 
Particle Filters for Mobile Robot Localization, Sequential 
Monte Carlo Methos in Practice, pages 470-498 
[5] S. Thrun, D. Fox, W. Burgard and F. Dellaert (2000). 
Robust Monte Carlo Localization for Mobile Robots, 
Artificial Intelligence Journal, 128, No. 1-2, pages 99-141 
[6]  C. Marques and P.Lima (2000). A localization method 
for a soccer robot using a vision-based omnidireccional 
sensor, In: RoboCup 2000 Book, Springer Verlag, 2001 
[7] Bentley, J. (1980). Multidimensional divide and 
Conquer, Comunications of the ACM, 23(4): 214-229 


