Inverse Reinforcement Learning with Evaluation

Valdinei Freire da Silva and Anna Helena Reali Costa
Laboratério de Técnicas Inteligentes - Escola Politécnica

Universidade de Sao Paulo - Sao Paulo, BRAZIL
Email: {valdinei.silvalanna.reali} @poli.usp.br

Abstract— Reinforcement Learning (RL) is a method that
helps programming an autonomous agent through humanlike
objectives as reinforcements, where the agent is responsible for
discovering the best actions to fulfil the objectives. Nevertheless, it
is not easy to disentangle human objectives in reinforcement like
objectives. Inverse Reinforcement Learning (IRL) determines the
reinforcements that a given agent behaviour is fulfilling from the
observation of the desired behaviour. In this paper we present a
variant of IRL, which is called IRL with Evaluation (IRLE)
where instead of observing the desired agent behaviour, the
relative evaluation between different behaviours is known by
the access to an evaluator. We present also a solution for this
problem under the assumption that a relative linear function
that preserves the order assumed by the evaluator exists and
that the evaluator evaluates policies instead of behaviours. This
is posed as a linear feasibility problem, whose solution is well
known. Results of simulations of a set of heterogeneous robots
in a search and rescue scenario are presented to illustrate the
method and the possibility to transfer the learned reinforcement
function among robots.

I. INTRODUCTION

Reinforcement Learning (RL) [1] is a learning method
where an autonomous agent learns an action policy based on
its own experience. This policy is inferred from a process of
trial and error interactions with an environment. The process
is guided by the agent itself and the environment does not
return a complete evaluation of the agent’s action, but a
partial one, based on instant reinforcements associated to
the corresponding environment’s state transition and agent’s
chosen action. An autonomous agent can receive the rein-
forcement through a reinforcement sensor or be programmed
through a reinforcement definition, so that it calculates when
reinforcement occurs through its ordinary sensors.

As artificial agents are created to fulfil its creator’s desire
(for instance, a human or other artificial agent), RL allows the
creator defining the task of an artificial agent using a more
abstract level of description. The decision of the best way of
acting is learned autonomously by the artificial agent.

However, when the task involves multiple objectives (for
instance, moving fast to a target position and spending little
energy), defining an adequate reinforcement function that
represents the creator’s desire is not at all obvious. The study
of an human’s desire has been conducted under the name
preference elicitation [2], [3], where queries, that a human can
answer easily, are considered, instead of asking to the human
for a complete definition of his preference.

Pedro Lima
Institute for System and Robotics
Instituto Superior Técnico - Lisboa, PORTUGAL
Email: pal@isr.ist.utl.pt

Ng and Russell [4], under the designation of Inverse Rein-
forcement Learning (IRL), have already reached some results
concerning the problem of eliciting a behaviour preference,
relying on a second agent acting optimally. We claim that it is
easier for a creator to compare two executions to accomplish a
task than defining completely the task. Therefore, considering
the creator as a relative evaluator, we propose an extension of
the IRL method, the IRL with Evaluation (IRLE) method.

In IRLE it is considered an evaluator that cannot execute
or does not know the optimal policy or cannot define explic-
itly the reinforcement function, but can decide between two
behaviours which one is the best; and the agent must fulfil
the evaluator preferences. This paper defines the IRLE prob-
lem and presents a solution within particular conditions: the
evaluator evaluate policies and there exists a linear evaluation
function that accomplishes the same evaluations. Experiments
concerning the transfer of the learned reinforcement function
among agents are also made.

The theoretic models behind RL and IRL problems are pre-
sented in Sections II and III, respectively. The IRLE problem
and a solution to the IRLE problem using a linear feasibility
system are presented in Section IV. Experiments concerning
such solution are presented in Section V. Conclusions and
prospective work are presented in Section VI.

II. REINFORCEMENT LEARNING

In the RL literature, Markov Decision Processes (MDPs)
[5] are adopted as simplified models of real problems [1].
An MDP is defined by a tuple [A, S, T(st+1]5¢, ar), 7(s,a)],
where A is a finite set of possible actions a, S is a finite set
of possible states s, T'(s¢11|s¢, a:) represents transition prob-
abilities in a stationary process that has the Markov property
and r(s,a) is a bounded expected reinforcement function. A
process has the Markov property if the next state depends only
on the current state and action, and not on the past history of
the process, i.e., T'(St41|8t, at, - .., S0, a0) = T(St41|8t, at).

The basic idea behind RL is that the agent can learn how
to solve an MDP task through repeated interactions with the
environment. Each time the agent performs an action a € A in
some state s € S, the environment reaches a new state s’ € S
and the agent receives a reinforcement (s, a) that indicates
the immediate value of this state-action pair.

The agent must find out a stationary policy of actions a} =
7*(s¢) that maximises the expected value function V7 (s),
which represents the expected reinforcement incurred for a

policy m, where 7*(s) = arg max,[V™(s)] [5]. It is common
to assume the discounted-reinforcement value function, which
makes use of a discount factor v € (0, 1] that forces short-
term reinforcements to be more important than long-term
reinforcements. V7 (s) is thus defined by:

N
V™(s) = ngrlooE[Z vir(se, ai)|so = s).
t=0

The RL problem modelled as an MDP can be solved by
the Q-Learning algorithm [6], which finds an optimal policy
incrementally without knowledge of the transition probabilities
of the environment model. Q-Learning estimates a value
function Q(s, a) for each state-action pair. This value function
is recursively calculated by:

Qi(st, ar) + au[r(se, ar)
+ymax, Qi(st+1,a) — Qi(st; ar)],
where « is the learning rate and ~y is the discount factor. The

optimal value function is calculated by V*(s) = max, Q(s,a)
and the optimal policy is 7*(s) = argmax, Q(s, a).

Qt+1(8t7 (lt) =

A. State space and features

Although the state space must be fully observed to meet the
Markov condition, reinforcements can be defined compactly
by a vector of features ¢ : S x A — [0,1]* over states
and actions and a weight vector w € R* [7]. Then, the
reinforcement function is defined by:

k
r(s,a) = (w,¢(s,a)) = Zwi¢i(s,a)7 Yae AVs e S,
i=1
where £ is the number of features. The features can represent
local properties (for instance, has just hit a wall, is in a goal
state, has just found a resource, has just walked, etc.) or, in the
ordinary case, the global state space, where ¢, ,(s’,a’) =1 if
s'=sand o’ = a, and ¢s4(s',a’) =0 if s’ # s or a’ # a.
In such case k = |S| - |A| but in general k < [S] - |Al.

B. Feature Expectations

In the same way that V7 (s) is the expected value of a state
s under policy 7, we can define the expected value of a policy
m, which will be called evaluation. The evaluation of a given
policy m € II, where II is the set of all possible policies, is a
function Fwval : II — R and is defined by the expected value
of V7 (s):

Bval(m) = Esqup[V™(s0)] =2 c5p(s0 = 5)V7(s)

= <W7 (),
where D is the probability distribution to initial state s,
p(sp = s) is the probability of initial state sy being s, and
u(m) € R* is the feature expectations that represents the

expected discounted accumulated feature value vector [7] and
is defined by:

plm) =Y plso = $)E[Y_ v dlse,arlm].
t=0

seS

III. INVERSE REINFORCEMENT LEARNING

Before being used as a learning model for artificial agents,
RL was thought as a model of the learning process of animals,
where reinforcement is a model to describe animals’ objectives
[8]. An interesting question when analysing the behaviour
of an animal is how to determine which reinforcement such
animal is considering to present such behaviour, i.e., what is
the utility function that can explain the observed behaviour.

The same question can be applied to artificial agents. The
problem is called Inverse Reinforcement Learning (IRL) [9]
and is informally presented as follows:

Given 1) measurements of an agent’s behaviour
over time, in a variety of circumstances, 2) if needed,
measurements of the sensory inputs to that agent;
and 3) if available, a model of the environment.

Determine the reinforcement function being op-
timised.

Every solution to the IRL problem within finite state space
must meet the following inequality '

(Tre —To)I=~Tz-)"'r™ =47 (x%=1™), Va € A, (1)

where > denotes vector inequality, T, are the state transition
probabilities when executing action a, 7* is the optimal policy
that represents the agent’s behaviour, and r* = (r(s,a))|s| is a
state-reinforcement vector for action a , i.e., the reinforcement
for each state where the action was already chosen.

This inequality characterises the set of all reinforcement
functions for which a given policy 7* is optimal. However,
an infinite number of reinforcement functions r(s,a) can be
found, including the trivial solution, where 7(s,a) = k for all
s € S and for all a € A and k € R.

Since the condition given in (1) presents many degenerate
solutions, Ng and Russell [4] propose simple heuristics for
removing this degeneracy, e.g., choosing a “simple” solution
where most elements of r(s,a) are relatively small with
respect to the largest one, or considering solutions where the
optimal policy is “clear”, i.e., the value-function difference
between the optimal policy and alternative ones is the largest
possible.

IV. IRL WITH EVALUATION

Another way of looking at the problem of not knowing
the reinforcement function is to use, instead of the optimal
policy, the help of an evaluator, who can decide, between two
policies, which one is the best. We introduce here the Inverse
Reinforcement Learning with Evaluation (IRLE) problem,
defined as follows:

Given 1) relative evaluation of measurements of
arbitrary agent’s behaviours over time, 2) if needed,
measurements of the sensory inputs to the agent for

I'This inequality is an extension of the inequality (T« — Tq)(I —
ATrx) " Lrrx = 0 presented by Ng and Russell [4]. The original inequality
considers the restriction 7(s,a) = r(s,b) = r(s) for all a,b € A and for
all s € S.

each behaviour; and 3) if available, a model of the
environment.

Determine the utility function being used by the
evaluator.

While the original IRL problem attempts to obtain the
reinforcement function through an agent executing an optimal
policy, the IRLE problem attempts to obtain the reinforcement
function through an evaluator, who can evaluate pairs of
behaviours relatively, but neither knows an optimal policy nor
can describe the utility function to the agent.

The measurements used in this paper are feature expecta-
tions of a policy (u4/, 1'’), and it is considered that the evaluator
receives such measurements from the agent, deciding which
policy is the best’. Fig. 1 shows a scheme of such interaction.

S| ENVIRONMENT

AGENT

RL SOLVER

REWARD
FUNCTION

(#’,#”l/ \<,=,>

EVALUATOR

RELATIVE
EVALUATION
FUNCTION

i Ve

Fig. 1. IRLE architecture model.

We propose a technique based on constraints and mea-
surements of the agent’s policy (feature expectation). This
technique, designed as the Incremental Feasibility Algorithm,
builds incrementally and iteratively a linear feasibility prob-
lem, whose solution is also a solution to the IRLE problem.

A. Formal definition

Definition 1 (Preferred optimal policy): Consider an MDP
[A,S,T,r] and let A be an ordered set, if there exist different
best actions a’,a” € A for a state s € S, ie., Q(s,d') =
Q(s,a") = max,c 4 Q(s, a), then the preferred optimal policy
chooses between a’ and a” as ordered by the set A.

Definition 2 (IRLE problem): Consider an MDP\R
[A,S,T] (an MDP without reinforcement function), a vector
of features ¢, the preferred optimal policy 7y, for an MDP
[A,S,T,r(s,a) = (w,d(s,a))], the set IT of all stationary
deterministic policies 7 : S — A, and the access to a relative
evaluation function f.(u', ') that chooses the best between
two feature expectations p’ and p”’, where:

0, if ' and p” are indifferent
fe(u' 1) = 1, if g/ is preferred to u'
—1, if p” is preferred to u’

2A more general case is when the evaluator itself observes the agent’s
behaviour and has its own measurements, not necessarily equal to the agent’s.

Then, determine a set W,, such that:

fe(p(mw), p(m)) >0, Yw € W, Vr € I
Here, it was considered that the agent can only solve
MDPs and the agent must find the reinforcement function that
generates the best optimal policy regarding the evaluator.

B. Incremental Feasibility Algorithm

A linear feasibility problem with k variables and m con-
straints is defined by the following linear inequality system:

k
C; Zaijwj (g) bl for all 7 = 172,...776
j=1

where w = (w;), are the variables of interest. If it is known
that the feasibility set is bounded, then the solution to a linear
feasibility problem is a polyhedron with vertices w € Py .

The incremental feasibility algorithm, described in Table I,
adds new linear constraints to old ones in such a way that, by
the end of the algorithm, the feasible set is a solution to the
problem defined in Definition 2.

The algorithm considers an access to two functions:
(m,p) = RL—solver(w), that receives an weight vec-
tor w and returns the optimal policy 7w to the MDP
[A,8,T,r(s,a) = (w, $(s,a))] and the respective feature ex-
pectations y; and (W, Pyy) = LIS—solver(G), that receives
a set of linear inequalities G and returns the convex feasible
set W to G and the polyhedron Py that underlies the set WW.

The set G is formed by linear constraints that are already
satisfied. The set Py is formed by vertices w € Rk and Py
defines the polyhedron satisfying all linear constraints ¢ € G.
The set H is formed by known linear constraints that are not
satisfied yet.

The algorithm uses the current solution W, which satisfies
G, to query the evaluator, obtaining new constraints, until G
is enough to solve the problem of Definition 2.

Note that the RL—solver can take advantage of off-policy
techniques to calculate more than one policy at a time or use
the previous solution as an initial guess for new problems [10].

The convergence property of the Incremental Feasibility
algorithm is guaranteed by the following theorem, which is
proved in appendix:

Theorem 1: Let W™ be the maximal solution to the problem
in Definition 2, i.e.,

W* ={w| we[0,1]* and |w|; =1 and
minzen fe(u(mw), p(m)) = 0};

and W be the set returned by the Incremental Feasibility algo-
rithm. If there exists a function f« (¢, u') = sign({w*, (' —
")), where w* € [0,1]¥ and ||[w*|1 = 1, such that fy-
imposes in II the same order imposed by f. in II, then

W C W=,

V. EXPERIMENTS

A robot-rescue environment, originally proposed by Melo et
al. [11], was chosen to test the IRLE algorithm proposed. The
environment is a room scenario, where there are rooms, doors

TABLE I
INCREMENTAL FEASIBILITY ALGORITHM.

Define initial constraints:

L]
L] H:{CO}
e ¢c;:w; >0foralli=1,2,...,k
o G={c1,c2,... ¢k}
Do

Choose a constraint ¢ € H
Make H = H — {c} and G = GU {c}
Make (W, Py) = LIS—solver(G)
Make H = ()
For each pair (w’, w’’) € PZ, such that w’ # w'’
- Make (n’,u’) = RL—solver(w’) and
RL—solver(w'")
— Query the evaluator between feature expectations p’ and p/
obtain eval = fe(u', 1)
— Build the constraint ¢y v/

(71"” ull) —

’ and

(w, (@ —p)) =0, ifeval=0
Cowr w2 g (W, (=) >0, ifeval =1
(w, (1 —p'")) <0, if eval =—1

— If ¢y v is linearly independent of G, make H = HU{cy,/ w }

Until H is empty
Return (W)

and staircases and a robot must rescue (take away) victims to
any one of the exits (see Fig. 2).

The experiment has two objectives: 1) to illustrate the appli-
cation of the Incremental Feasibility algorithm by learning the
weight vectors applied to features that describes the reinforce-
ment function; and 2) to test the transfer of knowledge about
the relative evaluation function f. among robot types. Three
types of robots with different skills were considered to learn
the relative evaluation function and to transfer such knowledge
among them. They are (adapted from Melo et al. [11]):

o the Crawler, which has tracker wheels and is capable of
climbing and descending stairs. It is able to open doors
only by pushing;

o the Puller, which is a wheeled mobile manipulator, able
to open doors either by pushing or pulling. However, it
is not able to climb stairs; and

o the Walker, which is a wheeled robot, neither able to
climb stairs nor open doors.

A. Experiment preparation

As each robot has different abilities, their state transition
probabilities are different. However, all of the robots have the
same multiple objective: to rescue the victim and keep the
victim’s health. When rescuing a victim, we have to define
features of such mission so that a robot can maximise their
weighted sum. Here we will consider three features (vector
of features ¢ € [0,1]3) : ¢; = Walk (occurs when the robot
walks), @2 = Door (occurs when the robot crosses doors)
and ¢3 = Stair (occurs when the robot climbs or descends
stairs). Such features were chosen as a simplification, since
taking hurt people through stairs or narrow places (doors) can
worsen their conditions.

Exit Exit

3 2 1 Exit
I |
4 5 6 7
A+ -
11 10 9 8
| |
12 13 14 Exit
/‘.\
N e
Exit Exit Exit

Fig. 2. Environment used in the experiments. Each door opens only in one
direction and the robot must leave through any exit.

The robots have three actions: forward, backward and room-
cross. The forward action takes the agent to the next room (as
indicated by the room numbers), whereas the backward action
takes the agent to the previous room. The cross-room action
changes to the room in the other side of the door. If the agent
does not have the skill to execute the action (climb stairs, pull
or push doors), it remains in the same room. Every time step
before exiting presents the feature Walk with value 1, whereas
Door and Stair features are associated to the observations
of respective behaviours, in both cases presenting values 1.

The evaluator considered for this experiment uses the fol-
lowing relative evaluation function:

fE(/le :u'”) = <W€7 (M/ - :u”)>=

where w. is a weight vector for each feature. Two differ-
ent weight vectors (designed as objectives) were considered
we = w; = (-0.10,-0.15,-0.75) and w, = wy =
(—0.10,—-0.30, —0.60). The two vectors weight the features
differently, i.e., for w; there is advantage crossing some of
the doors, while for wy there is no advantage doing so. Since
all of the features are undesirable, weights are negatives in
this case. When considering negative weight vectors, in the
Incremental Feasibility algorithm, w; must be changed to —w;
in constraints cg, ¢y, ..., cg, Where k = 3.

In both objectives it is desired to get to the exit as fast as
possible, since the weights are negative. Due to the symmetry
regarding rooms and stairs positions, the feature Stair does
not affect optimal policies, since there is no other option to
eventually reach an exit rather than going through some stairs
when the robot is on rooms 4, 5, ..., 11. So, different weights

of this feature are indistinguishable to any optimal policies
of the robots. The robot Walker never perceives the feature
Door, so it is indifferent to the weight to such feature.

The purpose of these experiments is leading each type of
robot to learn a reinforcement function, and checking how
such function transfers to other types of robots for the same
objectives. Note that the algorithm, presented in Table I,
guarantees the optimal policy only for robots with the same
skill (same state transition functions). On the other hand, the
objectives are robot independent, hence, the reinforcement
functions are also robot independent.

Table II shows the optimal evaluation Eval(7w*), where 7*
is the optimal policy, for all robot types reaching objectives w1
and wq using v = 0.99 and distribution sy ~ D uniform in S.
Two notes must be made: 1) all of them reach different optimal
policies (feature expectations) based on their skill, being the
crawler the more skilled and the walker the less skilled; 2) this
is not a comparison of objectives, since the objectives were
chosen arbitrarily for the experiment purposes.

TABLE II
OPTIMAL EVALUATIONS FOR EACH ROBOT AND EACH OBJECTIVE.

Robots | Walker | Puller | Crawler
w1 -0.852 | -0.794 -0.745
w2 -0.774 | -0.768 -0.681

B. Learning weight vectors

The Incremental Feasibility algorithm was executed for each
scenario (robot and objective) and after finding the polyhedron
PW&?;;;W which represents the possible weights specific to
each objective and robot, averages of the weight vectors
ngé-’gztive (average among vertices w € ngmocttm) were
determined. Table III shows the average weight vectors that
were learned by each (robot type, objective) pair and the
number of queries to the evaluator made before convergence

(see Table I).

TABLE III
AVERAGE WEIGHTED VECTORS LEARNED FOR EACH OBJECTIVE AND
ROBOT AND THE NUMBER OF QUERIES MADE BEFORE CONVERGENCE.

wWik wWlik wPll wlll wCrl wCrl

Weights

1 2 1 2 1 2
‘Walk -0.338 -0.338 -0.242 -0.180 -0.162 | -0.127
Door -0.333 -0.333 -0.375 -0.507 -0.262 | -0.477
Stair -0.329 -0.329 -0.383 -0.313 -0.576 | -0.396
[Queries || 3 [3 [28 [15 [15 [10 |

Since the robot Walker is not affected by neither the Door
feature nor the Stair feature, it learned little about the
weight vectors before converging to its optimal policy with
few queries. Considering the other robots, the ratios between
the weights for features Walk and Door are approximately
preserved when compared to the original ones (w; and wa,
but the same is not true for the feature Stair, due to its
indistinguishability.

C. Knowledge transfer

Each learned weight vector was transferred to each type
of robot, i.e., for each wggé’gﬁme was considered the re-
inforcement function 7(s,a) = <wgg;?g§m€,¢(s7a)>. Each
robot learned the preferred optimal policies matching each
reinforcement function. Table IV shows the evaluations of
such preferred optimal policies regarding the corresponding
original weight vector (w; or wy). The evaluations in Table II
are the reference to maximal performance, where the robots
considered the same reinforcement function of the evaluator

(T(Sa a) = <Wobjectiv67 ¢(Sa a)>)

TABLE IV
EVALUATION FOR EACH PREFERRED OPTIMAL POLICY RELATED TO EACH
LEARNED WEIGHTED VECTOR.

[Robots | Walker | Puller [Crawler |
wiVk 10852 | -0.801 | -0.764
wy k[-0774 | -0.870 | -0.793
wlll 10852 [0794 | -0.745
wil 10774 | -0.768 | -0.681
w{Tl 10852 [-0794 | -0.745
wST™ 1 -0.774 | -0.774 | -0.681

The learned reinforcement functions provide the different
types of robots with the optimal policy (compare Tables II
and IV) with some notable exceptions (in bold in Table IV):
the robots Puller and Crawler when using the weights learned
by the robot Walker (w!V!* and w}V!¥), since these resulted of
too few queries; and the robot Puller when using the weights
learned by the robot Crawler for objective 2 (w$"!), because
in this case the optimal policy of robot Crawler does not use
action room-cross, therefore the robot Crawler needed less
queries to converge. In the latter case, the error is less than
1%.

This shows the abstraction property of the learned reinforce-
ment function and the possibility of knowledge transfer among
robots. However, the robot’s skills must have some similarities
so that they reach similar sets W. In our example, that did not
happen with the robot Walker.

VI. CONCLUSION

In this paper we introduced the IRLE problem, where an
agent acting in an environment has to determine the utility
function of an evaluator, so that the agent can satisfy such
utility function. The agent has access to relative evaluation
of arbitraries behaviours presented by itself. The potential of
such method is programming RL agents, when the evaluator
cannot describe the task to the agent, but can made relative
evaluations of the agent’s behaviours. The description of the
utility function as reinforcement functions allows abstracting
the task from the environment, making it easier the transfer of
knowledge among environments.

An algorithm which solves the IRLE problem under a given
condition was introduced. The condition is that the evaluator
must be coherent with a linear function, i.e., the order assumed

by the evaluator for all possible policies can be accomplished
by a linear function of the features and also the feature
analysed by the evaluator is known and accessible by the agent.
Future work concerning IRLE will relax such condition, so
that IRLE can be used in a wider range of environments.

The algorithm was tested in a rescue environment where
heterogeneous agents can actuate, but all of them have the
same multiple objectives. The experiment shows the capacity
of knowledge transfer that the IRLE method can present,
but also shows some limitations regarding the set W to
which the algorithm converges, since it guarantees optimal
policy to the learning environment (Table IV), but not a good
evaluation function (Table III) for unlimited differences among
environments. Additional study must be made to establish a
measure of distance between environments so that reinforce-
ment transfer can be made.

Another potential use of IRLE is in non-Markovian environ-
ments (POMDPs), where the original reinforcement function
can be redefined, so that common Markovian RL techniques
can be used to reach better results, despite the non-full
observability.

APPENDIX

Proof of Theorem 1

Proof: By the end of the algorithm, we have that
w* € W, since w* must respect all order constraints, w* is
also a solution to constraints . Considering the solution W
and the associated polyhedron Py, there are two possibilities:
1) for all vertices W', w” € Py, Eval(nw) = Eval(mwn);
or 2) there are vertices w’, w” € Py, such that Eval(mw) #
Eval ().

In the first case, it is also true that every vertex w € Py
have the same preferred optimal policy, i.e., for all vertices
W/,WH € Py, mw = mwr and we define 7* £ Tw! = Tw!’.
Consider the feature expectations p' = p(mw/) and p’ =
(7w), since both of them have the same evaluation and both
vertices agree with this (both of them respect the constraints),
then both of them must also agree with respect to the preferred
optimal policy. As a result we have that 7y~ = 7%, because
for all a € A:

(Tre — To)(I— VTW*)_1¢F*WI >y ¢ — ¢F*)Wl

{ (Tre = Ta)(I =7 Tre) '™ W' > 971 (9" — 9™)W

= (Trr —To)(I - VTﬂ*)71¢W*Wa >y (¢ - o™)W?Z’)
where w, = (aw’+(1—a)w”) for o € [0, 1]. The last line in
(2) can be generalised for a combination of every vertex w €
Py, which means that any reinforcement function r(s,a) =
(w, ¢(s,a)) whose weight vector w is a convex combination
of elements in Py (set W including w*) has policy 7* as the
preferred optimal policy.

In the second case, we also can conclude the same. Consider
two vertexes w’, w'’ € Py, their associated policies 7/ £ 7y
and 7" £ 7y, and their associated feature expectation p/ =
w(r’) and p” = p(x"), where without lost of generalisation
Eval(r') < Eval(r") and 7* £ myn. Then we have:

! ! < <Wl 1
El’<El”:>{<W’M>— , .3
va (7T) va (71') <Wl/7MI> S <WI/7 I/> ()
We also have that:
(W) < (W) 4
<WH, ‘LL/> S <W//, ,LL//> b ()

because p/ and p” are optimal feature expectations respec-
tively to w’ and w”. Putting together (3) and (4) gives:
(whu) = (W', u")
<W/I, ,u/> S <W/I, ,U/”)

But if (w”, ') = (w”, /) both vertices would have the
same preferred optimal policy, which is not the case, hence:
//7 ILL”>

Since (w’, i’y = (w', 1”’), the policy used to reach feature
expectations p” is also optimal regarding w’, i.e., we can say
that (T — To)(I — 1 T) 67 W' > 746" — 67")w!
and we have for all a € A:

(Trr = To) (L= yTrn) 0™ W 271 (0 — 67)W/
(T = To)(I— YT} 267 W 2 (67 = 67" "
= (Trr = To)(I - VTﬂ”)71¢ﬂ Wao 2 771(¢a —¢")Wa,

where wo, = (aw’ 4+ (1 — a)w”) for € [0,1]. The last
formula indicates that the policy 7’ is optimal for any vertex
Wwo. We also can say that for any o € [0,1), the preferred
optimal policy of w,, is 7. [|

(w4l < (w

ACKNOWLEDGEMENTS

This research was conducted under the CAPES / GRICES
Project MultiBot (Grant no. 099/03). Valdinei F. Silva is
grateful to FAPESP (proc. 02/13678-0) and CAPES (proc.
BEX-3388/04-2).

REFERENCES

[1]1 R.S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[2] R. L. Keeney and H. Raiffa, Decisions with Multiple Objectives:
Preferences and Value Tradeoffs. New York: Wiley, 1976.

[3] U. Chajewska, D. Koller, and R. Parr, “Making rational decisions using
adaptive utility elicitation,” in AAAI/IAAL, 2000, pp. 363-369.

[4] A.Y. Ng and S. Russell, “Algorithms for inverse reinforcement learn-
ing,” in In Proceedings of the Seventeenth International Conference on
Machine Learning, 2000.

[51 S. M. Ross, Applied probability models with optimization applications.
San Francisco: Holden-Day, 1970.

[6] C.J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, University of Cambridge, 1989.

[7] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in In Proceedings of the Twenty-first International
Conference on Machine Learning, 2004.

[8] J. A. Dinsmoor, “The etymology of basic concepts in the experimental
analysis of behavior,” Journal of the Experimental Analysis of Behavior,
vol. 82, no. 3, pp. 311-316, 2004.

[9] S. Russell, “Learning agents for uncertain environments (extended
abstract),” in In Proceedings of the Eleventh Annual Conference on
Computational Learning Theory. ACM Press, 1998.

[10] N. Sprague and D. Ballard, “Multiple-goal reinforcement learning with
modular sarsa(0),” in In International Joint Conference on Artificial
Intelligence., 2003, pp. 1445-1447.

[11] F. A. Melo, M. 1. Ribeiro, and P. Lima, “Navigation controllability of
a mobile robot population,” in In Proceedings of the RoboCup 2004
Symposium, Lisbon, Portugal, 2004.

