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DECENTRALIZED, LOW-COMMUNICATION STATE 
ESTIMATION AND OPTIMAL GUIDANCE OF FORMATION 

FLYING SPACECRAFT 
 
 

Dan Dumitriu*, Sónia Marques§, Pedro U. Lima†, Bogdan Udrea‡

 
 

This paper presents an integrated approach to GNC of formation flying 
spacecraft. The Navigation algorithm estimating the full relative state 
of all the spacecraft is a full-order decentralized filter, based on an 
Extended Kalman Filter for local measurements, and on Covariance 
Intersection for the fusion between local state estimates and estimates 
communicated by other spacecraft, eliminating EKF divergence 
problems. For Guidance and Control, an algebraic closed-loop 
algorithm, based on Pontryagin’s maximum principle, is proposed, 
minimizing the propellant consumption and ensuring collision 
avoidance. This algorithm is regularly recomputed. Simulation results 
for a GTO 3-spacecraft formation are presented. 

 
 
INTRODUCTION 

This paper presents an integrated approach to Guidance, Navigation and Control 
(GNC) of formation flying spacecraft in geostationary transfer orbit (GTO). The 
Formation Acquisition Manoeuvre (FAM) part of the mission is covered in this paper. 
FAM is centred around apogee, and its goal is to bring the 3 spacecraft from an initial 
randomly dispersed disposition within a large sphere, to the desired final disposition, 
which is a tight formation. In terms of gather-formation distances to be achieved and of 
propellant consumption, the task volume of the FAM mode is the most important. 

The GNC approach is divided in two parts: Navigation, providing the formation 
full state estimates (i.e., the 3 relative position components and the 3 relative linear 
velocity components), and Guidance and Control (GC), providing the control inputs to 
achieve the goal while minimizing the propellant consumption and avoiding collisions.  
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The Navigation algorithm that we have worked out, implemented and tested in 
order to estimate the full state of all s/c in formation flying, is a full-order decentralized 
filter. The communications network between s/c is not fully connected, thus reducing 
the communications between s/c, effectively decentralizing the information handled 
during the estimation process. With the objective of computing state estimates with high 
accuracy, in a decentralized multi-systems architecture the main problems are the 
computational load, communication bottleneck and the risk to fail. In order to estimate 
the full state decentralized filter of all s/c in formation flying, the algorithm presented is 
based, for filtering, on an EKF for local measurements (when the observations are from 
the relative R/F sensors) and on a CI algorithm for the measurements communicated by 
a predecessor s/c (when no measurements from the relative R/F sensors are available).  

For Guidance and Control, we are using an optimal trajectory planning algorithm 
that minimizes the propellant consumption. Control inputs limitations and collision 
avoidance are ensured a posteriori. This algorithm computes the spacecraft trajectories 
from the knowledge of the formation linearized dynamics and full state, and is similar to 
Tillerson’s algorithm1, although the optimal solutions are obtained using Pontryagin’s 
maximum principle formulation, providing some advantages w.r.t. Tillerson’s linear 
programming based method. By re-computing the trajectory at regular time intervals, 
formation Control is also accomplished, obtaining continuous control solutions. 
 

RELATIVE FORMATION DYNAMICS 

The developed algorithms are model-based, therefore the orbital dynamics 
equations must be determined, as well as the reference frames used and the 
transformation between the frames. 
 
Reference frames 

Concerning the dynamics, the Local Vertical Local Horizon frame (LVLH) and 
the Inertial Planet Frame (IPQ) are considered, as follows: 

1. The Inertial Planet Frame is the reference inertial coordinate system, defined by: 
•  Origin: Earth mass center; 
•  IPQxr  axis: in the equator plane, parallel to the Earth vernal equinox direction; 
•   axis: completes the frame; IPQyr

•   axis: from the Earth mass center towards North. IPQzr

2. The Local Vertical Local Horizon frame (see Figure 1) is used to locate the three s/c 
with respect to the reference orbit: 
•  Origin: located on the reference orbit; 
•  : completes the right-hand frame; LVLHxr

•  : is normal to the orbital plane, opposite the angular momentum vector of 
the orbit; 

LVLHyr

•  : points in the nadir direction. LVLHzr

 



 

 
Figure 1   LVLH, view from above the orbital plane 

 
The transformation matrix between LVLH and the IPQ, , is defined using 

the orbital parameters right ascension of the ascending node Ω, inclination i, argument 
of perigee ω and true anomaly θ  

IPQ
LVLHR

8, as follows 
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Relative Dynamics for Eccentric Orbits 

The two other orbital parameters are the semi-major axis a and the eccentricity e. 
The natural frequency n of the reference orbit is defined by: 
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The orbit’s true anomaly θ increases monotonically with time t and provides a 
natural basis for parameterizing the s/c motion. Thus, the differential dynamics 
equations will be expressed w.r.t. θ, rather than to t. For elliptic orbits, the relation 
between t and θ  is8: 
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where tp is the passage time at the perigee. 
The motion of each s/c in the formation is described w.r.t. the virtual s/c VSC4, 

located in LVLH’s origin. There are three s/c in the formation and subscript i=1,2,3 will 
designate each of them. In the LVLH frame, the set of linearized θ-varying equations 
which describes the relative motion of the ith spacecraft (denoted s/ci) in an eccentric 
orbit is1,2: 
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where Axz(θ) is the following 4×4 matrix: 
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and Ay(θ) is the following 2×2 matrix: 
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Matrices Axz(θ) and Ay(θ) depend only on θ. xi, yi and zi are the coordinates in 
LVLH frame of the relative position vector of s/ci (i=1,2,3) w.r.t. VSC4.  denotes '

ix
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θd
idz

iz =' . The relative positions xi, yi and zi and the relative velocities , 

 and  characterize the state of s/c

'
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iz i w.r.t. VSC4. The relative dynamics Eqs. (4) 
describe the in-plane motion, while Eqs. (5) describe the out-of-plane motion. fx,i, fy,i and 
fz,i are the components in LVLH of the external forces vector if

r
, which includes the 

control inputs  acting on s/ciur i and the differential perturbations experienced by s/ci: 

∑+= iii wuf rrr
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The differential perturbations are the relative perturbations experienced by s/ci 
w.r.t. the perturbations affecting VSC4. There are several perturbations: J2 effect, third-
body (Sun, Moon) gravitational perturbations, solar radiation pressure, atmospheric 
drag, micrometeoroids. In this paper, the relative dynamics equations used by the GNC 
algorithms neglect the differential perturbations, i.e., 0=∑ iwr , these differential 
perturbations being small for the considered relative distances. 
 



 

NAVIGATION 

A decentralized navigation architecture is used. The full relative state estimates 
are computed at each spacecraft (s/c), avoiding the fully-connected communication 
network. In GTO, the access to GPS signals is not possible or very limited, and thus 
absolute positioning sensors are not available onboard. The navigation algorithm 
obtains its relative measurements from a RF system installed onboard. In order to 
update the estimates that are not locally estimated through the RF measurements, the 
predecessor s/c state vector estimates are used as measurements. A correlation problem 
arises when the local states estimates are combined with the new measurements, leading 
the EKF to diverge. This problem can be avoided by using the Covariance Intersection 
(CI) algorithm5. However, the use of CI algorithm leads to reduced accuracy, since the 
error of the combined estimates is lower bounded by the error of the EKF. Thus, the 
filtering part of the estimation filter is divided in two steps: the calculation of the local 
state estimates through the local sensor measurements performed by the Extended 
Kalman filter (EKF), and the update of the remaining state vector variables, by using 
the predecessor s/c state navigation knowledge. 

Formation Flying State Vector 

Relative states are more convenient to represent the formation state than the 
absolute states since the sensor available is the RF subsystem where the observations 
are inherently expressed between s/c, and the number of equations and variables to be 
determined by each s/c will lead to an undetermined system, as there are 6 variables, 

, , , , ,jx jy jz jx′ jy′ jz′ , to be determined, with 3 measurements only per s/c. 
 
Let us define the formation relative state vector for three s/c (see Figure 2) as: 
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where: 
• ρ′denotes the derivative w.r.t. the true anomaly θ, θρρ dd /=′  
• [ T

ijijijij zzyyxx −−−=ρ ]r
 is the relative vector between s/c i and s/c j, 
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Figure 2 Representation of the relative states between s/c i, j, k, considering LVLH frame placed in 

s/c k. 
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RF Measurements 

In the case of the pseudo-range signals (which are the only ones available in the 
simulator) the mathematical representation is as follows: 
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where: 
•  is the code phase between transmitting spacecraft i and receiver spacecraft j,  j

iρ
222 )()()( ijijijji zzyyxx −+−+−=− ρρ

rr is the equation that relates the true distance, 
between s/c i at time of signal transmission and s/c j at measurement time, with 
the formation state, in body reference frame 

• iT and jT are the time bias of the receiving and transmitting satellite clock, 
• c is the speed of light  (3×108 m/s), 
• is the pseudorange measurement noise due to the receiver thermal noise, ji,

ρε

•  represents the multipath error. ji
multipathE ,

When s/c j is receiving signals from s/c i, one must take into account the disposition of 
the three receiving antennas in the s/c (Figure 3): 
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Figure 3 The three antennas, R1, R2, R3, are placed in the sides of the s/c in the positions [ap 0 0], 
[0 ap 0], [0 0 ap] meters respectively w.r.t. the body frame. 
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Figure 4 Three measurements, , transmitted from s/c i are received by each 
antenna, R

321 ,,, ,, Rj
i

Rj
i

Rj
i ρρρ

1, R2, R3, on s/c j. 

,Rj
iρ

Transmitter  
s/c i 

Receiver  
s/c j 

,Rj
iρ

zk̂ yk̂

xk̂
,Rj

iρ



 

 
However the receiver antennas are not placed in the centre of the s/c, but placed 

ap meter ahead in each side of the s/c as shown in Figure 4. Antenna 1 is placed ap 
meter ahead from the gravity centre in x direction of the body frame [ ], antenna 2 
is placed ap meter ahead from the gravity centre in y direction of the body frame 

], and antenna 3 is placed ap meter ahead from the gravity centre in z direction 
of the body frame 

00ap

[ 00 ap

[ ].  ap00

Thus, there are three measurements instead of just one, as shown in Eq. (10). 
Therefore, the relations between measurements received in the three antennas, 
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everything expressed in body reference frame. 
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Figure 5 Geometric representation of the measurement received by antenna 3 in the s/c i and 
transmitted by the s/c j. 

 

 
Since the state vector is expressed in LVLH, the variables that are referred in the 

observations should be transformed into LVLH reference frame. Given the matrix that 
transforms a position vector from the body frame to IPQ frame, , the matrix that 
transforms a position vector from LVLH to the s/c body frame is: 

IPQ
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Thus, any position vector x
r  can be transformed from the body reference frame to 

LVLH frame by: 
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Applying the previous equation to the measurements given by Eq. (11), the observations 
obtained by each receiving antenna are then expressed in LVLH frame as follows: 
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The same for 2R
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Full-Order Decentralized Filter 

The Navigation algorithm is based on an EKF for local measurements, and on a CI 
algorithm (plus the EKF prediction part) for the measurements communicated by a 
predecessor s/c. The CI algorithm avoids the possible divergence of the EKF at the 
receiving s/c, due to correlation between measurements of the s/c in the fleet. For the 
prediction part the equations remain unchanged. 

Prediction  

1. , where is approximated by a 4))/(ˆ,()/1(ˆ kkkkk ii XFX =+ ))|(ˆ,( kkk iXF th-order 
four-stage Runge-Kutta method. 

2. , where Q is the covariance matrix of 
the process noise, mainly due to unmodeled dynamics, and Φ
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propagate the estimate and i stands for the ith s/c.  
 
Filtering  

For i=1,2,…, N-1, circularly (i.e., 1 comes after N-1) 

Sensor Observation, yi(k) 
1. Compute the local observation matrix:  (the linearization of 

the original observation function, denoted by  for simplification). 
))1|(ˆ,( −kkk ii XH

)(kiH
2. Compute the local innovation covariance matrix: 
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3. Compute the local Kalman Gain:  1))()(()1|()( −−= kkkkk iiii SHPK
4. Update local state estimate:  )(ˆ)1|(ˆ)/(ˆ kkkkk iii XXX δ+−=

5. Re-compute the local observation matrix:  ))|(ˆ,( kkk ii XH
6. Compute the error covariance matrix: 
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State estimate from predecessor s/c,  )()1|()( 1 kkkk ii −+−= vXz
1. Compute the error covariance matrix: 

      
1111 ))1|()(1())1|(())|(( −−−− −−+−= kkkkkk iii PPP ωω

2. Update local state estimate: 
     

, 
where the parameter ω is chosen at every step such that the trace of the matrix  is 
minimized. 
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The estimates concern the entire fleet state in a decentralized scheme, but without 

the disadvantages of communication associated to a fully-connected network since only 
peer-to-peer communication is required with real-time at each time step. 
 
GUIDANCE AND CONTROL 

For GC, an optimal trajectory planning algorithm that minimizes the propellant 
consumption is used3. This closed-loop GC algorithm computes the spacecraft 
trajectories from the knowledge of the formation linearized relative dynamics and the 
full state, the optimal solutions being obtained using Pontryagin’s maximum principle 
formulation4. Control inputs limitations and collision avoidance are ensured a posteriori. 

To take the unmodeled perturbations into account, as well as the state estimation 
errors, this closed-loop GC algorithm is recomputed periodically, at regularly spaced 
time instants, and the planned trajectory is updated, as well as the associated continuous 
control solutions. 
 
Model-based Optimal Trajectory Planning 

During the Formation Acquisition Maneuver (FAM), i.e., between θ1 and θ2, with 
θ1=θ(t1) and θ2=θ(t2) as provided by Eq. (3), the trajectory of each s/c must minimize 
the propellant consumption and avoid collisions. The optimal trajectory planning 
problem during FAM includes: 

•  the state equations; 
•  the initial and final conditions; 
•  the limitations concerning the control inputs; 
•  the cost function to be minimized. 

 
The state equations gather the relative dynamics equations of all three s/c. The 

global state vector is: 
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All control inputs are gathered into vector U: 
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By putting together the linearized θ-varying relative dynamics Eqs. (4) and (5) for all 
three s/c, the state equations of the model-based optimal trajectory planning problem 
are: 
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with Axz(θ) expressed by Eq. (6) and Ay(θ) by Eq. (7). From Eq. (4) and Eq. (5), it is 
obvious to express B(θ). 

The optimal trajectory planning problem is studied between θ1 and θ2. Both the 
initial and the final state are given: 

aX =)( 1θ   and  bX =)( 2θ                                      (20) 
The control inputs must satisfy the following constraint inequalities: 

maxmin || uUu j ≤≤ ,  for 9,,1 K=j                              (21) 
The collision avoidance is considered afterwards, as explained in subsection A 

Posteriori Consideration of Collision Avoidance. In this case, the cost function must 
minimize only the propellant consumption. The cost function to be minimized is: 
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where L(X,U,θ) is the weight function. So, by minimizing J, the overall control inputs 
are minimized. Since the control inputs are proportional to the propellant consumption, 
the propellant consumption is minimized. 
 

Application of Pontryagin’s Maximum Principle 

Optimal trajectory planning means to provide, for 21 θθθ ≤≤ , the optimal 
trajectories  and the associated optimal control inputs , which: )(θoptX )(θoptU

•  respect the state Eqs. (18); 
•  meet the two-boundary conditions (20); 
•  satisfy the control inputs limitations (21); 
•  minimize the cost function given by (22). 

This model-based optimal trajectory planning problem is solved by using Pontryagin’s 
maximum principle (PMP)4. This optimization principle introduces 18 co-state (adjoint) 
variables λi, one for each state equation: λi corresponds to state equation 
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and by expressing the co-state equations as: 
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the PMP states that the control inputs which satisfy, for all 21 θθθ ≤≤ , the stationarity 
conditions: 
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are the optimal control inputs, the corresponding trajectory being optimal as well. 
 
Under the PMP formulation, the stationarity conditions in Eq. (26) provide us with the 
optimal control inputs , as functions of the adjoint variables: opt

jU

)(,
)cos1(

)1(
2
1

,
)cos1(

)1(
2
1

)cos1(
)1(20

424

32

,12

224

32

,11224

32

,1

18

1 ,1,1

Kλ
θ

λ
θ

λ
θ

λ

ne
euU

ne
euU

ne
eu

u
f

u
L

opt
z

opt

opt
x

opt
x

k
k

x

k

x

+
−

−==

+
−

−==⇒
+

−
+=

∂
∂

+
∂
∂

= ∑
=      (27) 

So, the linear relation between the optimal control inputs and the adjoint variables is: 
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By taking into account the stationarity conditions (28), the state Eqs. (18) at θk become: 
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where: 
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with: 
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Closed-loop GC Algorithm 

The differential linear two-boundary equations system to be solved consists of the 
state Eq. (29) and the co-state Eq. (25). Both initial and final state vectors are known 
(20), but there is no boundary condition available for the adjoint variables. The 
differential linear two-boundary equations system is solved by using the purely 
algebraic algorithm derived below, called closed-loop GC algorithm. To take the 
unmodeled perturbations into account, as well as the state estimation errors, the closed-
loop GC algorithm is recomputed periodically, at regularly spaced time instants, and the 
planned trajectory is updated. 
 

By using the finite differences expression of the derivative 
k

d
d

θθ
X  for a constant 

step δθ  in the true anomaly, and the short notation k instead of θk, Eq. (29) becomes: 
)()]()[()(])()[()1( 18 kkkkk ΛBXIAX Λ++=+ δθδθ                     (32) 

where I18 is the identity 18×18 matrix. Finally, the recurrent expression of the state 
variables is: 

)()()()()1( kkkkk ΛBXAX +=+                                (33) 
where 18)()( IAA +⋅= kk δθ  and )()( kk Λ⋅= BB δθ . Similarly, the co-state Eq. (25) of 
the simplified form: 

)()( kk
d
d

k

ΛCΛ
=

θθ
                                                (34) 

can be transformed into: 
)()()1( kkk ΛCΛ =+                                             (35) 

where 18)()( ICC +⋅= kk δθ . 
Based on the recurrent expressions (33) and (35), )1( +kX  can be expressed 

directly as function of  and , the same for )0(X )0(Λ )1( +kΛ : 
)0()()0()()1( ΛQXPX kkk +=+                                    (36) 

)0()()1( ΛNΛ kk =+                                                      (37) 
where P(k), Q(k) and N(k) are given by the following recurrent sequence: 

1. )0()0( AP = , )0()0( BQ = , )0()0( CN =  
2. FOR  k=1  TO  n-1 

)1()()( −= kkk PAP  
)1()()1()()( −+−= kkkkk NBQAQ  

)1()()( −= kkk NCN  
 

The recurrent sequence above is nothing else than propagating dynamics between 
01 == kθθ  and nk == θθ 2 . The number of steps n is related to the true anomaly step δθ  

by: n
12 θθδθ −= . The estimated initial state  corresponds to , while the desired )(ˆ

1θX )0(X



 

final state )( 2θX  is the same with . In this case, expression (36) written for k=n-1 
becomes: 

)(nX

)(ˆ)1()()0()1( 12 θθ XPXΛQ −−=− nn                                    (38) 
where  and  are provided by the recurrent sequence above. )1( −nQ )1( −nP

Expression (38) is an algebraic system of 18 linear equations, with unknowns 
, i.e., the initial adjoint variables at θ)0(Λ 1. This linear system is easily solved by the 

Gauss elimination method. By using Eq. (37), the knowledge of  provides us with 
the knowledge of all 

)0(Λ
)(θΛ , for 21 θθθ ≤≤ . Finally, by means of the stationarity 

conditions (28), all optimal control inputs  are known. The optimal trajectories 
 are known as well, by using Eq. (36). 

)(θoptU
)(θoptX

The control inputs limitations, Eq. (21) are considered only a posteriori. The 
obtained  are just not allowed to exceed the limitations: if component 

, then  is imposed. 
)(θoptU

max)( uopt
j >θU max)( uopt

j =θU
 
A Posteriori Consideration of Collision Avoidance 

In what concerns collision avoidance, let us consider a possible collision situation 
between s/c1 (i=1) and s/c2 (i=2). Let us denote by so

12ρ
r  the relative distance between 

s/c1 and s/c2, where the evolutions of s/c1 and s/c2 follow the sub-optimal trajectories 
computed by the closed-loop GC algorithm. At each instant θ, if min12 m40 ρρ =<sor , then 
we add to the sub-optimal control inputs so

iur  (provided by the closed-loop GC 
algorithm) some thrust inputs, i.e., 12ur−  and respectively 12ur , supposed to move away 
s/c1 and s/c2. Figure 6 illustrates this modification, 1211 uuu so rrr

−= , 1222 uuu so rrr
+=  and 

 being the control inputs that will be really applied at instant θ. souu 33
rr

=
Concerning the values of these collision avoidance thrust inputs ±  added, one 

can consider they follow a parabolic dependence law between abscissas of 40m and 
15m, being null for 

12u
r

m4012 ≥soρ
r  and equal to the maximum thrust when m1512 ≤soρ

r . 

 
Figure 6 Ensuring collision avoidance a posteriori 

 
 
 



 

GNC RESULTS 

The performance of the GNC algorithms was tested in a realistic orbit dynamics 
simulator. The results below concern a GTO orbit characterized by: 

.2,7,0,7304.0,km1.26624 πω −===== oiΩea                       (39) 
So far, the GNC simulations are performed with the perturbations disabled. Some 

further research, especially in the Navigation part, is still needed in order to present 
satisfactory results with all or part of the perturbations enabled. Note also that s/c1 is 
considered coincident with VSC4, i.e., the origin of LVLH. So, only s/c2 and s/c3 are 
controlled. 

The duration of FAM is chosen to be 6h, in order not to saturate the control inputs, 
which limitations are: N1.0min µ=u  and mN20max =u . FAM is centered in duration 
around apogee, where perturbations are much less significant than close to perigee. 
More precisely, FAM starts at s94.108161 =t  and ends at s94.324162 =t . The passage 
time at perigee was considered as the time origin: 0=pt . By using the relation (3), the 
corresponding true anomalies are:  and . o5557.1561 =θ o4442.2032 =θ

The closed-loop GC algorithm is recomputed at regularly spaced time instants 
(every 50s during the last 1h of FAM, and every 400s for the rest of FAM), and the 
planned optimal trajectory is updated. 

The initial state aX =)( 1θ  corresponds to a disposition of the three s/c within a 
sphere of 8km in diameter around the dispenser. The velocities included in )( 1θX  have 
values between ±0.1m/s. In the estimation filter, this initial state has an error of 1m for 
the positions and 1m/rad for the velocities. 

The desired final state bX =)( 2θ  corresponds to a tight formation. The goal is to 
attain, up to 1h before the next orbit’s apogee, an isosceles triangle formation with the 
equal edges of 250m and with a 120º angle between them. To meet this goal mostly by 
natural motion, using the periodicity conditions1 for relative motion in eccentric orbits, 
the requirement is to obtain bX =)( 2θ  at the end of FAM. Table 1 presents both a and 
b, but only for s/c2. 
 

 
Table 1. Initial and final states, in LVLH 

 aX =)( 1θ  bX =)( 2θ
 x2 [m] 3000 -242.10 

]m/s[2x&  -0.04 0.000559 
 z2 [m] -864 62.35 

]m/s[2z&  -0.04 0.012858 
 y2 [m] 300 0.00 

]m/s[2y& -0.04 0.000155 
 
Figures 7-9 show our GNC algorithms results. Figure 7 presents the evolution of the 
distances between s/c2 and s/c1, as well as between s/c3 and s/c1. Figure 8 shows the 



 

control inputs in IPQ obtained for s/c2. Figure 9 presents the real and estimated relative 
distances of s/c1 w.r.t. s/c3 (y vs x components). 

 

 
Figure 7 The evolution of the distances between s/c2 and s/c1 (green), and between s/c3 and s/c1 

(blue) 

 
Figure 8 s/c2 optimal control inputs ( , , ) w.r.t. time t, in IPQ xu ,2 yu ,2 zu ,2

 
Figure 9 Real and estimated relative distances of s/c1 w.r.t. s/c3 (y vs x components). 

 
In terms of performance using closed-loop GNC, the error between the obtained 

final state )( 2θX  and the desired one b is maximum 8m for position components and of 
0.001m/s for velocities. These results are good, but have still to be improved to better 
fulfill the mission specifications. Simulations were also done without the estimator in 



 

the loop. In this case only GC is considered and, with all types of perturbations enabled 
in the simulator, the error is of the order of 0.1m for positions and of 0.0001m/s for 
velocities, which meets the specifications for the mission. 
 
 
CONCLUSIONS 

This work has been developed under an ESA project where the goal is to obtain 
simulation results, with all GNC algorithms in the loop, for a 3-spacecraft formation 
flying in a GTO orbit. For Guidance and Control, this paper presents a model-based 
optimal trajectory planning algorithm. Our guidance-oriented approach consists in 
regularly re-computing this algorithm. This (re)planning leads to trajectories that require 
less control effort during the trajectory tracking phase of the mission. For the 
Navigation part, the formation state estimation is handled by a full-order decentralized 
estimator, based on the CI and EKF. The EKF is used for local measurements, and for 
the measurements communicated by a predecessor spacecraft, in a method with no 
divergence troubles, i.e., the CI algorithm. 
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