Modeling Dynamics of Cell Population

Molecule Expression Distribution

D. Milutinovié¢?, J. Carneiro®, M. Athans?, P.Lima ®*

a Institute for Systems and Robotics, Instituto Superior Técnico, Lisbon, Portugal

b Quibenkian Institute of Science, Oeiras, Portugal

Abstract

This article introduces a novel approach to the study of the dynamics of molecule
expression level of large-size cell populations, whose goal is to understand how
individual cell behavior propagates to population dynamics. A Hybrid Automaton
framework is used which allows the simultaneous modeling of the formation and
dissociation of cell-to-cell conjugations, and the molecular processes they control.
Serial encounters among the cells are described by a stochastic approach under
which the cell distribution over the state space is modeled and the dynamics of
the state probability density functions is determined. This work is motivated by the
investigation of T-cell receptor expression distribution. These receptors are essential
for the antigen recognition and the regulation of the immune system. The results

are illustrated by examples and validated with real data.
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1 Introduction

T-cells are the key regulators of the immune system and they recognize the
antigen via their surface expressed molecules, so called T-cell receptors (TCRs).
The antigen is presented to T-cells by specialized antigen presenting cells
(APCs). The TCR expression level of a T-cell is down-regulated during the
transient conjugation with an APC, which stimulates the TCRs with MHC-
peptide complexes presented on the APC surface. The TCR expression dy-
namics of an individual T-cell involves both the discrete and continuous state
evolution. In this paper we describe a Hybrid Automaton approach (Miluti-
novi¢ et al. , 2003a; Jianghai et al. , 2000; Schaft et al. , 2000) to modeling

the TCR expression distribution in a large population of T-cells.

Available analytical models of TCR down-regulation are ordinary differential
equation (ODE) models of the TCR average expression level in the population
(Bachmann et al. , 1998). To derive such a type of model, partial differential
equations (PDE) (Wofsy et al. , 2002), and mean-field approaches (Sousa
et al. ; 2000) have been used. To verify such a model with data, predicted
average values were compared with medians or averages of the TCR expression

distributions recorded by flow cytometry scanner (Valitutti et al. , 1995).

However, the recorded distributions are the result of direct observation of each
individual cell, which means that a few thousand measurements are made.
Considering only the average value of distributions means that lots of poten-
tially useful information, hidden in the shape of the flow cytometry measured
distribution, is discarded. To incorporate this information in a mathematical

model, which relates individual cell dynamics to the observed dynamics of the



population, a different approach to the study of TCR expression dynamics

and similar dynamics of cell expressed molecules must be considered.

The goal of this paper is to provide a theoretical framework that will allow
us to extract more information from experimentally obtained TCR expression
distributions. The previous mathematical analysis (Bachmann et al. , 1998;
Wofsy et al. , 2002; Sousa et al. , 2000) deal with experiments where T-
cells are, under controlled conditions, always conjugated to APCs (Valitutti
et al. , 1995). Here, we consider the data that can be obtained from in vivo
experiments where, due to the uncertain and complex environment, the cell-
to-cell conjugation and dissociation are simultaneously present and random.
Sousa et al. (2003) used Monte-Carlo simulations to study similar kind of
an interaction between T-cell population and APCs, and its implication for
the tolerance induction and the regulation of population sizes. Although this
analysis provided some insight into these processes, the scope of conclusions

was limited by the lack of a full analytical model.

The paper starts with the introduction of a biological scenario in which in-
dividual interaction between a T-Cell and APCs within the cell mixture is
described. Based on this scenario, the deterministic hybrid automaton model
of an individual T-Cell is introduced in Section 3. The complexity of the pop-
ulation interaction is discussed and it is modeled by a stochastic approach in
Section 4. In the same section, the system of partial differential equations de-
scribing the probability density function of cell state is presented. This result
is exploited in the example of Section 5. In Section 6, we discuss the relation of
our work to the previous studies on TCR downregulation dynamics, and our

model is validated with experimental data. Section 7 gives the conclusions.



2 Surface TCR expression level dynamics in a mixture of

interacting T-cells and APCs

The scenario of interactions between T-cells and APCs is based on recent in
vivo experiments, where the two-photon microscopy was exploited to observe

the motion of T-cells inside the lymph node (Mempel et al. , 2004).

q;,3= never _conjugated q,45= conjugated

o- T-Cell
- APC

Fig. 1. The T-cell population (circles) surrounded by the APCs (squares), gz-discrete
state of the T-cell life-cycle regarding connections to an APC. The index L is the

individual cell label.

The minimal biological system with the properties we are interested in is a
solution containing the mixture of T-cells and APCs, Fig. 1. Under this sce-
nario, a naive (never conjugated) T-cell randomly moves inside the mixture.
This cell is in discrete state 1-never conjugated. At some instant in time,
the T-cell meets an APC, and may form a conjugate if the two cells have
some affinity. This can be described by the transition of T-cell from state 1-
never conjugated to state 2-conjugated. If conjugation happens, the T-cell
is in state 2-conjugated and the TCR expression level on the T-cell declines
(Valitutti et al. , 1995). The conjugated state lasts for some time, and ceases
when dissociation takes place. This means that the T-cell switches from dis-

crete state 2-conjugated to state 3-free. After the dissociation, the free T-cell



resumes random motion inside the mixture. Before conjugation to another
APC, the TCR expression level can change. The T-cell can change back and

forth between conjugated and free stages.

This scenario of interaction is a simplified version of experimental observa-
tions. The scenario does not include the influx of naive cells into the lymph
node or the possible cell proliferation and cell death. On the other hand, in
in vivo experiments T-cells are first labeled for the two-photon microscopy
and then injected into the lymph node of the host. Experimental observations
are constrained only to the live injected labeled cells that appear simultane-
ously in the lymph node. In the labeled T-cell population present in the lymph
node, there is not an extra influx of the cells. Therefore, even simplified, this
scenario is completely valid at the early stage of the lymph node T-cell-APC
priming when the cell death and the proliferation can be neglected. Based on
this scenario, we conclude that realistic models of TCR expression dynamics
of an individual cell should take into account not only the dynamics of the
TCR down-regulation, but also the sequence and dynamics of the processes

of T-cell-APC conjugate formation and dissociation.

3 Hybrid Automaton model of an individual T-cell

The state of an individual T-cell in the population, regarding the TCR ex-
pression level dynamics, is composed of continuous and discrete states. The
continuous state (z) is related to the TCR expression, while the discrete state
(¢) describes whether the T-cell is conjugated to an APC or not. Thus, Hy-
brid Automata methodology appears as a natural modeling framework for the

biological T-cell population.



The hybrid automaton model of the T-cell is presented in Fig. 2. Following
this model, the T-cell can be in one of three discrete states: never conjugated,
conjugated and free. This is a consequence of the T-cell dynamical behavior
in the minimal biological system we are considering. The discrete states are
introduced to model different TCR expression dynamics of the T-cell when the
T-cell is naive, conjugated to APC, or free respectively. The TCR dynamics

of each discrete state is assumed to obey an ODE of the type

#(t) = fo(z), ¢=1,2,3 (1)

where z is the amount of TCRs and f,(z) defines the TCR dynamics in each
discrete state, q=1,2,3 i.e. never conjugated, conjugated and free discrete
state, respectively. We assume that before any conjugation, the TCR expres-
sion level stays unchanged and fi(z) = 0. The dynamics of decrease and
dynamics after the T-cell - APC disconnection are unknown. The only thing
we know is that the consequence of the connection between the T-cell and the
APC is a decrease of the expression fo(z) < 0 and that after disconnection,

the TCR expression level might stay constant or be up-regulated f3(x) > 0.

The transitions among the discrete states are the consequence of the T-cell
and the APC motion dynamics. In this modeling approach, we assume that
the motion dynamics produces the time sequence of events u(t) which changes
the discrete state of the T-cell. This time event sequence is defined at each

time instant and takes value a, b or ¢ i.e, the time event sequence u(t) is a

mapping

u: t —>{a,b, ¢} (2)



Fig. 2. Hybrid Automaton model of the T-cell - APC interaction, z(t) - the TCRs
expression level, u(t) - event sequence, discrete states ¢ : 1 - never conjugated,
2 - conjugated, 3 - free; events: a - conjugate formation, b-conjugate dissociation;
fq(z) - the TCR dynamics of discrete state g, ¢ = 1,2,3. In the case of stochastic
sequences u(t), the transitions are described by the stochastic transition rates from

the discrete state g to the state r, Ay (2).

The symbols a and b stand for conjugate formation and conjugate dissociation
events respectively. The symbol ¢ is introduced to describe no event, which

means that the discrete state is not changing.

The T-cell hybrid-system model (Fig. 2) is a deterministic model. Given an

initial state (zo,qo) and a time sequence u(t), the TCR expression level z(t)

Initial condition (x,,q,)

Input event Continuous
sequence output
u(?) x(t)
u(t) —> A P
ab a > o

Deterministic system

Fig. 3. Micro-Agent model of the T-cell; u(t) - event sequence, events: a - conjugate
formation, b-conjugate dissociation; x - TCR expression level; xg - initial TCRs
expression level, gy - initial discrete state. In the case of stochastic event sequence

u(t), the expression level z(t) is a continuous stochastic signal.



and the discrete state ¢(t) can be calculated in a deterministic way. Taking
into account its deterministic nature, each T-cell model can be represented as
a deterministic single-input, singe-output (SISO) system, Fig. 3. The input to
this system is a sequence of the events u(t), and the output is the amount of
TCRs z(t), which is a continuous time function. This input — output repre-
sentation will be designated as the T-cell Micro-Agent. The prefix ”Micro” is
used because this model describes the population behavior at the microscopic
level, i.e., at the level of the individual cell behavior. In the following section,
this model will be used as a building block for the TCR dynamics stochastic

model of the T-cell population surrounded by APCs.

A more general multiple—output Micro-Agent (A) hybrid model is presented

by the following definition

Definition 1. A Micro-Agent pA is a single-input multi-output hybrid automa-

ton, defined as a collection uA = (H,U,7,Y) where:

- H is a Hybrid automaton H = (Q, X, Init, f, Inv, E, G, R) that satisfies the
following properties:
- X = R™, the state space of the continuous piece of H
- Inv(q) = X,Vq € Q, i.e. for any discrete state ¢ € @, the invariant is
the full continuous state space
- G(e) = X,Ve € E, i.e. all defined transitions are allowed
- Rs(e,x) =z, Y(e € ENx € X), i.e. the transition e does not change
the continuous state
- U is a finite set of input discrete events, including the nil event &
- 7:U x @ — E, assigns to the pair, formed by the discrete event u € U and

discrete state ¢ € ), the transition e = (q,¢') € E, where 7(g,q) = (¢, q)



- Y = R™, is the output state, a pA output y € Y is a function of the continuous

state z, y = g(z)

Remark 1. The Micro-Agent state is a pair (z,¢) € X x Q. This couple consists

of continuous x € X and discrete g € () state components.

The properties of Hybrid Automaton H in Definition 1 mean that the pA dis-
crete and continuous dynamics can evolve in a free manner. However, jumps
in the continuous state space part are not allowed. The previously intro-
duced T-cell model can be derived from this abstract definition taking the
single — output case where y is equal to the state variable z, which is the

TCR expression level.

4 Stochastic model of a T-cell population

The complete population model can be derived by modeling each T-cell of
the population by the T-cell Micro-Agent model. However, simply collecting
these models will not reflect the TCR dynamic of the biological population.
The part of the biological population complex dynamics which is not covered
by this collection relates to the dynamics of the conjugate formation and the
conjugate dissociation of T-cells and APCs. This complex dynamics makes
an essential difference between the TCR expression dynamics of a collection
of separate T-cells and the TCR expression dynamics of a T-cell biological

population.

The conjugate formation and conjugate dissociation events of T-cells in the

population, are result of a complex dynamics which depends on the density
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Fig. 4. The T-cell population model, a) The Hybrid system model u; - event sequence
input to the ith T-cell, z; - the TCR amount of the ith T-cell, s = 1,2...,N. b)
The Population Event Generator (PEG) is decomposed into several Micro-Agent
Event Generators (MAEG). The serial connection of MAEG and Micro-Agents is

named a Stochastic Micro-Agent, SuA.

of the cells, their position, speed, orientation, geometry, etc. In the model of
the T-cell population we are proposing, this complex dynamics is represented
by the Population Event Generator (PEG) block in Fig. 4. The PEG has as
many outputs as Micro-Agents (the T-cells) and generates the event sequences
(u1,ug, ... uy, Fig. 4) exactly in the same way as they appear in the biological
population. This is graphically depicted in Fig. 4 by the arrows pointing from
the cells in the population to the Micro-Agents input. The introduction of
the PEG in the model makes a strong practical point in decomposing the cell

population TCR dynamics into:

e a deterministic part (Micro-Agents), which describes the behavior of the
individual T-cell TCR dynamics
e a stochastic part, related to the complex dynamics of massive random en-

counters of T-cells and APCs (PEG).

The event generation depends on many population variables. An approach
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to model this complexity is to apply a stochastic approach, where the full
complexity of interactions is described by the probability that an event happens.
The population we are considering consists of the individuals of the same
nature and we expect that the event sequences u;(t), i=1,2,..N, generated by
the PEG, are of the same stochastic nature. If the event sequences are mutually
independent, the PEG can be decomposed into the set of parallel Micro-Agent
Event Generators (MAEG), as it is presented in Fig. 4. Each of the MAEGs
produces an event sequence to the input of one Micro-Agent. We call the serial
connection of MAEG and Micro-Agent a Stochastic Micro-Agent (SpA, see
Appendix B). The output of the SuA is a continuous time stochastic process

(see Fig. 3).

The study of the connection between the individual micro dynamics and the
population macro dynamics is strongly related to statistical physics (Landau et
al. , 1959) where the behavior and the properties of mechanical bodies made up
of a very large number of separate particles are studied. In this framework, the
connection between the micro- and macro-dynamics is established through the
probability density function (pdf) of system particles over a state space. The
pdf has a dual meaning. First, the pdf defines the probability of an individual
particle being in a given state. Second, it represents the normalized frequency
of the states occupancy by the particle population. Therefore the state pdf

can be considered as the population state.

Applying the same reasoning to our case, we can identify the state as the
couple (z, q), which uniquely defines the state of an individual cell. The state

pdf, i.e. the state of the population p(z,t) is the vector of the functions

p(x,t) = [pr(2,) pal,t) palz, )] (4)

11



In this vector each component p,(z,t) is the probability of a cell with the
expression level x in the discrete state g. The components of the state pdf are

normalized, so that:

Based on the state pdf, the TCR expression distribution in the population
can be computed as a total probability of cells with the expression level x

independently on the discrete state, i.e:

(e, t) = Z:lpq(w,t) (6)

This probability density function corresponds to experimentally obtained TCR-

expression-associated fluorescence distributions obtained by flow cytometry.

We derive the Stochastic Micro-Agent model of the T-cell, proposed here,
from the previous deterministic Micro-Agent model (Fig. 2) defining u(t) as
the stochastic event sequence which produces stochastic transitions from the
discrete state g to the state r with the stochastic rates A,,. In general, the rates
can depend on £, but to make the notation simpler, we will drop the brackets,
i.e. Ayr = Agr(2), see Fig. 2. This assumption leads us to a Continuous Time
Markov Chain Micro-Agent (CTMCupA) (see Appendix B), for which the
evolution of the probability density function p(x,t) of the T-cell hybrid state
(z,9), ¢ = 1,2,3 obeys the system of partial differential equations provided

by the following theorem which is proved in Appendix C.
Theorem 1. For a C'TMC A with N discrete states and discrete state proba-

12



bility satisfying

P(t) = LTP(t) (7)

where P(t) = [Pi(t) Pa(t)...Pn(t)]", P, is the probability of discrete state
¢, L = [Ay]X <, is a transition rate matrix and ), is the transition rate from

discrete state ¢ to discrete state r, the state pdf is given by the vector

p(x’t) = [pl(x’t)’pQ(xat)""’pN(x’t)]T (8)

where p,(z,t) is the pdf of state (z, ¢) at time ¢, satisfies the following equation:

V- (fil@)p(,1))

Ap(x,1) V- (f2(z)p2(, 1))
ot

V- (fv(@)pn(z,1))

where

qu afj(w) ER)

q
Zj Oz;

V- (fo(@)pg(z,1)) (10)
and fg(x) is the jth component of vector field f,(z) at state (z,q), z € X,

X=R"''9g=1,2,...N. [end of theorem)|

The PDE system (9) is an extension of the Liouville’s equation (Landau et
al. , 1959). The solution of the partial differential equation (9) is the vector of
time functions representing the time evolution of the CT M CuA state pdf. To

solve this equation, the region {2 € X and the boundary condition have to be

13



defined (Evans , 1998). An example of the boundary condition is p(x,t) = 0 for
all x € 09). Specification of the boundary condition depends on the problem
which is described by equation (9) and can strongly influence the solution
(Evans , 1998). The numerical methods for solving this type of equation are

discussed in (Zienkiewitz et al. , 2000).

5 Example of the analytically predicted TCR expression distribu-

tion

To illustrate the previously described modeling approach, we will present pos-
sible predictions of the TCR expression pdf of the T-cells interacting with the
APCs inside the lymph node. In the following analysis, we will assume that
the transition rates of the proposed T-cell Micro-Agent model Ao, Ao, A32 are
constant and that the continuous dynamics of discrete states are in the form
of (1), where fi(x) = 0, assuming that in the never conjugated state there is

no change of TCR expression level.

Under these assumptions, the equation which describes the evolution of the

state pdf of CTMCuA (see appendix C) is:

0 0

% =—Ai2p1 — %(flpl) (11)
0 0

% = A12p1 — Aa3p2 + Azop3 — %(fw%) (12)
0 0

% = Ao3p2 — A32p03 — %(fsps) (13)

where p; = p;(z,t) and the pdf of TCR expression is given by

n(z,t) =p1+p2+ps (14)

14



For the given initial TCR expression pdf of naive cells, this set of equations
can be used to predict the TCR expression pdf evolution over time. This
time evolution can be compared to experimental TCR expression distributions

obtained by flow cytometry. This type of analysis is given in the next section.

However, we can also solve this equation at steady-state, i.e. taking the limit,
t — o0. Using this limit, we can derive the steady-state pdf of TCR expression.

For the steady-state, expressions (11)-(13) are:

0
- _ s _ 7 s 1
0=—A2p} 8x(f1p1) (15)
0
0=A12p7 — A23p5 + As2p3 — £(f2pg) (16)
S S a S
0=A3p5 — Ag2p3 — a_x(f3p3) (17)
where pf = pf(x). Since f; = 0 (see equation (2)), we can conclude that

pi(xz) = 0 and can transform the system of equations (15)- (17) to the equiv-

alent:
S S 8 S
0=—MA2305 + A3203 — oz (f205) (18)
0
0=—-(fors + Jop3) & F205 + fap = const (19)

Since the probability functions p{(x) can not be negative pi(z) > 0, Vo € R
and the TCR expression is greater than zero (z > 0), we know that p(07) =

p3(07) = 0. Therefore, the system of equations (18)-(19) becomes:

0
0=—Xa3p5 + A32p5 — %(fQ,oi) (20)
0= fop; + f3p3 (21)

After substituting p§(z) = n*(z) — p3(z), the solution for the steady-state of

equations (11)-(14) is equivalent to the solution of the following differential

15



equation:

dp* | _fske ‘lglm] A m|
dr [(fg—b) @ | Js - +fz+f3]77 22)

The function °(x), which satisfies this differential equation for n*(z) = n°(z),
is:

1 1

f3(x)  folw)

A23 A32

o~ S GETREd (23)

n’(z) = c

where ¢ is the normalization parameter. This equation defines the shape of the
steady-state TCR expression pdf. This result is very important, as it explicitly
shows that the TCR expression pdf shape depends on the TCR dynamics of
the individual cells, described by functions f; and f3. To obtain the expression
for the steady-state TCR pdf, we should be careful with the integration in the

exponent of equation (23), dependent on functions f, and f;.

To illustrate the solution (23), we will consider a very simple TCR expression

level dynamics in conjugated and free states :

fg(fﬁ) = SQ — kg.’r < 0, fg(.’lf) = S3 — k‘3.’1) 2 0 (24)

In the conjugated state, the TCR, expression z(t) declines, while in the free
state x(t) can incline or stay constant. The consequence of (24) is that the
T-cell which is always in conjugated or free state will express x, = Ss/ky and
xp = S3/ks TCRs, respectively. It is reasonable to assume that z, and x, are

the limits of the region with non-zero TCR expression pdf at the steady-state,

16



i.e. the steady-state pdf n°(x) satisfies:

0 , € (—00,z4 Ul[zp,00)
n*(z) = (25)

n’(z) , T € (Ta, Tp)

where the normalization parameter ¢ (18) is such that [’ 7°(x)dr = 1. The
mathematical development below is applied only to the interval z € (x4, x)

where n°(z) # 0.

Substituting (24) in equation (23) we obtain:

1 " 1
53 — k3.’E kzx - Sg

o S Bt e (26)

n’(z) =c

then, computing integrals in the exponential terms:

1 n 1
53 — k3.’E k‘QSE - Sg

223 In | Sy —koa|+332 In | Sz—k
B InlSs—ksal+ 3 5o (21)

n(z) =c

and applying an algebraic transformation to the logarithmic terms results in:

ks/ks 1
Sg/kg-ll? JT—SQ/I"JQ

X3

(Ss/ks — )T (28)

n'(z) =a (z — Sy /ks

where the normalization parameter c; is introduced because of the algebraic

transformations. Finally, substituting x, = Ss/ks and z, = S3/k; we obtain:

(@) = e [Z—(x o) B = ) B 4 (0= ) B (0 w>(%_l)] (29)

The shape of the n°(z) in the interval x € (z4, ), 0 < z, < x; depends on z,,
xp, and the ratios Ag3/ke and A3p/ks. The points z, and z, are the potential
singular points of the function (29). The presence of a singular point means

that the steady-state pdf at that point is a Dirac pulse. Singularity at the

17



point z, appears if the ratio \o3/ks < 1. Similarly, the singularity at the point
xp appears if the ratio Azp/ks < 1. If the singularity at the points z, or z,

does not exist, then \o3/ky > 1 and Azo/k3 > 1.

It is worth mentioning that if we substitute variable z with :

z =0z, + (1 —a)r,, «a€l0,l] (30)

the expression (29) becomes:

ks
ko + ks

)\23 /\32
8 = 1
( kg ’ kg )

ks
kg + ks

)‘23 )\32
— +1,—)(31

n*(x = ax, + (1 — a)xp) =

where 3 is the so-called Beta probability density function given by (Papoulis

, 1965)

B(alp, q) = o (1 — )t (32)

B(p,q)

and B(p, q) is the special function Beta for parameters p and gq.

The probability density function derived above is a weighted sum of two Beta
pdfs. Beta pdf can have very different shapes depending on its parameters.
For example, it includes the shape of the uniform distribution (p = ¢ = 1),
symmetric unimodal pdf (p = ¢), and asymmetric distribution which may
look like exponential distribution (p = 1 and ¢ > p, or ¢ = 1 and p > ),
where symbols > and < denote relations much greater and much smaller,
which is in practice 10 times greater and 10 times smaller. Finally, Beta pdf
can take an asymmetric shape similar to log-normal distribution (p,q¢ > 1
and p > ¢ or p < ¢ ), which is frequently found in experimental histograms
of the receptor-associated fluorescence intensity (Valitutti et al. , 1995). This

illustrates how the shape of the distributions can be used to assess different

18



hypotheses, even when the precise parameter values cannot be or have not been
estimated. It also emphasizes that interpreting the experimental observation
of the symmetric distribution of the log-TCR expression as a true log-normal

distribution might be unwarranted.

From this example, we learned that the correct interpretation of experimental
distributions requires insight into stochastic interactions of individual cells.
But, more important, the example shows that the shape of experimental dis-
tributions is the point where questions about the individual cell dynamics can

be investigated.

6 Relation to Previous Works

Using the time record of the TCR distribution mean values, Bachmann et
al. (1998) analyze dynamics of the TCR down-regulation. The data are from
the experiment where T-cells remain conjugated with APCs all the time. Two
hypotheses are considered: linear and quadratic. According to the linear hy-
pothesis, each TCR molecule is down-regulated after the interaction with a
single ligand (MHC/peptide complex) presented on the APC surface and the

dynamics of individual cell down-regulation during the conjugation is

fa(z) = —kox (33)

By the quadratic hypothesis, TCR and ligands must form couples (dimmer)
before down-regulation and the dynamics of down-regulation of the single cell

fo(x) = —kya” (34)
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By Bachmann et al. (1998), the quadratic hypothesis is more appropriate.
Sousa et al. (2000) using the data of Valitutti et al. (1995) extended linear
and quadratic hypotheses in order to find a better agreement of the model with
the data. On the other hand, more recently Wofsy et al. (2001) developed
the stochastic model of serial TCR-ligand interaction, and comparing with
the Valitutti et al. (1995) data found the linear hypothesis more convincing.
However, because of the saturation in the data, similar to the one present in
Fig. 5a, their linear hypothesis includes an extra constant term providing that

TCR expression does not go to zero when ¢ — oo.

Here we are analyzing the data from the experiment by Lino A. (2000) which is
similar to the previous experiments Valitutti et al. (1995) and Bachmann et al.
(1998). In this experiment, the T-cell population is exposed to a large amount
of antibodies. The T-cell suspension is added to a solution of antibodies and
stirred in seconds. Under these conditions, we can assume that all T-cells are
immediately ”conjugated” since at the beginning of the experiment they are
exposed to the antibodies that play the role of ligands presented on the APC
surface. Thus, all of the T-cells in the population are in the single conjugated
state. Expecting that the T-cells react in the same way either to APC or
antibodies, this experiment provides us a source of data that can be used to
identify the dynamics of the individual T-cell dynamics in the conjugated

state, i.e., the individual T-cell TCR decrease dynamics.

In the case of always conjugated T-cells, by our modeling approach, the TCR
expression distribution evolution is described by the single partial differential
equation for po(z,t), so-called the Liouville equation:

ap? (.’17, t)

o =~V (fala)pa(2,1)) (35)
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Fig. 5. Experimental data (Lino A. (2000)): a) The mean value of down-regulated
TCR b) TCR expression pdfs nep(z,t5), 7 =1,2,...8.
according to the notation of the previous section, the TCR expression dis-
tribution n(z,t) = pa(z,t) and pi(z,t) = ps(z,t) = 0. The experimentally
estimated TCR pdf 7, (x,t) evolution received from our T-cell-antibody ex-
periment is presented in Fig. 5b (Milutinovi¢ , 2004). The TCR pdf is estimated
at t; = 0,1, =1, t3 = 15, t, = 30, t5 = 45, t¢ = 59, t; = 93 and tg = 122

min., after the experiment start.

To test the hypothesis of the linear and the quadratic models of the indi-
vidual T-cell TCR triggering dynamics we will compare the evolution of the
predicted TCR pdf n(z,t) = pa2(x,t) using (35) to the experimentally received
TCR pdf nesp(2,t), j = 1,2,...8. The initial condition for the prediction is
p2(2,0) = Negp(x, 0). The shape of evolution n(z,t), calculated by (35) at dif-
ferent times, does not depend on parameter ko, either for the linear or for
the quadratic hypotheses, because the parameter k5 in equation (35), for both
linear and quadratic case, only scales the time. This allows us to take ks = 1
and compare the shapes in prediction n(z,t) to the shapes in experimental
data Negp(,t;). Using ko = 1, we should keep in mind that the time used in
prediction ¢ and the time in experiment ¢; are not measured in the same time

frame.

21



e
o)

o
~

\

/,
\
\
s/

sumulation time ¢

Distance JKL (1)

o
\S]

oY

|
/
0 05

Fig. 6. The distance Jgk(t) computed for the linear hypothesis. Local minimum
signaled by arrows correspond to the time instants 7, when 7n(z,t) is close to some

of the experimental TCR pdf, negp(2,t5), j =1,2,...8.

To compare the shape of prediction 7(z,t) to experimental data 7z, (z, ;) we
need to choose the times 7, kK = 1,2, ... at which we are comparing n(x,t = 7%)
tO Negp(2,t;). We determine 75, as the times when the model predicted pdf
n(z,t) is most similar to some of the experimentally received pdf 7es,(z,t;),

j=1,2,...8. To find 7 we use the distance which compares the pdfs in terms
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Fig. 7. Time evolution of TCR pdf, linear hypothesis (a): model predicted
n(x,t)(solid, computed at time 73), the experimental TCR pdf nezp(x,t;) (dashed),
j =1,2,...8 Time evolution of TCR pdf, quadratic hypothesis (b): model predicted

n(z,t)(solid), the experimental TCR pdf negp(x,t;) (dashed), j =1,2,...8
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of Kullback-Leibler (KL) distance (Cover et al. , 1991):

Neap(Ti, ) (36)

JKL(W(t); newp) = In]ln Z 77($Z', t) log

which measures the distance between the predicted pdf at time ¢, n(z,t) and
the set of experimentally received measurements 7.,,, computed as the min-
imal value of KL distance between 7(z,t) and negp(z,t;), j = 1,2,...8. The
KL distance is the entropy based distance used commonly to measure the sim-
ilarity between two pdfs. The distance Jxr,(1(t), Nexp) computed for the linear
hypothesis pdfs prediction is presented in Fig. 6. It is small whenever 7(z, t)
is similar to some of the 7y, (2,%;), j = 1,2,...8. Therefore, the time instants
Tk, kK = 1,2,... correspond to the local minima of Jgr(1(t), Nesp), Which are

signaled by the arrows in Fig. 6.

The TCR pdf evolution for the linear hypothesis, calculated by (35) at time
instants 7, £ = 1,2,...6 is plotted in Fig. 7a. From the figure, we can see
that the shape of n(z,t) evolution according to the linear hypothesis matches

well the shape of experimental TCR pdf.

Similar analysis can be made for the quadratic hypothesis. However, this makes
little sense, since in the quadratic case, the TCR pdf evolution does not pro-
duce shapes of n(z,t) which approximate closely the experimental TCR, pdf,
(Fig. 7b).

Based only on the shapes in n(z,t) evolution, we can conclude that the in-
dividual T-cell TCR triggering dynamics of the conjugated state is closer to

the linear hypothesis.
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7 Discussion

In this paper, the membrane TCR density dynamics of a T-cell population
interacting with ligand-bearing APCs is studied. Each individual T-cell is de-
scribed by a deterministic Micro-Agent model, which is defined in the Hybrid
Automata framework. Under a stochastic assumption about the Micro-Agent
input event sequence, the Stochastic Micro-Agent model of the T-cell popu-
lation is introduced. The use of the relationship between the proposed model
and the time evolution of the state pdf provides us with the possibility to

predict experimental membrane TCR density distributions.

We have made a few simplifications that are not free from controversy on bio-
logical grounds. First, we have assumed that conjugate life-times and waiting
time for the conjugation are both exponentially distributed, which leads to
the Markov Chain model for the discrete state sequence. This assumption is
reasonable for the waiting time, since T-cells and APCs seem to be involved
in random walks. As to the distribution of conjugate life-times, it seems to
be akin to an exponential under some experimental settings (Gunzer et al. |
2000; Mempel et al. , 2004), while in other conditions it is more bell-shaped,

with the mean value of a few hours (Huppa et al. , 2003).

Potential future theoretical work along these research lines includes an exten-
sion to T-cell population dynamics, in which life-history parameters (such as
rates of death and proliferation) are themselves functions of the TCR signal-
ing (Sousa et al. , 2003; Carneiro et al. , 2005). The initial and steady-state
distributions could be more carefully studied using better approximations, or

including better hypotheses about the TCR dynamics in the absence of APCs,
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and extra sources of the variance in the membrane TCR density. On exper-
imental grounds, it would be interesting to test the proposed model using
in vivo experimentally obtained data. Such data could be obtained from the
two-photon microscopy observations inside the lymph node and corresponding

TCR expression measurements.

In this paper we used the TCR triggering as an example of where hybrid dy-
namics occurs. However, the theory presented here could be used to provide
additional insights into other biological phenomena, where cells or other bio-
logical agents alternate among discrete states. In some sense, we are challeng-
ing the research community to consider the shapes of the probability density
functions, estimated from population measurements, as a place where they
can investigate individual interactions inside the population of the immune

system cells.
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A Hybrid Automaton Used for Micro-Agent Individual Model

Definition 2 (Schaft et al. , 2000). A hybrid automata H is a collection
H = (Q, X, Init, f,Inv, E, G, Rs) where:

- (@ is a finite set of discrete states
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- X C R" the continuous state space

Init C @ x X is the set of initial states

f:Q x X — TX assigns to each ¢ € @) a vector field f,(z)
- Inv : Q — 2% assigns to each ¢ € @ an invariant set. As long as the
discrete state is ¢ € @, the continuous state x € Inv(q)

- E C @ x Q is a collection of edges (discrete transitions)

G : E — 2% assigns to e € E a guard set, representing the collection of
the discrete transitions allowed by the state vector

Rs: X x E — X assigns to e € F and ¢ € X a reset map, describing

jumps in the continuous state space due to the event e.

B Stochastic Micro-Agent

Definition 3 (Jianghai et al. , 2000). (Micro-Agent Stochastic Execution) A
stochastic process (z(t),q(t)) € X x @ is called a Micro-Agent Stochastic
FEzecution if and only if a Micro-Agent stochastic input event sequence e(7;,),
ne N, 5=0<m7 <71 <...generates transitions in such a way that in

each interval [, Tp,11), n € N, q(t) = q(1,)-

Remark 2. The z(t) of a Stochastic Execution is a continuous time function

since the transition changes only the discrete state of a Micro-Agent.

Definition 4. (Stochastic Micro-Agent, SuA) A Stochastic Micro-Agent is a
pair SpA = (uA, e(t)), where pA is a Micro-Agent and e(t) is a Micro-Agent
stochastic input event sequence such that the stochastic process (z(t), q(t)) €

X x @ is a Micro-Agent Stochastic Execution.
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Definition 5. (Micro-Agent Continuous Time Markov Chain Execution) A
Micro-Agent Stochastic Execution (z(t),q(t)) € X x @ is called a Micro-
Agent Continuous Time Markov Chain Execution iff the input stochastic
event sequence e(7,), n € N, 1o = 0 < 73 < 75 < ... generates transitions
whose conditional probability satisfies: P[q(7g+1) = qr+1|¢(Tk) = qx, ¢(Tk—1) =

qk—1; - - -Q(To) = QO] = P[Q(Tk+1) = Qk+1|Q(Tk) = k-

Remark 3. The ¢(t) of a Micro-Agents Continuous Markov Chain Execution

is a Continuous Time Markov chain.

Definition 6. Continuous Time Markov Chain Micro-Agent, CTMCuA. A
Stochastic Micro-Agent is called a Continuous Time Markov Chain Micro-
Agent iff (z(t),q(t)) € X x @ is a Micro-Agent Continuous Time Markov

Chain Execution.

C Proof of Theorem 1

The state space X x ) of the Stochastic Micro-Agent is presented in Fig. C.1.
The transition between the discrete states is a Continuous Time Markov Chain
stochastic process and z(t) is a continuous time function i.e. z(t7) = z(tT) =
z(t). The probability py,, that Micro-Agent state (z,q) € {(z,q)lz € V} is

given by
Pvg = /pq(x,t)dV (C.1)
v
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where p,(z) is the probability density function of the state (x, q) and an arbi-

trary chosen volume V in X. The time derivative of py, is:

. 0 ,t
Pvg(t) =/%d‘/
1%

Using Fig. C.1. the time derivative of py, can be written as:

va(t) = li 1
et A5 At S,A5—0

Apy, + Y ApASAz]

(C.3)

where Apy, and Apaga, are probability changes in the volumes V; and AVp =

AS Az, respectively, and Vg = Y g a50 ASAz. Due to the continuity of x(t)

1
lim —

N
At—0 AtApVI B ; )\rqv/ pa(2)dV

(C.4)

Fig. C.1. Possible trajectories in the Micro-Agent state space: xj-components of the

continuous state x, ¢- state of the discrete space, f,(x)- vector field corresponding

to g, V-trajectory volume, Vi-volume of trajectories not crossing the surface S in

the time interval [¢t,t + At), Vg - volume of trajectories crossing surface S in the

time interval [¢,t+ At), AVp - element of the volume Vg, AS-element of the surface

S, v-projection of the vector field f,(z) onto the surface vector 5, Az-length vAt.
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since, in the time interval [¢,t + At), z(t) does not leave volume V; and prob-
ability in V; changes due to the Markov Chain transitions. During the same

interval, the increase of probability in the volume AVp = ASAx is

ApASAw(t) = (C5)
t+At

/ vpg(z,7) + py(z, 7)(Az — v7)drT

t

—-AS

where x € AVpg. Taking into account the Markov Chain transitions in the

volume AVg and equation (C.4), we have

ApASA:c(t)

N
Jim) == = —ASupy(@,7) + Az ) Argpr(2,1) (C.6)

r=1
Substituting (C.4) and (C.6) into (C.3) gives

Bra(t) = 3 v [ oyl 1)V + (1)

+ Z l—ASqu(x, t) + ASAx i Arqpr (2, t)]

AS,AS—0 r=1
ie.
N
Bval®) = 3 Mg [ 2a@, 00V = § fy(@)py(w,6)dS (C3)
=1y s

With the use of Gauss’ theorem we obtain:

pra) = [ [ Aapnlan) = ¥ (oot av ©9)

1%

Taking the small volume limit of the equations (C.2) and (C.9), we have

apqéf, t) _ % Nrapa(@, ) = V - (f,(2)pg(, 1)) (C.10)

r=1
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Using p(z,t) = [p1(z,t), pa(z,t),. .., pn(z,t)]" the equation system (C.10)

becomes
V- (fi(@)pi(, 1))
., V- (fale)pala, 1)
ap(at, H LT p(z,t) — (C.11)

_V ) (fN(x)PN(l"at))_

Q.E.D
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