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Modeling and Optimal Centralized Control of a
Large-Size Robotic Population

Dejan Milutinovic and Pedro Lima

Abstract—This paper describes an approach to the modeling The main motivation of our approach is to provide fun-
and control of multi-agent populations composed of a large damental principles of modeling and control for large size
number of agents. The complexity of population modeling iS o5 lations, providing math-based tools for the analysis and

avoided by assuming a stochastic approach, under which the . e .
agent distribution over the state space is modeled. The dynamics control design from specifications. We assume that the robotic

of the state probability density functions is determined and a Population can execute the primitive tasks driven by individual
control problem of maximizing the probability of robotic presence  robot controllers and local information. For example, each

ina given region is introduced. The Minimum Principle for the primitive task may Correspond to one motion primitive_ The
optimal control of partial differential equations is exploited 0 5 1ation is governed by a centralized controller, which
solve this problem and it is applied to the mission control of a . .
simulated large robotic population. ser_1ds_commands for task execution, ta_LSk c_ancellatlon or task
switching. In such a way, the population is controllable as
a single conventional general purpose robot. The centralized
control strategy for a large-size robotic population must take
into account the uncertainty of each individual robot reaction,
. INTRODUCTION due to communication problems, local characteristics of the

ULTI-AGENT systems (MAS), concerning both virtua/Surrounding environment, etc. This uncertainty is included in
M [1], [2] and real (robotic) [3], [4] agent populations, aré?Ur PDE model. _ .
currently a subject of major interest in the literature. One of 1he Pproposed centralized controlier is based on the
the most relevant topics in MAS is the modeling of large-siZa°ntryagin-Hamiltonian optimal control theory for PDEs [17],
agent populations. [18] and provides the control of the population space distri-
Deterministic modeling and control approaches have beBHtion shape. However, as in classical optimal control [19],
used both for large size [5] and small size [6] robot formation¥, IS @n open loop controller and there is no warranty that
On the other hand, the task allocation and task performarfB§ control can be expressed analytically. For the numerical

of groups of robots were modeled under a probabilistic framg@MPutation of optimal control, discrete approximations in
work in [7], [8], [9]. time and space are necessary.

Index Terms—Hybrid Automata, Multi-robot Systems, Opti-
mal Control.

In this paper we are proposing a modeling approach which ll. M ODELING AND CONTROL OF THEPOPULATION
considers not only the probabilistic description of task al- o o
location, but also the distribution of the population over We support the description of our method by a motivating
the operating space. This is based on recent results on $#§ghario. The scenario, which introduces a class of optimal
mathematical modeling of biological systems [10], [11]. jigontrol _probl_ems formulated in this paper, assumes a robotic
fact, our work has been originally developed for modeling céfoPulation with darge number of small mobile robots. The
interaction [12], [13], but we found that such an approach al&g'™m s_mqli is used here to underline t_hat thg robot dlmenspns
provides results of potential interest for the MAS communit§'® Significantly smaller than the dimensions of the region
[13], [14]. where the rpbots are operating. We also assume tha’i the robotic

We introduce a model of robotic population, which igopulation is sparse and therefore no local interaction among
based on a Stochastic Hybrid Automaton model [15]. Usif@Pots are considered. o _
statistical physics [16] in this framework, the population state Several robots are iinitially distributed over the operating
is defined by the probability density function. Our modetPace apd control_led by signal sources from ae.nal robots (Fig.
is the system of partial differential equations (PDE) thak)- In'th|s_scenar|.o, e_ach robot in .the populatlon moves left
describes the evolution of the population state. This evoluti@fd right in the direction of an active signal source or stops
depends on the population parameters and some of them cal/B&n the stop signal is active. In this case, the three vector
considered as control inputs. Therefore, based on the propofiglfls directing the robots left, right and stop afg(x) =

modeling approach, we also derive control theory principleskl: f2(z) = k2 and f3(x) = 0, respectively. Thus, each
for large-scale robotic populations. robot within the population can be in one three discrete state

g = 1,2,3. The control objective is to maximize the robots
This work was supported by SHFR/2960/2000 grant from the Portuguggeesence in a desired region of the operating space along the
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Superior Ecnico, Lisbon, Portugal, e land robot population Is steered by active signal sources

(e-mail: dejan@isr.ist.utl.pt and pal@isr.ist.utl.pt) at the aerial robots. However, not all the robots will react
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suitable to model large-size robotic populations, which can

be exploited for the model-based control design. This is a

paramount idea of this paper, and the robotic scenario we are
considering is along this line of thought.

The state of the individual robot is composed of a discrete
and a continuous component. Therefore the state probability
density function of the model presented in Fig. i& given
by the vectorp(z,t) = [p1(x,t) p2(z,t) ps3(z,t)]’. Eachp; ,

1 =1,2,3 describes the PDF component corresponding to the
discrete staté. The modeling we are applying here is detailed
in [13].

The following system of equations describes the evolution

of the robotic population state PDF

Ip(,1)
Fig. 1. a) A robotic population controlled by three signal sourcesThe ot F(u)p(z,t) = (Fu(u(t)) + Fo)p(z,t) (1)
robotic population Micro Agent model .
with
—Ug — U3 Uy Uy
at the same time and change their motion at once. This Fu(u)= () —u1 —u3 Usg 2
happens because the population is composed of a large number us3 u3 —U1 — U2
of independent robots. The uncertainty affecting the robot 9 P
reaction to the sent command is included in our modeling Fy = dwg(h%, fk2%, 0)

approach. This uncertainity can result frophysical con- B Sy, .
straints to the robotsuch as existence of physical barrierd/M€r€u(t) = [ua(t) ua(t) us(t)]" with * denoting the vector

between the specific robot and the signal source. The Otﬁr&nsposmon, anq symbctl n u(t) is omitted in (2). This .
reasons for the uncertainty can result from tieitation of system of PDEs is derived directly from the model shown in

robot resources For example, a robot with the soIar-IightF'g‘ 1» and describes the dynamics of the robotic population

re-chargeable batteries should be stopped fill its battery HX hout local interactions among the robots, or between the
ots and the environment.

been fully re-charged, and would not react to comman&%_l_he probabilistic approach we are using here is of funda-

meanwhile. To follow the complete dynamics of the population i . .
we need to model the reaction and motion of each rOb(g@ental importance to come out with a mathematically tractable

However, the relation between the robotic population spre8qP/ach to thespatio — temporal modeling of large-size

over the operating region and the population control signa{@ otic populations. The validity of the model can be evaluated

must be established in such a way that mathematical anal)f]gi]éj t_he model_accu_racy will be certainly dependent on _the
otic population size and on the type of the operating

is possible, and that the control satisfies a given performanE%

This fact motivated our general approach to the modeling aﬁa\tnr.lonment uncertaln_tutas. I?séegd tﬁf ?ow&g mtot rlnodeh?g
control of a multi-agent population, etails, we are more interested in the fundamental question

X . cg how this type of model can be exploited for control.
Since the robot actual reaction to the command depen ; . .
. . . f we consider that the robotic population parameters depend
on manyuncertain factors, we can model this reaction by :
. " : on the control vectow(t), then the optimal control problem
stochastic transitions between discrete states, each of therp ; . .
. : . . IS, o find a controku(t) such that the following cost function
representing a particular robot behavior. In our scenario, ea}ghmaximal'
individual robot can be modeled by the Hybrid Automaton '
model, presented in Fighlwhich includes stochastic transi- J(u) :/ w'(x)p(x,u; T)dx (3)
tions between the discrete statgs X
The mission control in this case concerns the control efhere w(z) = [w1(z) wa(x) ws(x)] is a vector of weight-
the stochastic transition rates;, ¢ = 1,2,3, in such a ing functions, T is the time duration of the mission, and
way that the robotic presence in a desired region, along thg: = 1,2,3 depend onu. In general,u is a vector
axis z, is maximized. The mission control problem we aref the population parameters that may be set externally
considering here, is an open-loop control problem. Its closeég appropriate commands sent to the population. Here we
loop version would take into account the environment changesnsider the control problem where is a time depen-
over the space as the robots move and potential changeslémt vector composed of transition rates having the val-
the robotic population such as failures and commands ngs between 0 and the maximal valug,,, .i.e., the set
executed properly. Therefore, the closed loop control would admissibe control foru(t) = [ui(t) ua(t) us(t)]) is
lead to differentu; control requirements. Uasa = {0, Umaz] X [0, Umaz] X [0, Umaz]}. Transitions are
The robotic scenario introduced here is the simplified veevents dependent on correct command reception and con-
sion of possible real-world examples. One major simplificatiatitions for command execution. Therefore, transition rates
is that communication among the robots is not consideraetkpend on the frequency of commands re-sending and envi-

However, this helps us in achieving a mathematical descriptioonment characteristics. To specify completely the solution of
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() the initial and boundary conditions must be defined and~= of (1) and (6), respectively, are from the same space of

we will do that in the next section. functions E that satisfies:
The optimal control problem is to determine the optimal
) - o : p,mEE (11)
control v = w* which maximizesthe criterion (3). This ) )
problem can be considered as a special case of a more general pym o X = LTxL%0X =0 (12)
optimal control problem of thevolution equatiorj18]. Under d(p?), d(m?) : Lebesgue integrable, i = 1,2

condition that the operataf'(u) is bounded, i.e.: The symbol L? stands for the set of Lebesgue measurable

[ F(u(t)| < oo functions [20],0X for the boundary of the functions domain
o o . X and the symbold for differentiation. Therefore, we will
the minimum principle for PDEs can be applied [18]. Th@ssume tha = [0,5] and the boundary conditions

Hamiltonian is
p(0,t) = p(5,t) =7(0,t) =7(5,t) =0, t €0, 7] . (13)

(pla, 1), u,1) = (n(x, ), Fu)p(z, ) @ The weighting functionws(z), and initial PDFsp; (z,0) and
where brackets(-,-) denote the scalar product of functiorps(x,0) are presented in Fig.s4and Fig. . The non-

vectors defined as zero intervals of ws(xz) and ps(x,0) ensure that boundary
. conditions (13) are satisfied, i.e., that the population will not
(p(2),q(x)) = /XP (z)q(z)dx (5)  have time to reach the boundary &t

Using the scalar product defined by (5), the sp@tef
The function vectorr(z, ¢) is the so-called adjoint state andfunctionsp is a Hilbert space [20] with the norm:

satisfies ( )l
o » loll = ((p,0))°
o = —F'(u")m(x,t) ©) Therefore, we have

"@T) = ~wl) |F ()l = (F(u)p, F(u)p)
and the operator norm

) : ) [F(u)|| = max |[F(u)p]
u*(t) = arg min H(p*(z,t),u(t),t) () loll<1
uelUg . .
) ‘ ) ) To show that the operatdf(w) is bounded, we use a triangular
In words, for the optimal state trajectopy (z,t), the optimal jnequality:
control minimizesthe Hamiltonian at each time point.

According to the minimum principle for PDEs [18], the
optimal controlu*(t) satisfies

[E @)l = [[Fu(u) + Fall < [[Fu(u)]l + [[Fa]l

I1l. APPLICATION TO A ROBOTIC POPULATION The linear operatoiFy is symmetric and we will exploit
The initial robotic population state PDF is given by thdhis to find its norm as:
initial PDF of robots moving left, moving right and not moving | Fo|l = max |{p, Fop)|
along thex axis, p1(x,0) =0, p2(z,0) =0 and lell<1
. (5—2.5) However, applying the definition of the scalar product (5) and
p3(z,0) = Zo=erP(— 5oz ), 2<z<3 (8) by virtue of the spacé property (12), we have
0, otherwise

|(p, Fap)| = 0,Yp = || F5|| = 0.

F,(u) is a matrix with finite real coefficients corresponding
to the values in the admissible set of contrblg;. For any
1 (z—1.75)2 choice of admissible control values there exists a maximal
exp(— , 12 <2 <225 . L -
w3(z) = ¢ V001 ol 0.01 ) singular values ., (F,(u)), which is a finite number. There-
0, otherwise f d h lusi hat th
©) fore, we can draw out the conclusion that the operaton)
i bounded, i.e.:

respectively. The duration of the robotic missionZis= 3h
and the weighting functiomws(z) is

The optimal control problem for the robotic mission is give

by the cost function |[F(uw)]] <  max ||Fyu(u)
u1,u2,u3€Uqa
J = / [0 0 w3(z)] p(x, T) (10) Therefore, we can exploit (7) to find the optimal control. The
X system of equations which describes the evolution of the co-

o I ) . state variables is (6) with
The motivation for the weighting functioms choice is to

compute control that will move the center of the robotic mi(z, T) = ma(z,T) =0, m3(z,T) = —w3()
distribution from2.5 to 1.75 and make the distribution slightly and the optimal control* (¢) = [u}(t) uj(t) uj(t)]’ satisfies
sharper. (7) that is equivalent to [13]

To show that the operatdr(u) is bounded and to apply the )
minimum principle we should first define a space of the state % () = arg min [ur Ty (t) + ugIo(t) + ual3(t)]

uy, uz, uz€Ugq

p and co-stater variables. We will assume that the solutions (14)
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where I (t), Ix(t), I3(t) are functions depending op*(t) step 3) Increase the iteration countgiby 1 and go tostep
and7*(t). If we can computd(¢), I2(t) and I3(t), then the 4, or stop the algorithm if the cost functiof (j) reach the

optimal controlu*(¢) will be defined as follows: maximum.
0 L(t) > 0 step 4) For eachk calculate control by the Nonlinear
7 i 7 nj radien rule [21].
ur = Umans  L(t) <0, , i=1,2,3 Conjugate Gradient update rule [21]

Since the discretization steps, initial condition and weight-
ing function are fixed. The result of the algorithm will depend
To compute the optimal control using this expression wen the free parameterand the initial guess! (k).
should prove that eithed;(t) # 0, V¢ € [0, T], or that  The chosen value for depends on how close td we
I;(t) = 0 only for a discrete set of time instantts In the other wantJ° to be. The smaller the, the closerJ® will be to J.
cases, we can conclude that the expression (14) is still validiowever,e can not be infinitely small because the algorithm
but cannot help us to calculate the contigl(¢) because for convergence may be influenced when the minimization prob-
I;(t) = 0 the control can take any value from the admissiblem is close to the original problem with the "singular control”.
setU,q4. This is the "singular control” problem [19]. In thatFor decimal precision of,, the term which penalizes control
case, some further structural properties of PDE systems {{1)/° must be smaller thah0~?. Since we know the maximal
and (6) must be examined. values of controki,,.., this can be expressed by:

To avoid the "singular control” problem in our example, 3
we can modify the cost function (10) adding the term which 1g-d» & 7 _ jo _ 5/ Zufnamdt ~3Tu?, e (18)
depends on contral and is penalized by the parameter 0. (N —

This results in

uf € Ugq, Ii(t)=0

. which means that: 4
107
Je = / w'p(x, T) — 6/ ui(t) +uz(t) +uj(t)dt (15) €< 37w (19)
X 0 Umax
Using a smalle, we haveJ =~ J¢. Applying the minimum  In the original PDE equation the function vectefz, t) is
principle, the Hamiltoniand ¢, corresponding to the problemconsidered as a state vector of the population at tinte the
with the cost functionJ®, is [13] discretized version, the state vector is approximated by
) ) ) finite dimension state vector whose dimension is given by :
HE(t) = H(t) + e(ui(t) + us(t) + uz(t))
, o dim(p) = NM” (20)
and the optimal control is defined as follows:

L) where N is the number of discrete states, in our example

0, -4 >0 N = 3, M the number of finite elements used for the space
Ui =9 Umaz, —“2(;) < Umaz » 1 =1,2,3 (17) discretization andD is the dimensionality of the operating
_ L) elsewhere space. The dimension (20) can be used as a measure of

2e . . .
the computational complexity of the proposed algorithm. The

In this case, the problem of singular control does not exist.compjexity of the algorithm increases linearly with the number
Avoiding the "singular control” problem in this way resultsys giscrete states and to the powerregarding the number of
in an iterative numerical algorithm for computing the optimghe finite elementsiz. The only free parameter to "control”
control, proposed in the next section, that will not indeﬁnite'Xomplexity is the number of the finite elements. However,
stop at the points wherg;(t) = 0, without warranty that the qyring the algorithm development we notice that a small
computed control is optimal. The price paid is that we are nglmper of finite elements leads to a poor approximation of
solving the original optimal control problem, but the controjhe integrals for computing the Hamiltonian. Consequently,
problem with the cost functiod. _ our algorithm can converge toreon-optimalcontrol solution.
The numerical algorithm used in this paper is based on therne major difficulty in extending the algorithm for two or
Nonlinear Conjugate Gradient method [21] which is proposgfee dimensional operating space comes from the exponential
as an efficient gradient-based method for Hamiltonian MiMdependence of the complexity on the dimensiondlityUnder

mization in optimal contrpl of ordinary differential_ equgtionqhe probabilistic approach we are using, the complexity of the
[21]. To compute the optimal control we are dealing with thSIgorithm does not depend on the population size.
discrete time approximation of control. This type of control

is so-called numerical optimal control [22]. Shortly, given the )

time range[0, 7], and discretization steps in spadeX and Numerical Results

time AT, the algorithm is composed of the following steps: To solve numerical optimal control, we are using the sample
step 1) Calculate the discrete approximatipfe,t) of the time AT = 0.03h. The terminal time of our problem i =

time forward solutionp(z,t) using the discretized (1) and3h. Therefore, the optimal control is approximated by0

control @/ (k) in the iterationj, given the initial condition samples. In this example, the control limitis,,, = 2 and

p(z,0). velocities of moving left and right ark, = 0.5 andky = 0.25
step 2) Calculate the discrete approximatidiix, t) of the respectively. To avoid the singular control problem we decide

the time backward solutiom(z,t), using the discretized (6) to use the parameter epsilen= 10~7. The initial guess for

and’ (k), given the terminal condition (z,T) = —w(x). the optimal control isi' (k) = [0.5 0.5 0.5]', Vk.
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1.5 4 T T T T T T L
. t=0h
N sz(ﬂ\‘." A1) ]
0 Lty \
§ ; b 'wz(x)'\‘,_ ' ' p(lx ) 1=0.6h
Q I 2 " ;‘ 1 4 T
Q0. c) w(x) . t=1.2h
2} a0 A 1
2 Y
4 T T T T T T T
. t=1.8h
A A P T e
25 10 15 20 25 30 35 40 45 0 AN
Iteration i i . . . . .
4 W) . 1= 2.4h
. . L . . 2 —NG P(x,0)
Fig. 2. Cost functions J¢ - the cost function introduced to avoid the singular I 2 L e 1
control probleme = 107, J - the original control problem cost function, 0 Mo S )
u; € 10,2], ¢ =1,2,3. Graphs ofJ¢ and.J are overlapped. 4 : T T T . . .
il wx) - t=3h
2 5 \ By ieA)) E
0 A, .
The cost function/¢ value iterations are presented in Fig. 0 o5 1 15 2 25 3 35 4
2. The cost function converges to the valte3920. The Position x [km]

same figure also shows that the difference betwgerand Fig. 4. State PDF evolution of robots moving Iefi (x, £) for
J is negligible, as it is expected from equation (18). From= 0., 1.2, 1.8, 2.4h, u; € [0,2], i = 1,2, 3.

this figure, we can conclude that the optimal contidl is

computed after 44 iterations.

The components of contral” are given in Fig. 3. The first tro| 4+ produces distribution evolutions such that, at terminal
componenti; starts with zero value, then it changestat  time 7 = 31, the PDF ps(z,t = T), depicted in Fig. 5,
already changed from O to 2. Thus, betwees 1.71h and  ransition rates are limited, therefore there are robots that have
t = 1.74h, u7 anda; are both 2. This can be understood as afever moved from the discrete statopat the terminal time
effective slow down of the velocity of moving to the left, sincer This is shown in the plot of;(z, T'), where a small plateau

theb hi%hest (;j)osfsir?le rates. After- 1.74’%”711hiS 0 and@%hi_s We can see from Fig. 5 that our original intuition to produce
2 by the end of the time interva, T]. All the time, in this  , g2 er robot distribution in the terminal time in comparison

interval, a; is zero, i.e., the optimal control does not includg, e gistribution in the initial time has failed. This is because
transitions to the discrete stateove right. Since the initial the evolution of ps(z,¢) is constrained by the population
PDF of robots moving right ig,(z,0) = 0, we can conclude ’

that this PDF will be zero all the time, i.gu(z,t) = 0,
YVt € [0, T]. Therefore, only the evolution of,(z,t) and

4 - ; - - T
ps(x,t) are presented in Fig. 4 and Fig. 5, respectively. 2 @) W3—2(x) /\@(x,t) 1=0h ]
Starting with the initial PDFg;(«,0), i = 1,2, 3, the con- 0 - - L SN .
4 - - - - - L
2_h) w%x)\'_-: P i) 1= 0.6h
2F 0 - L LN
=l 4 T T L t=12h
ot A e T
o 0 . L e
T 4 T wm. . it 18h
o il 2? 0 e TN
= 0 e
0 4 - - - - - T
. t=2.4h
ar o MO pe T
[ 0 AN
3 1: 4 f) T M) T T p()'ct) t=3h
0 ; ; ; ; ; ] 2r 2 A/? ’
0 0.5 1 1.5 2 2.5 3 0 e .

05 1 1.5 2 25 3 35 4
Position x [km]

(=]

Time ¢ [A]

Fig. 3. The components of contral* = [4] 44 43]’ computed after 44
iterations. The control is computed for the cost functibh ¢ = 10~7, Fig. 5. State PDF evolution of stopped robets(z, t) for
AT = 0.03h, T = 3h, u; €1[0,2],i=1,2,3. t =06, 1.2, 1.8, 2.4h, u; € [0,2],i=1,2,3.
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matical analysis and design from specifications. For further

improvement of the control performance, the local robot

controllers must be taken into account. We argue that the best

control strategy would be based on a two-level controller. The

upper level would be a centralized controller based on the PBE Dejan Milutinovi ¢ Biography text here.

model of the population. It would ensure the coherent behavjor

of the population by broadcasting commands or settings for

the robot control loops. The lower level would be based on  PLACE

local robot controllers, to ensure performance robustness. |As PHHE%TEO

future work, we are considering designing such a controller

under the framework introduced in this paper. We are also

considering extending the application of the PDE Minimum

Principle to other types of optimal criteria, e.g., optimal control

with infinite terminal time and different cost functions which

can control the shape of the state probability density function.
The study of robotic populations by using the approach

presented in this paper is of potential interest for the missipn

control of nano-robots or molecular devices and applications

to smart materials and advanced medical treatments.

Pedro Lima Biography text here.
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