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Modeling and Optimal Centralized Control of a
Large-Size Robotic Population

Dejan Milutinovíc and Pedro Lima

Abstract— This paper describes an approach to the modeling
and control of multi-agent populations composed of a large
number of agents. The complexity of population modeling is
avoided by assuming a stochastic approach, under which the
agent distribution over the state space is modeled. The dynamics
of the state probability density functions is determined and a
control problem of maximizing the probability of robotic presence
in a given region is introduced. The Minimum Principle for the
optimal control of partial differential equations is exploited to
solve this problem and it is applied to the mission control of a
simulated large robotic population.

Index Terms— Hybrid Automata, Multi-robot Systems, Opti-
mal Control.

I. I NTRODUCTION

M ULTI-AGENT systems (MAS), concerning both virtual
[1], [2] and real (robotic) [3], [4] agent populations, are

currently a subject of major interest in the literature. One of
the most relevant topics in MAS is the modeling of large-size
agent populations.

Deterministic modeling and control approaches have been
used both for large size [5] and small size [6] robot formations.
On the other hand, the task allocation and task performance
of groups of robots were modeled under a probabilistic frame-
work in [7], [8], [9].

In this paper we are proposing a modeling approach which
considers not only the probabilistic description of task al-
location, but also the distribution of the population over
the operating space. This is based on recent results on the
mathematical modeling of biological systems [10], [11]. In
fact, our work has been originally developed for modeling cell
interaction [12], [13], but we found that such an approach also
provides results of potential interest for the MAS community
[13], [14].

We introduce a model of robotic population, which is
based on a Stochastic Hybrid Automaton model [15]. Using
statistical physics [16] in this framework, the population state
is defined by the probability density function. Our model
is the system of partial differential equations (PDE) that
describes the evolution of the population state. This evolution
depends on the population parameters and some of them can be
considered as control inputs. Therefore, based on the proposed
modeling approach, we also derive control theory principles
for large-scale robotic populations.
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The main motivation of our approach is to provide fun-
damental principles of modeling and control for large size
populations, providing math-based tools for the analysis and
control design from specifications. We assume that the robotic
population can execute the primitive tasks driven by individual
robot controllers and local information. For example, each
primitive task may correspond to one motion primitive. The
population is governed by a centralized controller, which
sends commands for task execution, task cancellation or task
switching. In such a way, the population is controllable as
a single conventional general purpose robot. The centralized
control strategy for a large-size robotic population must take
into account the uncertainty of each individual robot reaction,
due to communication problems, local characteristics of the
surrounding environment, etc. This uncertainty is included in
our PDE model.

The proposed centralized controller is based on the
Pontryagin-Hamiltonian optimal control theory for PDEs [17],
[18] and provides the control of the population space distri-
bution shape. However, as in classical optimal control [19],
it is an open loop controller and there is no warranty that
the control can be expressed analytically. For the numerical
computation of optimal control, discrete approximations in
time and space are necessary.

II. M ODELING AND CONTROL OF THEPOPULATION

We support the description of our method by a motivating
scenario. The scenario, which introduces a class of optimal
control problems formulated in this paper, assumes a robotic
population with alarge number of small mobile robots. The
termsmall is used here to underline that the robot dimensions
are significantly smaller than the dimensions of the region
where the robots are operating. We also assume that the robotic
population is sparse and therefore no local interaction among
robots are considered.

Several robots are initially distributed over the operating
space and controlled by signal sources from aerial robots (Fig.
1). In this scenario, each robot in the population moves left
and right in the direction of an active signal source or stops
when the stop signal is active. In this case, the three vector
fields directing the robots left, right and stop aref1(x) =
−k1, f2(x) = k2 and f3(x) = 0, respectively. Thus, each
robot within the population can be in one three discrete state
q = 1, 2, 3. The control objective is to maximize the robots
presence in a desired region of the operating space along the
x axis.

The land robot population is steered by active signal sources
at the aerial robots. However, not all the robots will react
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Fig. 1. a) A robotic population controlled by three signal sources,b) The
robotic population Micro Agent model

at the same time and change their motion at once. This
happens because the population is composed of a large number
of independent robots. The uncertainty affecting the robot
reaction to the sent command is included in our modeling
approach. This uncertainity can result fromphysical con-
straints to the robotsuch as existence of physical barriers
between the specific robot and the signal source. The other
reasons for the uncertainty can result from thelimitation of
robot resources. For example, a robot with the solar-light
re-chargeable batteries should be stopped till its battery has
been fully re-charged, and would not react to commands
meanwhile. To follow the complete dynamics of the population
we need to model the reaction and motion of each robot.
However, the relation between the robotic population spread
over the operating region and the population control signals
must be established in such a way that mathematical analysis
is possible, and that the control satisfies a given performance.
This fact motivated our general approach to the modeling and
control of a multi-agent population.

Since the robot actual reaction to the command depends
on manyuncertain factors, we can model this reaction by
stochastic transitions between discrete states, each of them
representing a particular robot behavior. In our scenario, each
individual robot can be modeled by the Hybrid Automaton
model, presented in Fig.1b, which includes stochastic transi-
tions between the discrete statesq.

The mission control in this case concerns the control of
the stochastic transition ratesui, i = 1, 2, 3, in such a
way that the robotic presence in a desired region, along the
axis x, is maximized. The mission control problem we are
considering here, is an open-loop control problem. Its closed
loop version would take into account the environment changes
over the space as the robots move and potential changes in
the robotic population such as failures and commands not
executed properly. Therefore, the closed loop control would
lead to differentui control requirements.

The robotic scenario introduced here is the simplified ver-
sion of possible real-world examples. One major simplification
is that communication among the robots is not considered.
However, this helps us in achieving a mathematical description

suitable to model large-size robotic populations, which can
be exploited for the model-based control design. This is a
paramount idea of this paper, and the robotic scenario we are
considering is along this line of thought.

The state of the individual robot is composed of a discrete
and a continuous component. Therefore the state probability
density function of the model presented in Fig. 1b is given
by the vectorρ(x, t) = [ρ1(x, t) ρ2(x, t) ρ3(x, t)]′. Eachρi ,
i = 1, 2, 3 describes the PDF component corresponding to the
discrete statei. The modeling we are applying here is detailed
in [13].

The following system of equations describes the evolution
of the robotic population state PDF

∂ρ(x, t)
∂t

= F (u)ρ(x, t) = (Fu(u(t)) + F∂)ρ(x, t) (1)

with

Fu(u) =



−u2 − u3 u1 u1

u2 −u1 − u3 u2

u3 u3 −u1 − u2


 (2)

F∂ = diag(k1
∂

∂x
, −k2

∂

∂x
, 0)

whereu(t) = [u1(t) u2(t) u3(t)]′ with ′ denoting the vector
transposition, and symbolt in u(t) is omitted in (2). This
system of PDEs is derived directly from the model shown in
Fig. 1b and describes the dynamics of the robotic population
without local interactions among the robots, or between the
robots and the environment.

The probabilistic approach we are using here is of funda-
mental importance to come out with a mathematically tractable
approach to thespatio − temporal modeling of large-size
robotic populations. The validity of the model can be evaluated
and the model accuracy will be certainly dependent on the
robotic population size and on the type of the operating
environment uncertainties. Instead of going into modeling
details, we are more interested in the fundamental question
of how this type of model can be exploited for control.

If we consider that the robotic population parameters depend
on the control vectoru(t), then the optimal control problem
is to find a controlu(t) such that the following cost function
is maximal:

J(u) =
∫

X

w′(x)ρ(x, u;T )dx (3)

wherew(x) = [w1(x) w2(x) w3(x)]′ is a vector of weight-
ing functions, T is the time duration of the mission, and
ρi, i = 1, 2, 3 depend onu. In general, u is a vector
of the population parameters that may be set externally
by appropriate commands sent to the population. Here we
consider the control problem whereu is a time depen-
dent vector composed of transition rates having the val-
ues between 0 and the maximal valueumax ,i.e., the set
of admissibe control foru(t) = [u1(t) u2(t) u3(t)]′ is
Uad = {[0, umax] × [0, umax] × [0, umax]}. Transitions are
events dependent on correct command reception and con-
ditions for command execution. Therefore, transition rates
depend on the frequency of commands re-sending and envi-
ronment characteristics. To specify completely the solution of
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(1) the initial and boundary conditions must be defined and
we will do that in the next section.

The optimal control problem is to determine the optimal
control u = u∗ which maximizesthe criterion (3). This
problem can be considered as a special case of a more general
optimal control problem of theevolution equation[18]. Under
condition that the operatorF (u) is bounded, i.e.:

‖F (u(t))‖ < ∞
the minimum principle for PDEs can be applied [18]. The
Hamiltonian is

H(ρ(x, t), u, t) = 〈π(x, t), F (u)ρ(x, t)〉 (4)

where brackets〈·, ·〉 denote the scalar product of function
vectors defined as

〈p(x), q(x)〉 =
∫

X

p′(x)q(x)dx (5)

The function vectorπ(x, t) is the so-called adjoint state and
satisfies

∂π(x, t)
∂t

= −F ′(u∗)π(x, t) (6)

π(x, T ) = −w(x)

According to the minimum principle for PDEs [18], the
optimal controlu∗(t) satisfies

u∗(t) = arg min
u∈Uad

H(ρ∗(x, t), u(t), t) (7)

In words, for the optimal state trajectoryρ∗(x, t), the optimal
control minimizesthe Hamiltonian at each time point.

III. A PPLICATION TO A ROBOTIC POPULATION

The initial robotic population state PDF is given by the
initial PDF of robots moving left, moving right and not moving
along thex axis, ρ1(x, 0) = 0, ρ2(x, 0) = 0 and

ρ3(x, 0) =

{
1√

0.02π
exp(− (x−2.5)2

0.02 ), 2 < x < 3
0, otherwise

(8)

respectively. The duration of the robotic mission isT = 3h
and the weighting functionw3(x) is

w3(x) =

{
1√
0.01

exp(− (x−1.75)2

0.01 ), 1.25 < x < 2.25
0, otherwise

}

(9)
The optimal control problem for the robotic mission is given
by the cost function

J =
∫

X

[0 0 w3(x)]︸ ︷︷ ︸
w′

ρ(x, T ) (10)

The motivation for the weighting functionw3 choice is to
compute control that will move the center of the robotic
distribution from2.5 to 1.75 and make the distribution slightly
sharper.

To show that the operatorF (u) is bounded and to apply the
minimum principle, we should first define a space of the state
ρ and co-stateπ variables. We will assume that the solutions

ρ, π of (1) and (6), respectively, are from the same space of
functionsE that satisfies:

ρ, π ∈ E (11)

ρ, π : X → L2 × L2, ∂X → 0 (12)

d(ρ2
i ), d(π2

i ) : Lebesgue integrable, i = 1, 2

The symbolL2 stands for the set of Lebesgue measurable
functions [20],∂X for the boundary of the functions domain
X and the symbold for differentiation. Therefore, we will
assume thatX = [0, 5] and the boundary conditions

ρ(0, t) = ρ(5, t) = π(0, t) = π(5, t) = 0, t ∈ [0, T ] . (13)

The weighting functionw3(x), and initial PDFsρ1(x, 0) and
ρ3(x, 0) are presented in Fig. 4a and Fig. 5a. The non-
zero intervals of w3(x) and ρ3(x, 0) ensure that boundary
conditions (13) are satisfied, i.e., that the population will not
have time to reach the boundary ofX.

Using the scalar product defined by (5), the spaceE of
functionsρ is a Hilbert space [20] with the norm:

‖ρ‖ =
(〈ρ, ρ〉)

1
2

Therefore, we have

‖F (u)ρ‖ = 〈F (u)ρ, F (u)ρ〉
and the operator norm

‖F (u)‖ = max
‖ρ‖≤1

‖F (u)ρ‖

To show that the operatorF (u) is bounded, we use a triangular
inequality:

‖F (u)‖ = ‖Fu(u) + F∂‖ ≤ ‖Fu(u)‖+ ‖F∂‖
The linear operatorF∂ is symmetric and we will exploit

this to find its norm as:

‖F∂‖ = max
‖ρ‖≤1

|〈ρ, F∂ρ〉|

However, applying the definition of the scalar product (5) and
by virtue of the spaceE property (12), we have

|〈ρ, F∂ρ〉| = 0, ∀ρ ⇒ ‖F∂‖ = 0.

Fu(u) is a matrix with finite real coefficients corresponding
to the values in the admissible set of controlsUad. For any
choice of admissible control values there exists a maximal
singular valueσmax(Fu(u)), which is a finite number. There-
fore, we can draw out the conclusion that the operatorF (u)
is bounded, i.e.:

‖F (u)‖ ≤ max
u1,u2,u3∈Uad

‖Fu(u)‖

Therefore, we can exploit (7) to find the optimal control. The
system of equations which describes the evolution of the co-
state variables is (6) with

π1(x, T ) = π2(x, T ) = 0, π3(x, T ) = −w3(x)

and the optimal controlu∗(t) = [u∗1(t) u∗2(t) u∗3(t)]
′ satisfies

(7) that is equivalent to [13]

u∗(t) = arg min
u1, u2, u3∈Uad

[u1I1(t) + u2I2(t) + u3I3(t)]

(14)
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where I1(t), I2(t), I3(t) are functions depending onρ∗(t)
andπ∗(t). If we can computeI1(t), I2(t) andI3(t), then the
optimal controlu∗(t) will be defined as follows:

u∗i =





0, Ii(t) > 0,
umax, Ii(t) < 0,

u∗i ∈ Uad, Ii(t) = 0
, i = 1, 2, 3

To compute the optimal control using this expression we
should prove that eitherIi(t) 6= 0, ∀t ∈ [0, T ], or that
Ii(t) = 0 only for a discrete set of time instantstk. In the other
cases, we can conclude that the expression (14) is still valid,
but cannot help us to calculate the controlu∗i (t) because for
Ii(t) = 0 the control can take any value from the admissible
set Uad. This is the ”singular control” problem [19]. In that
case, some further structural properties of PDE systems (1)
and (6) must be examined.

To avoid the ”singular control” problem in our example,
we can modify the cost function (10) adding the term which
depends on controlu and is penalized by the parameterε > 0.
This results in

Jε =
∫

X

w′ρ(x, T )− ε

∫ T

0

u2
1(t) + u2

2(t) + u2
3(t)dt (15)

Using a smallε, we haveJ ≈ Jε. Applying the minimum
principle, the HamiltonianHε, corresponding to the problem
with the cost functionJε, is [13]

Hε(t) = H(t) + ε(u2
1(t) + u2

2(t) + u2
3(t)) (16)

and the optimal control is defined as follows:

u∗i =





0, − Ii(t)
2ε > 0

umax, − Ii(t)
2ε < umax

− Ii(t)
2ε , elsewhere

, i = 1, 2, 3 (17)

In this case, the problem of singular control does not exist.
Avoiding the ”singular control” problem in this way results

in an iterative numerical algorithm for computing the optimal
control, proposed in the next section, that will not indefinitely
stop at the points whereIi(t) = 0, without warranty that the
computed control is optimal. The price paid is that we are not
solving the original optimal control problem, but the control
problem with the cost functionJε.

The numerical algorithm used in this paper is based on the
Nonlinear Conjugate Gradient method [21] which is proposed
as an efficient gradient-based method for Hamiltonian mini-
mization in optimal control of ordinary differential equations
[21]. To compute the optimal control we are dealing with the
discrete time approximation of control. This type of control
is so-called numerical optimal control [22]. Shortly, given the
time range[0, T ], and discretization steps in space∆X and
time ∆T , the algorithm is composed of the following steps:

step 1). Calculate the discrete approximationρ̂(x, t) of the
time forward solutionρ(x, t) using the discretized (1) and
control ûj(k) in the iterationj, given the initial condition
ρ(x, 0).

step 2). Calculate the discrete approximationπ̂(x, t) of the
the time backward solutionπ(x, t), using the discretized (6)
and ûj(k), given the terminal conditionπ(x, T ) = −w(x).

step 3). Increase the iteration counterj by 1 and go tostep
4, or stop the algorithm if the cost functionJε(j) reach the
maximum.

step 4). For eachk calculate control by the Nonlinear
Conjugate Gradient update rule [21].

Since the discretization steps, initial condition and weight-
ing function are fixed. The result of the algorithm will depend
on the free parameterε and the initial guesŝu1(k).

The chosen value forε depends on how close toJ we
want Jε to be. The smaller theε, the closerJε will be to J .
However,ε can not be infinitely small because the algorithm
convergence may be influenced when the minimization prob-
lem is close to the original problem with the ”singular control”.
For decimal precision ofdp, the term which penalizes control
in Jε must be smaller than10−dp . Since we know the maximal
values of controlumax, this can be expressed by:

10−dp > J − Jε = ε

∫ T

0

3∑

i=1

u2
maxdt ≈ 3Tu2

maxε (18)

which means that:

ε <
10−dp

3Tu2
max

(19)

In the original PDE equation the function vectorρ(x, t) is
considered as a state vector of the population at timet. In the
discretized version, the state vector is approximated byρ̂, a
finite dimension state vector whose dimension is given by :

dim(ρ̂) = NMD (20)

where N is the number of discrete states, in our example
N = 3, M the number of finite elements used for the space
discretization andD is the dimensionality of the operating
space. The dimension (20) can be used as a measure of
the computational complexity of the proposed algorithm. The
complexity of the algorithm increases linearly with the number
of discrete states and to the powerD regarding the number of
the finite elementsM . The only free parameter to ”control”
complexity is the number of the finite elements. However,
during the algorithm development we notice that a small
number of finite elements leads to a poor approximation of
the integrals for computing the Hamiltonian. Consequently,
our algorithm can converge to anon-optimalcontrol solution.

The major difficulty in extending the algorithm for two or
three dimensional operating space comes from the exponential
dependence of the complexity on the dimensionalityD. Under
the probabilistic approach we are using, the complexity of the
algorithm does not depend on the population size.

Numerical Results

To solve numerical optimal control, we are using the sample
time ∆T = 0.03h. The terminal time of our problem isT =
3h. Therefore, the optimal control is approximated by100
samples. In this example, the control limit isumax = 2 and
velocities of moving left and right arek1 = 0.5 andk2 = 0.25
respectively. To avoid the singular control problem we decide
to use the parameter epsilonε = 10−7. The initial guess for
the optimal control iŝu1(k) = [0.5 0.5 0.5]′, ∀k.
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Fig. 2. Cost functions :Jε - the cost function introduced to avoid the singular
control problem,ε = 10−7, J - the original control problem cost function,
ui ∈ [0, 2], i = 1, 2, 3. Graphs ofJε andJ are overlapped.

The cost functionJε value iterations are presented in Fig.
2. The cost function converges to the value1.3920. The
same figure also shows that the difference betweenJε and
J is negligible, as it is expected from equation (18). From
this figure, we can conclude that the optimal controlû∗ is
computed after 44 iterations.

The components of control̂u∗ are given in Fig. 3. The first
componentû∗1 starts with zero value, then it changes att =
0.21h to 2. Before it turns to 0 again, the controlû∗3 has
already changed from 0 to 2. Thus, betweent = 1.71h and
t = 1.74h, û∗1 andû∗3 are both 2. This can be understood as an
effective slow down of the velocity of moving to the left, since
each robot makes transition tomove left andstop states with
the highest possible rates. Aftert = 1.74h, û∗1 is 0 andû∗3 is
2 by the end of the time interval[0, T ]. All the time, in this
interval, û∗2 is zero, i.e., the optimal control does not include
transitions to the discrete statemove right. Since the initial
PDF of robots moving right isρ2(x, 0) = 0, we can conclude
that this PDF will be zero all the time, i.e,ρ2(x, t) = 0,
∀t ∈ [0, T ]. Therefore, only the evolution ofρ1(x, t) and
ρ3(x, t) are presented in Fig. 4 and Fig. 5, respectively.

Starting with the initial PDFsρi(x, 0), i = 1, 2, 3, the con-

Fig. 3. The components of control̂u∗ = [û∗1 û∗2 û∗3]′ computed after 44
iterations. The control is computed for the cost functionJε, ε = 10−7,
∆T = 0.03h, T = 3h, ui ∈ [0, 2], i = 1, 2, 3.

Fig. 4. State PDF evolution of robots moving leftρ1(x, t) for
t = 0.6, 1.2, 1.8, 2.4h, ui ∈ [0, 2], i = 1, 2, 3.

trol û∗ produces distribution evolutions such that, at terminal
time T = 3h, the PDFρ3(x, t = T ), depicted in Fig. 5,
has one peak value at the same position asw3(x) peak. The
transition rates are limited, therefore there are robots that have
never moved from the discrete statestopat the terminal time
T . This is shown in the plot ofρ3(x, T ), where a small plateau
exists for thex values corresponding toρ3(x, 0) maximum.

We can see from Fig. 5 that our original intuition to produce
a sharper robot distribution in the terminal time in comparison
to the distribution in the initial time has failed. This is because
the evolution of ρ3(x, t) is constrained by the population

Fig. 5. State PDF evolution of stopped robotsρ3(x, t) for
t = 0.6, 1.2, 1.8, 2.4h, ui ∈ [0, 2], i = 1, 2, 3.
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dynamics i.e., the PDE system (1) and the corresponding initial
condition (8).

The presented numerical example along with the derivation
of this section shows that the Minimum Principle for partial
differential equations can be exploited for the computation
of robotic population optimal control in the same way as
Pontryagin Minimum Principle is used for ODE optimal
control computation [19], [22].

IV. CONCLUSIONS

In this paper we introduced the modeling and control ap-
proach for a large population of robots controlled by stochastic
control signals. It is based on the system of PDE which
describes the evolution of the state probability density function
of the population. Using this probabilistic description of the
population state we formulated an optimal control problem, in-
troducing a cost function which includes a weighting function
and a state probability density function at the terminal time.
We showed that the Minimum Principle for partial differential
equations may be exploited to solve this problem. These results
were illustrated using a simulated robotic population.

It is worth mentioning that the state PDF of the population
evolves in the same way as the state PDF of one robot with
the same initial conditions. Therefore, the same result can be
used for modeling and control of one robot in the probabilistic
sense.

In this work we considered only centralized control and have
designed the best controller applying this strategy. Though
the centralized nature of the controller has its well-known
drawbacks, it is used here as a means of providing control
principles for large size robot populations, prone to mathe-
matical analysis and design from specifications. For further
improvement of the control performance, the local robot
controllers must be taken into account. We argue that the best
control strategy would be based on a two-level controller. The
upper level would be a centralized controller based on the PDE
model of the population. It would ensure the coherent behavior
of the population by broadcasting commands or settings for
the robot control loops. The lower level would be based on
local robot controllers, to ensure performance robustness. As
future work, we are considering designing such a controller
under the framework introduced in this paper. We are also
considering extending the application of the PDE Minimum
Principle to other types of optimal criteria, e.g., optimal control
with infinite terminal time and different cost functions which
can control the shape of the state probability density function.

The study of robotic populations by using the approach
presented in this paper is of potential interest for the mission
control of nano-robots or molecular devices and applications
to smart materials and advanced medical treatments.
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