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Abstract. We describe a fast algorithm for Gabor filtering, specially
designed for multi-scale image representations. Our proposal is based on
three facts: first, Gabor functions can be decomposed in gaussian con-
volutions and complex multiplications which allows the replacement of
Gabor filters by more efficient gaussian filters; second, isotropic gaussian
filtering is implemented by separable 1D horizontal /vertical convolutions
and permits a fast implementation of the non-separable zero-mean Gabor
kernel; third, short FIR filters and the a trous algorithm are utilized to
build a recursive multi-scale decomposition, which saves important com-
putational resources. Our proposal reduces to about one half the number
of operations with respect to state-of-the-art approaches.

1 Introduction

Gabor filtering is widely applied in image analysis and computer vision applica-
tions, such as image compression [5], texture classification [14], image segmen-
tation [15], motion analysis [1] and visual attention [8]. The use of Gabor filters
is motivated by information theoretic and biological facts. Gabor [6] showed
that gaussian-modulated complex exponentials provide the best trade-off be-
tween spatial and frequency resolution. Neurophysiological studies show that
visual cortex simple cells are well modeled by families of 2D Gabor functions
[4]. Both facts raised considerable interest and suggest that neuronal structures
may develop toward optimal information coding.

In the case of visual attention, recent models propose multi-scale image rep-
resentations of different features like color, intensity and orientation [8]. Such a
decomposition benefits, in terms of completeness and stability, on having more
than one voice (frequency) per scale and orientation [11]. Therefore, a large num-
ber of different kernels may be needed to represent the image characteristics.

Whereas fast algorithms for Gabor filtering exist [18,13], multi-scale repre-
sentations require analysis with many Gabor kernels, tuned to different orienta-
tions, scales and frequencies, which poses serious computational constraints in
real-time scenarios. However, many computations are redundant. Here we exploit
this redundancy to develop more efficient algorithms.
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In section 2 we review some of the underlying theory of Gabor analysis and
show that image filtering with isotropic zero-mean Gabor kernels (non-separable)
can be computed by the sum of two separable filtering operations. In section 3
we show that Gabor filtering can be factored in complex multiplications and
gaussian convolutions, which allow significant computational improvements. In
section 4 we apply this technique to multi-scale image analysis and propose an
approximate algorithm that reduces computations more than 50%.

2 Isotropic Gabor Wavelets

Gabor functions consist on the multiplication of a complex exponential (carrier)
and a gaussian function (envelope). We will focus on isotropic envelope functions
because efficient separable implementations are currently available. Let w, (z,y)
be a two dimensional gaussian function with scale o and, cy(z,y), ¥ = (A, 0)
be a complex exponential function representing a plane-wave with wavelength A
and orientation 6:
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To simplify notation, we will drop the spatial coordinates (z,y) and write a two
dimensional Gabor function as g5,y = Ws - ¢y. This function has non zero mean
value, which is not desirable for the purpose of feature extraction and multi-scale
analysis. The zero-mean kernel is used instead [11]:

Youp = Wo + (Cyp — ko) (1)

where the scalar k, 4 is calculated so the kernel’s average value is zero (Appendix
A). We distinguish between the Gabor function (non-zero-mean function) and
the Gabor kernel (zero-mean function). The Gabor kernel satisfies the admissi-
bility condition for wavelets, thus being suited for multi-resolution analysis [12].
Apart from a scale factor, it is also known as the Morlet Wavelet. Examples of
two dimensional Gabor kernels are shown in Figure 2.

Image analysis by convolution with Gabor kernels has been extensively stud-
ied in the literature. In practical terms, the filter will respond strongly when the
local image structure is similar to the Gabor kernel shape, in terms of scale (o),
wavelength (), and orientation (6). The convolution of an image f with a Gabor
kernel vy, is written as z, = f * 7,4, and using the definition of the Gabor
kernel (1), we get:

Zow =Fx 8oy —kguwf * Wy 2
! 8o,y —koy ’ (2)
zgyw zg

This convolution can be implemented by subtracting two terms: zg ,, — a Gabor
convolution; and ks 42zy — a scaled gaussian convolution. In the isotropic case
both Gabor and gaussian functions are separable (g(z,y) = g,(z) - g4(y), and
w(z,y) = wy(x) - wy(y)) and convolutions can be performed with two cascaded
(horizontal and vertical) 1D convolutions. Thus, even though the isotropic Gabor



kernel « is not separable itself (can not be written as the tensor product of two
1D filters), image filtering with this kernel can be implemented efficiently as the
sum of two separable convolutions.

To date, the fastest implementation of gaussian [17] and Gabor convolutions
[18] require 13 real (gaussian) and 13 complex (gabor) arithmetic operations
per pixel per dimension. Considering a complex multiplication as 4 real mul-
tiplicationa and 2 real additions, the extension to 2-D signals requires, respec-
tivelly, 26 and 108 real operations. Therefore, image convolution with Gabor
kernels,consisting in 1 gaussian filtering, 1 Gabor filtering, 1 multiplication and
1 addition, has a total computational cost of 136 operations per pixel.

3 Gabor Convolution Factorization

We show that the Gabor convolution in (2) can be computed by multiplications
with complex exponentials and gaussian convolutions. The motivation is that
state-of-the-art gaussian filtering is significantly more efficient than Gabor fil-
tering. We focus on the isotropic case but the method can also be applied to
the anisotropic case. In fact, a separable implementation of anisotropic Gabor
filtering has recently been proposed [7].

Image convolution with Gabor functions, denoted by zg ., is computed by:

Z;,¢<x7y) :Zf(kvl) 'wa(x—k7y—l)'0w($—k,y—l)
k,l

Since ¢y (z —k,y—1) = cy(z,y)cy(k,1) (¢ denotes complex conjugation), we can
expand the previous expression into:

Zg,w(gjvy) = Cw(%l/) : Zéw(k,l) : f(kvl) "LUU(LE —k,y— l)

k,l

In compact form, the full convolution (2) is written as:

Zo = Cy - [(£-Cy) * Wo| —koy - (£ xW,) (3)

c

Z,y

With the IIR gaussian filter of [17] (26 real operations per pixel), the required
computations on Eq. (3), are:

— a modulation (f - ¢;) corresponding to 2 operations per pixel;

— a complex gaussian filtering (w, convolved with f - ¢, ) requires 52 op-
erations per pixel;

— a demodulation operation (product of ¢, with (f - €y) * w,) requires 1
complex multiplication per pixel, corresponding to 6 operations per pixel;

— areal gaussian filtering (f * w, ) requiring 26 operations per pixel;

— a real scaling by k., requires 1 operation per pixel;

— and the final subtraction, corresponds to only 1 operation per pixel
because only the real part of Gabor kernels has non zero DC value.



Altogether we have 88 operations which, in comparison with the reference value
of 136 operations, correspond to about 35% savings in computation.

When multiple carriers (orientations/wavelengths) are considered, it is ob-
vious from Eq. (3) that term z¥ is common to all. Fig. 1 shows a graphical
representation of the method. Gaussian filtering contributes with 26 operations
and each carrier contributes with additional 62 operations (our proposal) or
110 operations (direct Gabor filtering). If, for example, 4 orientations and 2
wavelengths are used, the total number of operations is 8 x 62 4+ 26 = 522 wvs
8 x 110+ 26 = 906 (about 42% savings). It is also worth mentioning that multi-
scale image architectures often compute image gaussian expansions to support
further processing[2,3]. Thus intermediate filtered images z% may already have
been computed, which saves additional 26 operations per pixel.

4 Analysis at dyadic scales

Dyadic scale representations are very utilized in image analysis. Efficient re-
cursive algorithms exist to build Gaussian and Laplacian pyramids [2] with L
dyadic levels (o ~ 2¢,i = 0,.., L). Usual approaches create image pyramids by
successively filtering previous levels and sub-sampling by 2. Even though sub-
sampling is useful in terms of storage and computation, it has the disadvantage
of loosing translation invariance properties [12], thus reducing precision in the
localization of relevant image structures. We consider the unsubsampled case,
where image size is constant at all scales. In this case the 4 trous algorithm [12],
is an efficient recursive technique to implement multi-resolution decompositions
with constant size filters. If filter coefficients are properly chosen, we obtain good
approximations to quasi-dyadic gaussian filters [2].

Consider a signal f(z,y) and low-pass filter ¢(z,y) with Fourier transform
G(wgz,wy). The first step of the & trous algorithm consists in obtaining a low-
pass version of the original signal: f' = f % q. In the next decomposition level a
new filter is created by expanding the previous one with zero insertion, which,
in the frequency domain, corresponds to a spectral compression ¢* (We,wy) =
q(2wy, 2w, ). The new low-pass signal is computed by f? = f! x q', and the
procedure goes on recursively until the last scale level is reached. Since the
convolution operation is linear, this is equivalent to filter the original signal f with
filters w* resulting from successive convolutions of the several qk. In the Fourier
domain the equivalent filters are described by @' (wy, wy) = [[}_y 7(2Fws, 2Fwy).
In [2], some base filters q were tested but not all choices approximate gaussian
functions. We use the 1D filter ¢, = (.05, .25, .40, .25,.05) for x = (—2,—1,0,1,2)
to generate a set of equivalent filters similar to dyadic gaussian functions.

Since the filter is symmetric, convolution is computed in the following way:

fi-i-l(_) _ qui(-) +Q1 I:ft( _ 2i) +fz( +2i)} +q0 [fz( _ 2i+1) +fi(' +2i+1)]

In this form, only 6 multiplications and 8 additions per pixel are required to
perform the 2D convolution. For a single carrier, we can compute a multi-scale
approximation to (3) with 52 operations in the first level and 50 operations in



the remaining levels (see Fig. 1). This corresponds to 62% computation savings
with respect to the reference value of 136 operations per pixel.

Finally, let us consider the multi-scale, multi-carrier problem. If S is the
number of scales and C the number of carriers, our proposal requires 14 x S +
2 x C' 436 x S x C operations (see Fig. 1), while direct Gabor filtering requires
26 x S+ 2 x C 4+ 108 x S x C operations. If all combinations of carriers and
scales are needed, then we attain up to 66% computation savings. For example,
considering 3 scales (S = 3), 4 orientations and 2 wavelengths (C' = 8), the full
decomposition takes 922 operations vs 2686 operations in the reference method.
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Fig. 1. Proposed Gabor filtering schemes: single-scale-multi-carrier (left), multi-scale-
single-carrier (middle) and multi-scale-multi-carrier (right). Thick/Thin lines and boxes
represent complex/real signals and filters. At each computational element we indicate
the number of real operations required. Dashed lines represent vectors instead of scalars.

5 A “real-time” multi-scale quasi-gabor expansion

We have developed a quasi-dyadic Gabor image decomposition for the con-
trol of visual attention in an active vision system, implemented by the a trous
algorithm with the first 4 scales generated by the proposed base filter, o =
{0.95,2.12,4.35,8.75}. The definition of the carrier wavelengths, A, is inspired
on biological data. Simple and complex cells in the primary visual cortex have
receptive fields that resemble Gabor functions of particular combinations and
ranges of parameters [11]. In particular the half-amplitude frequency bandwidth
(8) range from 0.5 to 2.5 octaves. This parameter depends only on the values of
scale and wavelength, as follows.

In the radial frequency direction, an isotropic Gabor function is given by
glw) = 67%02(“)72%)2, whose half-amplitude points w2 and half-amplitude
bandwidth 3 are, in octaves:

2 2log(2 2 Ay/2log(2
(.{.}1)2 = 1 :l: i() and /8 = 10g2 o + Og( )
o 2wo — Ay/21og(2)

A



We have used wavelength values A = {3.7,7.4,14.8,29.6}. The half-amplitude
bandwidth of each scale/wavelength combination is shown in table 1. We choose

=37 74 14.8 29.6 SNR  |Aerial|Texture| Misc
o= 95/2.68 ()| - - - Average |30.39| 30.06 |29.95
212 [.93 (ST)|2.26 (E)| - - Maximum]| 38.87 | 39.28 |38.92
135 |46 (LT)|.95 (ST)|2.18 (B)| - Minimum | 23.82 | 13.83 | 7.15
875 | 23 |46 (LT)|.95 (ST)|2.16 (E)

Table 2. Signal to Error Ratio
Table 1. Half-amplitude bandwidth (in oc- (in dB) between the output of
taves) for each pair scale/wavelength. Italic FIR Gabor wavelets and the pro-
entries are biologically plausible values. In posed approximation. Test images

parenthesis we indicate the appearance of the are from the collections miscella-
kernel: E — “edge” kernel, ST — small texture neous, aerial and texture of the
kernel, LT — large texture kernel. USC-SIPI database.

kernels whose half-amplitude bandwidth is approximately within biologically
plausible values (italic entries in table 1). The kernel shapes are shown in Fig.
2, and resemble units tuned to edges, small texture patches and large texture
patches, respectively. Roughly speaking, “edge” kernels will respond equally

-n

Fig. 2. Real and imaginary parts of: (left) an “edge” (E) Gabor kernel with half-
frequency bandwidth in octaves S = 2.46; (center) a “small texture” (ST) kernel
having 8 = 1.04; (right) a “large texture” (LT) kernel with 8 = 0.51.

well in image locations corresponding to edges and textures with appropriate
scale and orientation. “Texture” kernels will respond better in textured areas
with the matched direction and wavelength.

Notice that not all combinations of wavelengths and scales are biologically
plausible. A recursive dyadic decomposition will require 14 x S+ 2 x C' + 28 x
A + 6 X Ry operations, where Ay is the number of levels to compute and Ry,
is the number of “interesting” kernels. With the IIR filters, some levels are not
required and the number of operations is 26 x S +2 x C' +52 X Ry +6 X Ri. In
the proposed decomposition, we have Ay = 60 and Ry = 36, which lead to 1984
operations in the dyadic recursive decomposition and 2224 with IIR gaussian
filters. For the sake of comparison, if the state-of-the art IIR Gabor filters are
used, the number of computations would increase to 4024 operations.

6 Results

Figure 3 shows the output modulus of the proposed filter, applied to a common
test image. The computation, in 128 x 128 greyscale images, takes about 0.2
seconds in a P4 2.66GHz processor.
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Fig. 3. Modulus of the Gabor wavelet decomposition (for orientation 135°) applied to
the image “Lenna” (left). Contrast has been normalized for visualization. From left to
right, the kernel parameters (o, \) are, respectively: (0.95,3.7), (2.12,3.7), (4.35,3.7),
(2.12,7.4), (4.35,7.4), (8.75,7.4), (4.35,14.8), (8.75,14.8), (8.75,29.6).

We have applied both the approximate method (with the a trous decomposi-
tion) and the exact method (with FIR Gabor wavelets) to images from the mis-
cellaneous, aerial and texture classes [16], converted to greyscale and 128 x 128
pixel sizes. We have applied a decomposition of the type described in section 5,
with 4 orientations, and the relative mean squared error between the two meth-
ods was computed for all images and filter channels. On average, the signal to
error ratio is about 30dB (3% error). In some images with strong edges in the
boundary, the error grows larger (7dB), but current work is dealing with eficient
boundary conditions to address this problem.

7 Conclusions

We have presented a novel algorithm for the computation of Gabor features. Im-
provements are obtained by an efficient decomposition of Gabor convolution into
gaussian convolutions and complex multiplications, and the reuse of intermediate
computations in a multi-scale framework. The method reduces computations to
about one half when compared to the state-of-the-art. The application of Gabor
filters is far from being limited to visual attention. One can find Gabor analysis
in object representation [9] texture classification [10], motion estimation [1] and
image compression [5]. Therefore, many other applications may benefit from the
results presented in this paper.

Appendix A — Computation of Gabor Kernel’s k parameter

A Gabor Kernel is defined in the frequency domain as:

- - 2cos b 2sinf -
g(wxawy) =w <wI - A1 yWy — A1 > — kw (wmawy)

Parameter k is computed such that the kernels’ DC value is zero.

M o)
w(0,0)

With the a trous algorithm, the equivalent envelope filters (}’i(wm,wy) have
the following Fourier transform :

H (acos(2¥t1w,) + beos(2Fw,) + ¢) - (acos(2¥T w,) + beos(28w,) + )
k=0



where a = 0.1, b = 0.5 and ¢ = 0.4. Thus, the value of k comes:

ﬁ chosﬂer 2’“(:050jL 2ksin0+b QkSin‘9+
acos ——— c0S ———— +c¢ | - [ acos ——— coS ———— + ¢
ptes 4r—1) 21\ 4r=1) 21\
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