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Abstract

Recent object recognition methods propose to represent ob-
jects by collections of local appearance descriptors in sev-
eral interest points. For recognition, this representation
is matched to image data. Interest points (candidates for
matching) are usually selected from images in a purely
bottom-up manner. However, in many situations, there is a
limited number of objects to search for, and some informa-
tion about object characteristics should be employed in the
detection of salient points, to reduce the number of poten-
tial candidates. In this paper we propose a methodology for
the selection of candidates with prior information of the ob-
ject local appearance. Points are represented by a rotation
and scale invariant descriptor, composed by the response of
filters derived from Gabor functions, denoted as “intrinsic
scale/frequency descriptor”. When compared to classical
salient point detectors, like extremal points of laplacianop-
erators at several scales, the proposed methodology is able
to reduce the amount of canditates for matching by more
than 60%. Since matching is a costly operation, this strat-
egy will improve the efficiency of object recognition meth-
ods.

Keywords: Gabor filter, saliency, interest point, object
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1 Introduction

The object recognition problem has been tackled recently
with several successful results [5, 10, 7, 12]. All of these
works exploit the idea of selecting various points in the ob-
ject and building up a local neighborhood representation
for each one of the selected points. Two related problems
are involved in this process: (i) which points in the image
should be considered and (ii) how to represent the infor-
mation contained in their neighborhood. In previous work
[8] we have addressed the second problem by describing
each points neighborhood with the response of Gabor filters
tuned to several scales, orientations and frequencies. In this
work we further exploit the properties of Gabor functions
to address the point selection problem.

Usually, the point selection problem, also called key-
point detection [5, 11], interest point detection[7], bottom-

up saliency [2], and salient region detection [4], has been
addressed in a bottom-up fashion. Salient points are se-
lected to be distinguishable from its neighbors and have
good properties for matching and invariance to common
image deformations. Several types of saliency functions
have been proposed in the literature: minimization of
matching error [7, 11], scale-Shanon entropy [3], local
maxima of Laplacian of Gaussian [5], winner-take-all of
the saliency map [2].

In one of the most influential works on object recogni-
tion of the last decade, [5] has proposed the SIFT descrip-
tors as local models of object appearance being invariant
to image rotation and scale. Salient points are obtained by
local maxima of difference-of-gaussian operators, in scale
and space. Then at each salient point, a description of its
appearance, composed by gradient histograms at multiple
orientations, is matched to previously learned models.

However, in guided visual search problems, where
specific objects are searched in the scene, it is convenient
to incorporate object related knowledge as soon as possible
in the recognition process, to reduce the amount of possi-
ble candidates. In this paper we present such an approach,
where saliency computation is biased to favor object re-
lated points. The objective is to remove points very differ-
ent from the model and have very few rejections of “good
points”. The method is based on a scale/frequency signa-
ture function, invariant to position, scale and rotation. The
signature function is derived from Gabor filters, which fit
nicely our Gabor based recognition methods [8]. Also, re-
cent fast methods for Gabor filtering [1] support the feasi-
bility of Gabor based recognition.

2 The Scale/Frequency Signature Saliency

Our biased (top-down) saliency detector is based on the
“characteristic texture” of image patterns. Here, we exploit
the scale and orientation invariance properties of texture, to
derive novel saliency operators.

Our design is based on Gabor functions, that act as
low-level oriented edge and texture discriminators and are
sensitive to different frequencies and scale information.
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The 2D zero mean isotropic Gabor function is:

gθ,f,σ(x, y) =
e−

x2+y2

2σ2

2πσ2

(

ej2πf(x cos(θ)+y sin(θ)) − e−2σ2f2π2
)

(1)
By selectively changing each of the Gabor function

parametersσ, θ andf , we can “tune” the filter to particular
patterns arising in the images. By convolving the Gabor
function with image patternsI(x, y), we can evaluate their
similarity. The Gabor response at point(x0, y0) is

Gθ,f,σ(x0, y0) =

∫ ∫

I(x, y)gθ,f,σ(x0 − x, y0 − y)dxdy

(2)
The Gabor response of Eq. (2) can emphasize basically
three types of characteristics in the image: edge-oriented
characteristics, texture-oriented characteristics and acom-
bination of both. In order to emphasize different types of
image characteristics, we must vary the parametersσ, θ and
f of the Gabor function. In Figure 1 we can see examples
of Gabor functions with severalγ = 1/σf values.

Figure 1. Real part of Gabor functions.γ values from left
to right,{1/2, 3/2, 5/2, 7/2}

However, the Gabor response by itself is not invari-
ant to scale and orientation. To enforce these properties
we reinterpret the Gabor filter parameters (scale and fre-
quency), in a joint dimensionless parameterγ = 1/σf ,
and we derive operators from integration of Gabor kernels
over the scale/frequency parameter and orientation.

In order to compute the scale/frequency signature
function at an image point, we build two image represen-
tations: (i) scale-space representation and (ii) frequency-
space representation. After the computation of the scale
and frequency representations, every pixel in the im-
age has two curves: the scale curve and the frequency
curve(signature). The scale/frequency signature is defined
as the frequency signature, endowed with a map of the fre-
quency values intoγ values. We compute the map changing
the frequency values by the inverse of the frequency mul-
tiplied by the scale at which is the highest local maxima
in the scale curve. Finally we explain the saliency model
of an object, and how to match that model with signatures
computed in new images.

2.1 Scale-Space Representation from Gabor
Response

The first step in the construction of a rotation and scale in-
variant signature for local appearance description consists

in computing the intrinsic scale of the pattern. This can be
obtained by analysing the scale profile of image points. In
order to compute the scale profile of image points we define
the Gabor scale-space kernel:

GSSkernel(x, y, σ) =

∫ ∞

0

∫ π

−π

gσ,θ,f (x, y)dθdf (3)

At this stage we are only interested in the scale properties
of the image pattern, and the integration of the Gabor func-
tion over all orientations and frequencies removes the de-
pendency on these parameters. The closed form expression
for the Gabor scale-space kernel is given by:

GSSkernel(r, σ) =
e−

r2

2σ2

2πσ2

(

1

r
−
√

π/2

σ

)

(4)

wherer =
√

x2 + y2. However, due to discretization in
real images, the frequency sampling in images cannot cover
the whole interval[0,∞). In the case of the lower integral
limit, the Gabor wavelength (inverse of frequency) should
not be greater than the Gaussian envelope (λ ≤ 6σ), so
f ≥ 1/6σ. For the upper integral limit, we define a scale
minimum value(σ = 2), and use the Nyquist sampling
limit(f = 1/2). Using the relationγ = 1/σf , σ = 2
andf = 1/2, γ = 1. Replacingγ = 1 in γ = 1/σf , the
upper integral limit isf = 1/σ. With these new integral
limits, the scale-space kernel is:

GSSkernel(x, y, σ) =

∫ 1/σ

1/6σ

∫ π

−π

gσ,θ,f (x, y)dθdf (5)

and a closed form expression is presented in appendix. In
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Figure 2. Example of Gabor scale-space kernel. Top fig-
ures, 3D plot and 1D slice ofGSSkernel(x, y, 4).Bottom
figures, 3D plot and 1D slice ofGSSkernel(x, y, 16)

Figure 2 we can see two examples of theGSSkernel from



Eq.(5). The shape of the scale-space kernel is very similar
to the 2D Laplacian of Gaussian. In order to build the nor-
malized scale-space representation with the Gabor scale-
space kernel, we multiply the response of the kernel by the
scale, and the normalized Gabor scale-space representation
of an image point(x0, y0), is:

GSSnorm(x0, y0, σ0) = σ0|I(x0, y0)∗GSSkernel(x0, y0, σ0)|
(6)

In Figure 4 we can see an example ofGSSnorm for
the case of an eye’s center point.

2.2 Frequency-Space Representation from
Gabor Response

To determine the texture-frequency profile of the image
patterns we define the Gabor frequency-space kernel as:

GFSkernel(x, y, f) =

∫ ∞

0

∫ π

−π

gσ,θ,f (x, y)dθdσ (7)

Here, the integral is performed over all scales and orienta-
tions. The closed form expression for the frequency-space
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Figure 3. Example of Gabor frequency-space
kernel. Top figures, 3D plot and 1D slice of
GFSkernel(x, y, 0.2).Bottom figures, 3D plot and 1D
slice ofGFSkernel(x, y, 0.1)

kernel is the following:

GFSkernel(r, f) =

√

π/2

r

(

−e−2πfr + J0(2πfr)
)

(8)

In Eq.(8), r =
√

x2 + y2, andJ0(z) is the Bessel func-
tion of the first kind. Again, due to discretization, the scale
limits are redefined to reasonable values. Changing the in-
tegral limits like in Section 2.1, the frequency-space kernel
is:

GFSkernel(x, y, f) =

∫ 1/f

1/6f

∫ π

−π

gσ,θ,f (x, y)dθdσ (9)

and a closed form expression is also presented in appendix.
In Figure 3 we can see an example ofGFSkernel from
Eq.(9), its shape is an exponentially decreasing 2D Bessel
function. In order to build the normalized frequency-space
representation with the Gabor frequency-space kernel, we
multiply the response of the kernel by the frequency, and
the normalized Gabor frequency-space representation at
point (x0, y0) is

GFSnorm(x0, y0, f0) = f0(I(x0, y0)∗GFSkernel(x0, y0, f0))
(10)

In Figure 4 we can see an example ofGFSnorm for
the case of an eye’s center point.
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Figure 4. Example of GSSnorm(left side) and
GFSnorm(right side) for the eye’s center point

2.3 Scale/frequency Signature Computation

In order to compute the signature, we perform two steps:
(i) Compute the frequency signature, and (ii) map the fre-
quency interval into aγ interval. The rationale is to model
the object saliency by the mean texture-frequency pro-
file. But the texture-frequency profile itself is not scale
invariant, so we map the frequency values intoγ values.
For the first step, let us define a set of frequency values
F = {f1, . . . , fn}. The frequency signature of an image
point (x, y) is

FSx,y(fi) = GFSnorm(x, y, fi), fi ∈ F (11)

To map the set of frequency valuesF intoγ values, we look
for the intrinsic scale(̂σ) of the image point(x, y):

σ̂ = arg max
σ

GSSnorm(x, y, σ) (12)

Looking again at the left side of Figure 4, we find that
σ̂ = 10 in the eye example. Theγ interval of signature
is Γ = {γ1, . . . , γn} = {1/f1σ̂, . . . , 1/fnσ̂}. Thus, the
scale/frequency signature of an image point(x, y) is

SFSx,y(γi) = FSx,y(1/γiσ̂), γi ∈ Γ (13)

In Figure 6 we can see the scale/frequency signature
of the eye’s center point.



2.4 Top-down Saliency Model

The saliency model of an image point(x, y) is the mean
value of the scale/frequency signature computed in a train-
ing set,SFS. In order to compute the signature, we (i)
compute the mean frequency signature, (ii) find the in-
trinsic scale in the mean scale-space representation, and
(iii) map the frequency values intoγ values. The mean
frequency-signature of an image point is:

FSx,y(fi) = GFSnorm(x, y, fi), fi ∈ F (14)

We can observe theFSeye in the left side of Figure 5.
Now we look for the intrinsic scale of the mean scale-space
representation:

σ̂object = arg max
σ

GSSnorm(xobject, yobject, σ) (15)

In the right side of Figure 5, we see the intrinsic scale
of the eye located at̂σeye = 8.
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Figure 5. In the left side,FSeye, and in the right side
GFSnorm for the eye’s center point

The γ interval of the signature model isΓ =
{γ1, . . . , γn} = {1/f1σ̂object, . . . , 1/fnσ̂object}. The sig-
nature object model is:

SFSobject(γi) = FSobject(1/γiσ̂object), γi ∈ Γ (16)

In the right side of Figure 6 we can see the mean
scale/frequency signature of the eye’s center point.

2.5 Matching Signatures

In order to match a signatureSx,y with the saliency model
SFSobject, we perform the following steps: (i) Find the in-
tersection of theγ interval between the two signatures, (ii)
subsample the longest signature, (iii) translate and normal-
ize both signatures, and (iv) compute the distance between
signatures(Euclidean and earth movers distances).

Let us define two interval ofγ values: ΓS =
[γiS

, γfS
] of signatureSx,y, andΓSFS = [γiSF S

, γfSF S
]

of the object modelSFSobject, wherei stands for initial
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Figure 6. SFS for an eye’s center point(left side), and
SFS for the training set

value, andf stands for final value. The segment of the sig-
nature for computing the distance is the intersection of the
two intervals,ΓS ∩ ΓSFS = [γi∩ , γf∩

].
The number of signature elements within the interval

[γi∩ , γf∩
] could be different inSx,y andSFSobject. There-

fore, subsample the signature segment with more elements
in [γi∩ , γf∩

] to have equal sized signature segments. In the
third step, to avoid negative values we translate both signa-
tures by the distance

d =

∣

∣

∣

∣

min
S<0,SFS<0

(Sx,y, SFSobject)

∣

∣

∣

∣

(17)

Secondly, we normalize the signature in order to achieve
constrast invariance. Each signature will add up one after
normalization.

In the last step, we compare two metrics when com-
puting the distance between signatures: Euclidean distance
and earth movers distance. Earth movers distance[9] re-
flects the minimal amount of work that must be performed
to transform one signature into the other.

3 Experimental Results

We present the results of tests performed in an eye and nose
point pre-selection. The tests were performed using 112
subjects from AR face database [6], where half of them are
used for learning the signature object model, and the half
remaining for the selective attention test. We are looking
for two facial landmarks: Eyes and noses’ center points.

3.1 Looking for Eye and Nose signatures

We use the training set for learning the mean
scale/frequency signature, and also set the adequate
distance threshold value. The threshold value is the
maximum distance of the facial point signature to the mean
signature in the training set. We compute the reduction of
number of candidates with respect to a multi-scale Differ-
ence of Gaussians operator. So in the test images we apply
first the multi-scale DoG, and keep the local maxima in
every DoG image. Now we have a set of bottom-up salient
points, and we compute the scale-frequency signature for



all these points. The points with distance to the model less
than the threshold are the candidates for further processing.
To evaluate the performance of each experiment we count
the number of hits (successful detections) in the test set.
Given an object part model, a distance function and an
image point, a hit exists if there is a distance to the model
less than the threshold inside a circle of radiusr around
the image point.

Table 1. List of the performed tests

Facial Point Performance % of bottom-up SP distance

Eye 98.21 17.23 Euclidean
Eye 100 37.30 Earth movers
Nose 98.21 22.57 Euclidean
Nose 98.21 37.31 Earth movers

In Table 1 we can see the performance for the differ-
ent set-ups, whenr = 5. The earth movers distance has
a better performance, but keep almost double of the points
that the euclidean distance. However, as we mention in the
introduction, we want to reduce the number of candidates
without losing the object. In Figure 7 we can see an exam-
ple of the points selected by the eye signature.

3.2 Scale Invariance

To check the scale invariance of the scale-frequency signa-
ture, we compute the success rate in rescaled images man-
taining the signature model learned in the original images.
In Figure 8 we observe that the methodology proposed
mantain the performance constant with the earth movers
distance, coping scale variations up to 40%(≈ 0.5 octaves).

4 Conclusions

We present a top-down saliency detector that is able to
reduce the number of candidates for matching image re-
gions. The saliency representation is based on Gabor filter
response and is able to remove points different from the
model, having very few rejections of interest points. In our
saliency representation, every image point has a texture-
frequency profile, mapped into a scale invariant and dimen-
sionless parameterγ. The rotationally invariant shape of
the filters utilized to compute the signature, and the scale
invariance ofγ, allow us to have a saliency detector invari-
ant to scale transformations as well to rotation transforma-
tions.

The tests presented illustrate the variation of the per-
formance for two different facial features. We also illus-
trate the scale invariance of the saliency detector. The per-
formance varies according to the amount of information
present in the region.

Figure 7. Example of points selected by the bottom-up
saliency in the top image. In the middle image, points se-
lected by the scale/frequency signature from the bottom-up
saliency points . In the bottom image, points selected by
our Gabor recognition method[8] as eye points, from the
points selected by the scale/frequency signature.

In future work we want to automate the selection of
the regions, designing a learning procedure for selecting
regions where there are few or no rejections of our saliency
detection method.
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A Gabor scale-space kernel

The closed form expression of Eq.(5) is:

GSSkernel(r, σ) =
e−

r2

2σ2

12πσ3
[3
√

2π(erf(π/3
√

2)

−erf(
√

2π)) − π2J1(πr/3σ)H0(πr/3σ)

+6π2J1(2πr/σ)H0(2πr/σ)

+πJ0(πr/3σ)(−2 + πH1(πr/3σ))

−6π0F1(1;−(π2r2)/σ2)(−2 + πH1(2πr/σ))]



−0.5 0 0.5
90

91

92

93

94

95

96

97

98

99

100

101

octaves=log
2
(σ

new
/σ

orig
)

P
er

fo
rm

an
ce

(%
)

EMD eye
Euc eye
Euc nose
EMD nose

Figure 8. Scale invariance test

wherer =
√

x2 + y2, erf(z) is the error function,J0(z)
andJ1(z) are Bessel functions of the first kind,H0(z) and
H1(z) are Struve functions, and0F1(a; b) is the regularized
confluent hypergeometric function.

B Gabor frequency-space kernel

The closed form expression of Eq.(9) is:

GFSkernel(r, σ) =
J0(2πfr)

√
2π

2

(erf(3
√

2fr) − erf(fr/
√

2)) +

1

4r2

[

−24e−π2/18−18f2r2

+ 4e−2π2−1/2f2r2

−2
√

2e−2πfrπ3/2erf

(

π − 18fr

3
√

2

)

−

1

fr

(

e−2πfr(1 + 2πfr)erf

(−2π + fr√
2

))

+

2
√

2e2πfrπ3/2erf

(

2π + fr√
2

)

−

e2πfr
√

2πerf
(

2π+fr
√

2

)

fr
+

e−2πfr
√

2πerf
(

−π+18fr

3
√

2

)

fr
+

2
√

2e2πfrπ3/2erf

(

π + 18fr

3
√

2

)

+

e2πfr
√

2πerf
(

π+18fr

3
√

2

)

fr





wherer =
√

x2 + y2, erf(z) is the error function,J0(z) is
the Bessel function of first kind.
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