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Abstract

We present a method to reconstruct from one or more images a scene that is rich in planes,
alignments, symmetries, orthogonalities, and other forms of geometrical regularity. Given
image points of interest and some geometric information, the method recovers least-squares
estimates of the 3D points, camera position(s), orientation(s), and eventually calibration(s).
Our contributions lie (i) in a novel way of exploiting some types of symmetry and of geometric
regularity, (ii) in treating indifferently one or more images, (iii) in a geometric test that indi-
cates whether the input data uniquely defines a reconstruction, and (iv) a parameterization
method for collections of 3D points subject to geometric constraints. Moreover, the recon-
struction algorithm lends itself to sensitivity analysis. The method is benchmarked on syn-
thetic data and its effectiveness is shown on real-world data.
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1. Introduction

This article addresses the problem of 3D reconstruction of scenes that display
properties of planarity, orthogonality, parallelism, and symmetry, such as the
man-made scenes in Fig. 1. This problem is of interest for archeology, urbanism,
architecture, virtual reality, reverse engineering, etc.

Knowing geometric properties of the scene allows to perform 3D reconstruction
in situations that general methods [31] cannot treat. For example, a reconstruction
may be obtained from a single image [10,28,38,43] or from multiple views with
too few point correspondence.

1.1. Current approaches

Methods for 3D reconstruction from image points and geometric clues can be
roughly classified as ‘‘model-based’’ and ‘‘constraint-based.’’ The former reconstruct
assemblages of primitive shapes, such as parallelepipeds, prisms, cylinders, while the
latter exploit geometric properties of the scene-planarity, orthogonality, etc.

In model-based methods [11,26,29], the scene is defined as in CAD [45] systems.
For example, the buildings in Fig. 1 can be decomposed in parallelepipeds, prisms,
and truncated pyramids. By fitting the model to image data, its dimensions, position,
and orientation are determined. The fact that the scene must be decomposable in
primitive shapes is the main limitation of model-based methods.

In constraint-based methods, this limitation does not exist, as any shape can be
reconstructed as long as there are enough geometric properties to define a unique
reconstruction. Geometric properties are either detected automatically [5,12,13,50]
or, as in the present work, given by the user [1,2,10,38,43]. Some forms of symmetry
have been exploited [24,37,49] and, in theory, general polynomial constraints on the
Fig. 1. (A) A man-made scenes, rich in planarities, parallelisms, orthogonalities, and symmetry: the
outlined triangles lie on vertical planes, there are many horizontal planes and there is an approximate
symmetry with respect to a vertical ‘‘X–Z’’ plane. (B) This reconstruction is obtained by using the 2D
points (white dots) in the left image at left and some geometric information known à-priori. The 3D points
(white dots at left) are estimated and visualized with textured planar surfaces. (C) A man-made object, rich
in symmetry. (D) Reconstruction, with and without texture.
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3D points could be used [2,3]. Most often, however, only planarity, alignment,
known angles, and parallelism are used [2,4,9,28,35,38,40,43].

Amongst constraint-based methods, computation differs between single-view and
multi-view methods. The latter [2,4,40] being usually modifications of classical 3D
reconstruction methods [31].

Single-view constraint-based methods [9,35,38,43] rely on the possibility of express-
ing geometric properties as linear constraints on the estimated quantities. For this
reason, the 3D directions orthogonal or parallel to planes and edges of interest
should be estimated before the reconstruction itself. These 3D directions will be
called ‘‘dominant directions’’ in the sequel.

Knowing dominant directions beforehand allows to express planarity by a linear
constraint. Fig. 2, left, shows that, given a dominant direction v 2 R3, two 3D points
X1;X2 2 R3 belong to a plane normal to v if and only if

v>X1 ¼ v>X2: ð1Þ
In single-view constraint-based methods, some dominant directions are estimated be-
fore the reconstruction [9,35,38,43]. This is done by estimating vanishing points of
dominant directions and then calibrating the camera(s), e.g., with the technique of
Caprile and Torre [6]. Once dominant directions are known, the geometric informa-
tion is expressed by linear equalities, as in Eq. (1).

More linear constraints, provided by the images points are added. The resulting
system of linear equations is solved to obtain the reconstruction.

From this general idea, many variations exist. Sturm and Maybank [42,43] use lin-
ear equations in which the height (i.e., ‘‘intercept’’) of planes appears; their iterative
method has the advantage of not requiring all dominant directions to be known
beforehand. Methods from Oxford [9,10,33] make measurements in a plane and
along a third direction, then obtain the reconstruction by assembling the measured
elements. Wang et al. [47] further extend this approach based on measurements
taken on planes and along lines. Kushal et al. [27] allow spheres, frustums, and
solids of revolution in the reconstruction. Shum et al. [38,39] select some geometric
Fig. 2. (Left) The equation v>X1 = v>X2 expresses the fact that X1 and X2 belong to a plane with normal v.
(Right) The symmetry of the pyramid is expressed by the equality of distances between pairs of parallel
planes. For example, the signed distances between the pairs of planes (p1, p2) and (p2, p3) are opposite.
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constraints to be verified exactly by the reconstruction, the remainder being verified
approximately; many images may be used by inserting a previous reconstruction in a
new view. The multi-view method of Cipolla et al. [7] estimate camera calibrations
and orientations from vanishing points like single-view methods. Finally, omnidirec-
tional sensors have been used [16,38,39,42] as well as pinhole cameras.

These methods share common limitations.

• The collection of geometric properties that are exploited—usually planarity and
orthogonality—is restricted.

• Methods are designed for either one or for many images, but not for both situa-
tions—except in [38].

• The precision of the obtained reconstruction is unknown, except in [10,33].

1.2. Contributions

The method presented here addresses these shortcomings by exploiting a new type
of geometric constraint, by working with one or more images alike and by comput-
ing the reconstruction together with an estimate of its precision. Moreover, we also
provide means to determine whether the user-provided data defines a unique 3D
reconstruction.

1.2.1. A new way of exploiting some types of regularity and symmetry

Beyond planarity, linear equations can express some forms of symmetry. Fig. 2B
shows the pyramid at the top of Fig. 1A. If X1, X2, and X3 are the corners of the
front face and v is parallel to X3 � X1, then the equation:

v> X1 � X2ð Þ ¼ v> X2 � X3ð Þ; ð2Þ
expresses the symmetry of the pyramid with respect to a plane with normal v. Like-
wise, the squareness of the base of the pyramid is expressed by:

v> X1 � X3ð Þ ¼ w> X4 � X3ð Þ; ð3Þ

where w is a vector parallel to the ‘‘X’’ axis.
In geometric terms, these equations express equalities of signed distances between

pairs of planes. This notion is distinct from what is usually called ‘‘symmetry’’ or
‘‘repetition,’’ but we will nevertheless use these terms. The interested reader may
compare our approach to that of Rothwell et al. [37], Zabrodsky and Weishal [49]
or Hong et al. [24]. Symmetries like that expressed in Eqs. (2) and (3) are common
in man-made scenes; using them is important because it allows to compute recon-
structions that cannot be obtained using planarity and orthogonality properties
alone, as illustrated in Figs. 1B and D.

1.2.2. A unified framework for one or more images

As noted above, methods either use a single view or many views, but most meth-
ods usually cannot handle both cases. One way of extending a single-view method is
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to treat multiple views sequentially as in [38], inserting information from previous
views at each reconstruction stage.

However, it is easy to adapt a single-view method to use a set of sparse observa-
tions from multiple images, so that iterative procedures can be avoided. We show, in
Section 3, how a single system of equations can represent all the visual and geometric
information given by a sparse multi-view dataset.

1.2.3. Testing the unicity of the reconstruction

Datasets involving many views and many types of geometric constraints do not
necessarily define a unique 3D object. Various parts of the scene may not be rigidly
connected, so that there exist a continuum of shapes that verify the geometric con-
straints and project to identical 2D image points. It is [38,43] important to test
whether the reconstruction is unique and we propose a method for doing so.

Various approaches are possible. Those based on a threshold on the conditioning of
the data [38] raise the problem of choosing the threshold and always incur a non-zero
probability of error. Automatic theoremproving [3,30] could be a valid alternative, but
it also requires thresholding andwould thus be sensible to noise. This is especially frus-
trating because the property of unicity of a reconstruction should depend only on the
geometric information, and not on the noise in the observed image points.

The method presented here is insensitive to noise and uses only common linear
algebra tools. It consists in building a synthetic reconstruction problem with the
same properties as the original problem. We show that this noiseless reconstruction
problem allows to check whether the original problem has a unique solution.

This test for unicity is algebraic and does not indicate whether the setup is near a
critical position, this issue being addressed below.

1.2.4. Parameterization of constrained 3D points

There exist many reasons to compute the least-square estimate. For example, if
the errors in the observed image points are i.i.d. Gaussian random variable, then
the least squares is also the maximum-likelihood estimate. The weaker assumption
of independence of errors allows to estimate the covariance of the least-squares esti-
mator [22]. In that case, one may estimate the error committed in real-world recon-
structions and detect critical positions in which the estimation problem is ill posed.

The least-squares reconstruction defined by:

X;R;T;Kð Þ ¼ arg min
X;R;T;K

kx�X X;R;T;Kð Þk22; ð4Þ

where x 2 R2N is the vector of input image points, X 2 R3N , R, T, and K are the esti-
mated 3D points, camera orientations, translations, and calibrations, respectively;
Xð Þ is the perspective projection. In this problem, the 3D points are subject to geomet-
ric constraints. To solve the problem with commonplace unconstrained optimization
tools, a smooth parameterization of the feasible set is needed. It is thus necessary to
parameterize smoothly a collection of 3D points subject to geometric constraints.

Few such parameterization schemes have been proposed. In Bondyfalat et al. [3],
some 3D points coordinates are the parameters from which remaining coordinates
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are computed. This approach requires polynomial manipulations and may lead to a
high condition number. Cornou et al. [8] apply constraints sequentially to 3D points
and the constraints should thus be ordered in one way or another. In the present
work, the dominant directions need to be ordered, but no particular order is given
to the geometric constraints or the points. Since the presented parameterization it
is based on the singular value decomposition and other common linear algebra oper-
ations, its implementation is not overly complicated. As in [8], this parameterization
is easy to plug in the optimization scheme that yields the final least-squares
reconstruction.

Having stated our contributions, the article is organized as follows: Section 2, de-
fines the notation and the computation of vanishing points, dominant directions,
camera calibration(s), and orientation(s), which is similar to that in Refs.
[10,19,38,43]. Section 3 shows how the input data are encoded in a system of linear
equations. Section 4 presents the test for unicity and the computation of the recon-
struction. The parameterization of 3D points and least-squares reconstruction are in
Section 5. Benchmarking and real-world results are shown in Section 6. Finally, Sec-
tion 7 presents some conclusions and possible extensions.
2. Notations and definitions

This section defines the observation model, input data, and preliminary computa-
tions [6,19] and discusses the issue of calibration.

2.1. Observation model

Image points (2D observations) x1; . . . ; xN 2 R2 are obtained by perspective pro-
jection [23] of 3D points X1, . . . ,XN. Coordinates of 3D points and dominant direc-
tions are taken in a basis formed by three linearly independent dominant directions
v1, v2, and v3. With this convention, the perspective projection is written [23]:

xm

1

� �
¼ k�1

m V f Xm � Tf

� �
þ

em
0

� �
; ð5Þ

where f 2 {1, . . . ,F} is the index of the image in which xm has been observed, km is
the ‘‘depth,’’ Vf is a 3 · 3 whose columns are the vanishing points of the three dom-
inant directions in which coordinates are taken, Tf and Xm are the coordinates of the
fth optical center and of the mth point, respectively. Finally, �m is an additive error
term in the observations.

2.2. Input data

We now define the input data provided by the user, which consists in.

• The coordinates x1, . . . ,xN of some image points, as defined in Eq. (5). The index
of the image in which xm is observed is written um.
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• Planarities: each plane is defined by the indices {m,n, . . .} � {1, . . . ,N} of the
points it contains and by its orientation, given either by two indices i, j of distinct
dominant directions parallel to the plane, or by the index of i its normal. The par-
allelism of planes is expressed by the equality of their orientation.

• Alignments: a known alignment of points is expressed by constraining them to lay
in two distinct planes parallel to the alignment.

• Symmetry and other forms of regularity: known ratios of signed distances between
pairs of parallel planes are specified by giving the ratio a 2 R, the (indices of) direc-
tions i, j along which the distances are measured, and two pairs (m,n), (p,q) of
(indices of) points contained in each of the involved planes.

• It is assumed that the dominant directions are two-by-two distinct and that three of
them either form an orthonormal basis or at least are linearly independent. The
dominant directions may be subject to other constraints.

Before reaching the core of this article, some preliminary computations are pre-
sented that only use previously published methods.

2.3. Preliminary computations

This section shows how to estimate the dominant directions vi from vanishing
points which are computed using [19]. Also, the issue of camera calibration is
addressed.

2.3.1. Dominant directions

We assume the vanishing points have been obtained by one of the numerous avail-
able methods for this purpose. Since the 3D coordinates will be taken in the basis
formed by the first three dominant directions, one has v1 = [100]>, v2 = [010]>,
and v3 = [001]>.

Other dominant directions are estimated from vanishing points, using the
relations

g
f
i � V f vi () vi � V �1

f g
f
i ;

where � indicates equality up to a scale factor and V f ¼ ½gf1 g
f
2 g

f
3 � is the projection

matrix of image f (Eq. (5)). Known angles and planarities may further constrain
the dominant directions [21].

The minimum requirement for the presented method is that the vanishing points
gf1 g

f
2 g

f
3 and all the dominant directions vi, be computable. In the remainder of this

article, it is assumed that this requirement is met.

2.3.2. Calibration: Euclidean vs. affine reconstruction

Camera calibration calibration is important because it allows to obtain a Euclid-
ean, rather than affine, reconstruction [14].

In the present work, calibration is estimated using [6], if three dominant directions
are mutually orthogonal and if the camera-scene distance is not too big relative to
the size of the scene. Otherwise, an affine reconstruction is obtained. Note that other



Table 1
Summary of notations

xm 2 R2 Pixel coordinates of 2D observations
x ¼ ðx1; . . . ; xN Þ 2 R2N Pixel coordinates of all 2D observations
Xm 2 R3 Coordinates in the basis (v1,v2,v3) of 3D points
X ¼ ðX1; . . . ;XN Þ 2 R3N Coordinates of all 3D points
Tf 2 R3 Camera translation(s), in the basis (v1, v2, v3)
T ¼ ðT1; . . . ;TF Þ 2 R3F All camera translations
um 2 {1, . . . ,F} Index of image in which xm is observed
vi 2 R3; kvik ¼ 1 Dominant directions
v ¼ ðv1; . . . ; vDÞ 2 R3D All dominant directions
g
f
i 2 R3; kgfi k ¼ 1 Vanishing points of dominant directions
V f ¼ ½gf1g

f
2g

f
3 � Projection matrix of image number f
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calibration methods could be used, e.g., from known angles [23], from parallelepi-
peds [48] or from tracked 3D points [15].

When calibration is available, the observation model is written:

xm

1

� �
¼ k�1

m KfRf ðXm � Tf Þ þ
em
0

� �
; ð6Þ

where Rf is the orientation of the camera, represented by an orthogonal matrix, and
Kf is the matrix of intrinsic parameters [6]:

Kf ¼
qf 0 u0f
0 qf v0f
0 0 1

2
64

3
75; ð7Þ

where qf is the focal length and [u0f,v0f] is the principal point. Table 1 summarizes the
notation used throughout the paper.
3. Representing visual and geometric information

We now reach the core of this paper. This section shows how the input data, the
newly computed dominant directions vi (i 2 {1. . .D}) and vanishing points
g
f
i ði 2 f1 . . . 3g; f 2 f1 . . . F gÞ define a system of linear equations on the unknown

Xm and Tf.

3.1. Using geometric information

The two types of geometric constraints are.

(i) Planarity: saying that points Xm and Xn belong to a plane with normal vi, is
equivalently expressed by the equation [10,38]

v>i Xm � Xnð Þ ¼ 0: ð8Þ
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(ii) Ratio of distances between pairs of parallel planes: Eqs. (2) and (3) are general-
ized to relate distances that are not necessarily equal:

v>i Xm � Xnð Þ þ av>j Xp � Xq

� �
¼ 0; ð9Þ
Fig.
a pla
vi an
Poin
where a is the known ratio of signed distances. In geometric terms, this equation
fixes the ratio of signed distances between two pairs of parallel planes. One dis-
tance is taken along vi, the other along vj. One should only take vi 6¼ vj when per-
forming Euclidean reconstruction, because affine transformations in general do
not leave Eq. (9) invariant unless vi and vj are collinear. This type of constraint
can express symmetry (see Fig. 2, right), squareness, repetition of patterns, etc.
In addition to the constraints above, it is convenient to add three linear con-
straints to fix the origin of the coordinate system to the center of gravity of the recon-
struction. Joining these new constraint to all the geometric information, expressed as
Eqs. (8) and (9), yields a single system

B vð ÞX ¼ OM�1; ð10Þ
where v ¼ ½v>1 ; . . . ; v>N �

> is a 3D · 1 vector holding all the dominant directions and
B (v) is aM · 3Nmatrix holding the coefficients of the equations, which depends only
on the geometric constraints and on the dominant directions.

The most important property of the matrix-valued function B (v) is that its rank is
maximal for almost all values of v. This implies that the nature—i.e., the degrees of
freedom—of the set of points that verify Eq. (10) does not change when the noiseless
dominant directions are substituted by their noisy estimates.

The notion of degrees of freedom of the shape defined by the geometric informa-
tion is conveyed by the dimension of the subspace of vectors X that verify Eq. (10).
This dimension is the corank of B [41].

To illustrate this notion, consider Figs. 3A and B, in which two points, X1 and X2

are constrained to lie on two planes with normals vi and vj, respectively. If these vec-
tors are not collinear, then the points are constrained to lie on a line. Now, if they are
collinear, then the points are only constrained to lie on a plane and the corank of B is
increased by one.
3. (A) If the dominant directions vi and vj differ, then points X1 and X2 that belong simultaneously to
ne with normal vi and a plane with normal vj are constrained to a line. (B) If the dominant directions
d vj are equal, X1 and X2 are only constrained to a plane, and there is one extra degree of freedom. (C)
ts on an irregular grid and camera position used for benchmarking the reconstruction method.
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The property of maximal rank of B (v) is stated as:

Lemma 1. The rank of B (v) is maximal for all values of v = (v1, . . . ,vD) except on a

subset of empty interior. The proof is in Appendix A.
3.2. Visual information

Going back to 3D reconstruction, we now use the image projections x1, . . . ,xN to
add linear constraints on X and on the Tf.

Recalling that the collinearity of two 3D vectors is expressed by the nullity of their
cross product, one has

xm

1

� �
� V f|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Sm

ðXm � Tf Þ ¼ �
xm

1

� �
�

em
0

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Small error term

’ O3�1: ð11Þ

The right-hand term is due to noise and is ignored for now. The left-hand term is a
linear function of rank two in the unknown 3D point and camera translations, all
other quantities being known. Grouping all observations, one gets

S1

. .
.

SN

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
A

X�

e>u1
� S1

..

.

e>uN
� SN

2
664

3
775

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
L

T ¼ AXþ LT ¼ O3N�1 ð12Þ

where um is the index of the image in which xm is observed, T ¼ ½T>
1 ; . . . ;T

>
F �

> 2 R3F

is the vector of camera translations, ef is the F · 1 vector with all zero elements, ex-
cept for element f, which is one and � is the Kronecker product.

Joining together the geometric information and 2D observations, one obtains

B O

A L

� �
|fflfflfflfflffl{zfflfflfflfflffl}

Aðv;xÞ

X

T

� �
¼ O;

ð13Þ

which summarizes all the information provided by the user. The matrix on the left
will be called Aðv; xÞ, in order to emphasize that it is computed from the dominant
directions v, and from the 2D image points x. The interested reader may wish to
compare Eq. (13) with the equation used by Rother [36, Eq. 13] to represent
information.

Although Eq. (13) brings us very close to the reconstruction, we first discuss the
unicity of the solution.
4. Test of unicity and algebraic reconstruction

Having transformed the input data into a system of linear equations in the un-
known Xm and Tf, we show how to determine whether the reconstruction is uniquely
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defined and, in the affirmative, how to compute it. We begin by precisely stating what
is meant by ‘‘uniquely defined.’’

4.1. Unicity

The unicity of reconstruction is a property of the geometric information one has
about a set of 3D points. This property is true when, given perspective projections of
the 3D points of interest, it is possible to determine their position and that of the
cameras uniquely, up to a Euclidean or affine transformation. of the matrix-valued
function B (v).

Definition 2. The geometric information encoded in a matrix-valued function B (v)
defines a unique reconstruction iff a collection of 2D observations x 2 R2N ,
determines uniquely the original 3D points X, camera translations T and projection
matrices V1, . . . ,VF, up to a Euclidean (or affine) transformation.
4.1.1. Noiseless case

Given noiseless observations xm, a unique reconstruction is defined if and only if
the nullspace of the matrix Aðv; xÞ of Eq. (13) has dimension one, i.e., if its corank is
one. The rank of the matrix Aðv; xÞ obtained from noiseless observations xm thus
determines the unicity of reconstruction.

4.1.2. Real-world case

The above method only works with noiseless 2D data. In real-world situations,
errors in the observations xm turn up in the matrices B (v), A and L, andA ðv; xÞ usu-
ally has full rank.

For this reason, we propose a test that is absolutely insensitive to noise. It is based on
the following lemma, which is similar to Lemma 1, but relates to the rank of Aðv; xÞ.

Lemma 3. The rank of the matrix Aðv; xÞ is maximal for all possible dominant

directions v and noiseless observations x, obtained by the perspective projection of 3D

points that verify BðvÞX ¼ O, except for a subset with empty interior. The proof is

given in Appendix A.

This lemma implies that, given any collection of noiseless 2Dpoints x0
m which are the

projections of a collection of 3DpointsX0
m that verify the geometric properties given by

the user, it is possible to test whether the original—noisy—setup is reconstructible.
The test consists in building a vector x0 of noiseless observations and testing

whether Aðv; x0Þ, defined as in Eq. (13) has a nullspace of dimension one.
It is easy to produce x0: dominant directions vi and projection matrices Vf are

available, all that is missing is an appropriate collection of 3D points X0
m and camera

translations T0
f . The former is obtained by building an orthogonal matrix U whose

columns form a basis of the nullspace of B (v) [17] and taking X0 = UV0, where V0 can
be any vector, e.g., given by a pseudo-random number generator [32]. Camera trans-
lations T0 are also randomly generated and noiseless observations x0 are computed
using Eq. (5).
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According to Lemma 3, if the reconstruction is uniquely defined, then there is zero
probability that the rank of Aðv;x0Þ is not maximal. The rank of Aðv; x0Þ thus indi-
cates, with probability one, the unicity of the reconstruction.

One could argue that, due to numerical approximations in the representation of
real values in a computer, the probability of test yielding an erroneous result is in
practice non-zero. This argument is not valid in practice, because the computation
of the rank is a stable operation [17]. We are not aware of any failure despite exten-
sive usage of this criterion. Altogether, the procedure for determining whether the
input is sufficient is:

Criterion 4. Necessary and sufficient condition for the visual and geometric
information to define a unique reconstruction
(1) Generate a random vector V conformable with U, with components, e.g., in [�1,
1]. Define X0 ¼ ðX0

1; . . . ;X
0
N Þ ¼ UV.

(2) Generate random camera positions T0 ¼ ðT0
1; . . . ;T

0
F Þ. Use these camera posi-

tions to project the points X0
m according to Eq. (5), without the noise term. Join

these noiseless projections in a vector x0 = (x1, . . . ,xN).
(3) Build the matrix Aðv; x0Þ as in Eq. (13).

(a) If its nullspace has dimension 1, then the visual and geometric information
define a unique reconstruction.

(b) If its nullspace has dimension greater than 1, then information is lacking and
the user should provide more observations or more geometric constraints.

(c) If Aðv; x0Þ has full rank, then the geometric information is contradictory and
the user should remove some of the constrains.
4.2. Reconstruction

This section shows how to obtain a reconstruction that verifies exactly all the
geometric properties, assuming the geometric information defines a unique
reconstruction.

First, the linear system

AUV� LT ¼ ½AU jL�
V

T

� �
¼ O3N�1: ð14Þ

is built, where U is a matrix whose columns form an orthonormal basis of the null-
space of B (v), e.g., that used in the previous section.

This system is solved in the total least-squares sense [17,25], by assigning to (V,T)
the singular vector of [AU|L] corresponding to the smallest singular value. The 3D
points given by X = UV verify all the geometric constraints given by the user and
approximately (exactly in the absence of noise) verify the observations in Eq. (12).

4.3. Illustrative example

Before showing how least-squares estimation is performed, we illustrate how the
principles described in this section are put in practice.
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Fig. 4A shows the original image with 12 identified points. Five dominant direc-
tions X, Y, Z, U, and V, written v1, . . . ,v5 are used: v1, v2, and v3 are fixed to [1, 0, 0],
[0, 1, 0], and [0, 0, 1], respectively. Moreover v4 is constrained to be orthogonal to v3
and v5 is defined as v3 · v4.

Figs. 4B, D, and F show the points that are grouped in XY, XZ, and YZ planes,
respectively. The geometric information given by the lower plane in Fig. 4B, which
holds three points, translates into the following two rows of B:
(A) 3D points, dominant
directions

(B) XY planes (C) U alignment

(D) XZ planes (E) Equal distances

(G) Equal and opposite
distances(H) 3D reconstruction

(F) YZ planes

Fig. 4. A simple example: Image points and dominant directions (A), illustrated geometric information
(B–G), and reconstruction (H).
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v>3 �v>3 O O � � � O

v>3 O v>3 O � � � O

� �
:

The upper plane in that figure, which holds 7 points would likewise contribute 6
rows to B, and the planes in Figs. 4D and F will contribute more rows in the
same manner.

Fig. 4C highlights the alignment of points 8, 9, and 12. This geometric informa-
tion is expressed in B by the rows

O � � � O

O � � � O

O � � � O

O � � � O

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{�7

v>5 �v>5 O O O

v>5 O O O �v>5
v>3 �v>3 O O O

v>3 O O O �v>3

:

Note that the last two rows are not needed, since they express that points 8, 9, and 12
belong to a XY plane, a fact which has been expressed earlier. However, these rows
may be kept with no adverse effect.

Since the lower object is approximately cubic, the signed distances in Fig. 4E are
equal, which is expressed by adding to B the rows

v>2 v1 � v2ð Þ> �v>1 O O O � � � O

O v1 � v3ð Þ> �v>1 O v>3 O � � � O

" #
:

The two planar symmetries of the pyramid (Fig. 4F) are expressed by

O � � � O

O � � � O

�
v>5

O

z}|{7

v>5 O

v>4 v>4

�2v>5
�2v>4

zfflffl}|fflffl{10

O O

O O

�
;

and the fact that its base is square is expressed, e.g., by

O � � � O½ v>5

z}|{7

v4 � v5ð Þ> �v>4 O O O �:

Note that, if none of the last three constraints were used, then the reconstruc-
tion would not be well defined, as point 10 would be ‘‘dangling’’ and matrix
Aðv; x0Þ of Criterion 4 would have corank two. Any one one of these con-
straints is sufficient for the reconstruction to be well defined, but unless all three
constraints are used, the reconstruction would lack some of the properties of the
pyramid.

Needless to say, B also has three rows

v>1 � � � v>1

v>2 � � � v>2

v> � � � v>

2
64

3
75

" #
3 3
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that ensure that the center of mass of the reconstruction coincides with the origin of
coordinates.

Altogether, the matrixAðv; x0Þ of Criterion 4 has corank one, which indicates that
the geometric information defines a unique reconstruction. As said above, slightly
less information would have been sufficient to uniquely define the reconstruction,
but it would then lack some properties.
5. Least-squares estimation

This section shows how to compute the 3D reconstruction that verifies all the gi-
ven geometric constraints and minimizes the squared error in the image plane. Be-
cause the method is iterative, it is initialized with the estimate computed in the
previous section.

As stated in Eq. (4), the least-squares reconstruction is defined by

ðX;R;T;KÞ ¼ arg min
X;R;T;K

kx�XðX;R;T;KÞk22;

where Xð Þ is the perspective projection defined in Eq. (5) and the 3D points X are
subject to the geometric constraints provided by the user. In order to use, e.g., the
efficient and well-known Levenberg–Marquardt algorithm it is necessary to param-
eterize the feasible set of the optimization problem. The main difficulty lies in the
parameterization of the constrained 3D [3,8,11] points, which is the main topic of
this section.
5.1. Parameterization of the estimated quantities

A differentiable parameterization of the collection 3D points is obtained by
parameterizing the dominant directions and then the space of collections of
3D points that verify all the geometric properties. The mapping, with param-
eters h1, . . . ,hD for the directions, and V 2 RM for the 3D points, takes the
form:

vi ¼ vi hið Þ for all i 2 1; . . . ;Df g
X ¼ U v1; :::; vDð ÞV:

ð15Þ
where the 3N · M matrix U (v1, . . . ,vD) forms an orthonormal basis of the nullspace
of the matrix B (v1, . . . ,vD) of geometric constraints. The differentiable function
U (v1, . . . ,vD) is defined in Section 5.1.2 and the vi are defined below.
5.1.1. Parameterization of the dominant directions

We assume that the vi are ordered so that they can be computed sequentially,
starting from v1. Each vi is defined by one of the following rules:
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Constraint type
 Parameters

Known direction: vi = Known, e.g., v1 = [1, 0, 0]>,

so that no parameter hi is needed.

0

Arbitrary direction: vi = hi/ihii for some hi 2 R3 n f½0; 0; 0�>g.
 3

Fixed angle: vi is constrained to verify v>i vj ¼ cosðaÞ,

for some previously computed vj (i.e., j < i) and
some fixed a. vi is computed by projecting
orthogonally onto the 3D circle
fv j v>vj ¼ cosðaÞ; kvk ¼ 1g a vector hi 2 R3.
3

Coplanarity: vi is coplanar with two direction vj and vk,
for some j < i, k < i. This is implemented in the same
way as a fixed angle, by taking v>i ðvj � vkÞ ¼ cosðp=2Þ.
3

Cross-product: vi is constrained to be orthogonal to
two directions, vj and vk, and is defined, e.g.,
by vi = vj · vk/ivj · vki, so that no parameter hi is needed.
0

Although this parameterisation is less general than arbitrary angle and planarity
constraints between directions, it has the advantage of always being feasible (one
cannot give incompatible constraints) and of defining explicitly a differentiable
parameterisation.

5.1.2. Parameterization of the constrained points
We now define a differentiable function U (v1,..,vD) to complete the mapping in

Eq. (15). The main issue is the differentiability, since it is well known that, although
it is possible to compute a matrix U (v1, .. ,vD) that verifies

B v1; ::; vDð ÞU v1; ::; vDð Þ ¼ O3N�M and U v1; ::; vDð Þ>U v1; ::; vDð Þ ¼ IM ; ð16Þ

these relations do not define a unique—let alone continuous or differentiable—func-
tion U (v1, .. ,vD).

However, under some smoothness conditions verified by B (v1, .. ,vD), it is possible
to define locally a function verifying Eq. (16). This is done by fixing arbitrarily its
value U0 at an arbitrary point (v01, . . . ,v0D) and defining:

U v1; ::; vDð Þ ¼ argmin
U

kU � U 0kF j U verifies Eq: ð16Þ
� �

: ð17Þ

Proof of the differentiability of this function is a generalization of the single-variable
case [34,44] and can be done with the implicit function theorem [18]. In practice,
U (v1, .. ,vD) is computed by

Uðv1; ::; vDÞ ¼ U 1UV>; ð18Þ
where U1 is a unitary matrix whose columns form a basis of the nullspace of
B (v1, .. ,vD), and U, V are given by the SVD decomposition of U>

1 U 0:
U>

1 U 0 ¼SVDUDV>. Note that the value of Eq. (18) is independent of the choice of
U1, which can be given by any nullspace or SVD computing algorithm.
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The derivative of U (v1, .. ,vD) with respect to the ith component of the vector
(v1, . . . ,vD) at ðv01; . . . ; v0DÞ is given by:

U 0
i ¼ �BþB0

iU : ð19Þ
where B0

i is the derivative of B with respect to the ith component and B+ is the pseu-
do-inverse. A more general formula exists [18] for the derivatives at other points than
ðv01; . . . ; v0DÞ, but it is not needed here.

The other parameters—camera translation, orientation, and calibration are com-
monly used in optimisation problems and their parameterization does not need to be
detailed here. We have thus defined a differentiable parameterization of all the in-
volved quantities.

5.2. Parameter estimation and assessment of accuracy

This parameterization can now be plugged in any least-squares optimization
(‘‘bundle adjustment’’) method to obtain the least-squares estimates of camera
parameters and constrained 3D points.

We used for this purpose the Levenberg–Marquardt algorithm [32], which yields a
local minimum of the sum-of-squared-error function starting from the reconstruc-
tion given in Section 4.2. The only caveat worth mentioning is that, since the param-
eterization of U (v1, .. ,vD) is local, the value of U0 is updated at each outer loop of
optimization. With this implementation detail, the information in this section should
allow the interested reader to reproduce our results.

Finally, since the reconstruction is obtained by minimizing a differentiable func-
tion it is straightforward to apply the method of [22] to estimate the covariance of
the estimated parameters.

5.3. Summary

We may now summarize the steps that lead from a dataset to a least-squares
reconstruction.

(1) Preliminary computations: Estimate the vanishing points, projection matrices,
and dominant directions vi. If possible, compute the calibration so that the vi
are expressed in a Euclidean coordinate system.

(2) Build the matrix B (v) in Eq. (10) and a matrix U0 whose columns form an otho-
normal basis of the nullspace of B (v).

(3) Check the unicity of the reconstruction.

(a) Generate random vectors V0 and T0, define X0 = U0V

0.
(b) Compute the perspective projections x0

m from X0, T0, and the projection
matrices V1, . . . ,VF. Build the matrices A0 and L0 as in Eq. (12).

(c) Check that the data defines a unique reconstruction, i.e., that the corank of
Aðv; x0Þ ¼
B O

A0 L0

� �

is one. If this is not the case, warn the user and stop.



168 E. Grossmann, J. Santos-Victor / Computer Vision and Image Understanding 99 (2005) 151–174
(4) Reconstruction: compute (V,T), the least singular vector of [AU0|L] and set

X = U0V.

(5) Least-squares: find iteratively the X, T, R, and K (in the calibrated case), using
the parameterization described in Section 5.1 in conjunction with Levenberg–
Marquardt.
6. Experimental results

Having detailed the simple dataset in Fig. 4, we proceed with the performance
evaluation of the proposed reconstruction method and will then show results ob-
tained in datasets of significant size.

6.1. Benchmarking

First, the effect of errors in the observations is gauged by benchmarking the meth-
od on synthetic data.

Benchmarking is done using the setup shown in Fig. 3C, consisting of 27 points
on a 3 · 3 · 3 irregular grid. The lengths of the edges of the grid are uniform random
variables in [0.5, 1]. The grid is translated and scaled so that its center of mass be [0 0
0]> and the mean norm of its vertices be 1. The world origin has coordinates
T = [T1T25]

>, where the Ti are N (0, 0.5) random variables. The camera is randomly
rotated by 30� to 60� around an axis in the ‘‘X–Y’’� plane. The observations are given
by Eq. (5), where the natural logarithm of the focal length is a N (0, 0.1) random
variable.

The noise terms, given by a Gaussian pseudo-random number generator, are i.i.d.
terms with amplitude varying from 0.0 (no noise) to 2.24% (33 dB) of the amplitude
of the observations. For comparison, the noise usually ranges from 0.3 (50 dB) to
1.0% (40 dB) in real-world data.

For each noise level, both estimators are run on 50 different datasets and the error
is measured. Fig. 5 shows the curves of the error in the 3D points (left), camera
orientation (middle) and translation (right). The error in 3D points and camera
Fig. 5. Error in the reconstruction as a function of the error in the observations: error in the estimated 3D
points (left), the orientation of the cameras (middle, measured in degrees), and the translation of the
cameras (right).
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translations is measured in percents of the amplitude of these quantities, so that these
results are invariant to the size of the setup. The error in camera orientation is mea-
sured by the mean angle, in degrees, between the columns of the true and the esti-
mated orientation matrices, Rf, in Eq. (5).

Fig. 5 shows that the proposed method behaves well and that it does not break
down in very high noise levels. In real-world cases, the algebraic and least-squares
reconstructions are indistinguishable by eye, so that the former may be used in sit-
uations where precision is less important or computation resource is scarce.

Although, we do not compare our method to others, it is generally admitted that
least-squares reconstruction is more accurate than ‘‘linear’’ methods, and that multi-
view reconstruction is more accurate when geometric constraints are used. This last
fact is, e.g., confirmed in [2] for polynomial constraints, in [1] for planar constraints
and in [20] for planar and angular constraints.

6.2. Real-world reconstructions

We now present results obtained from real-world datasets, with the aim of further
illustrating the capabilities of the presented method.

6.2.1. Tour Eiffel

Figs. 1C and D illustrates how symmetry allows to uniquely define a reconstruc-
tion. Horizontal planes are easily identified, but very few vertical planes, on the first
floor only, can be used, so that previous [10,38,43] constraint-based methods cannot
treat this dataset. However, symmetries with respect to vertical planes allow to define
a unique reconstruction.

Symmetry is enforced using three corner points on each horizontal level and the top-
most point. Eqs. (2) and (3) guaranty the symmetry of the figure. Altogether, there are
N = 77 points, 56 planes and 45 known length ratios. The object hasQ = 49 degrees of
freedom, i.e.,U has 49 columns. The error (measured as in the previous section) in the
3D points and camera orientation are approximately 0.52% and 0.21�.

6.2.2. Saint-Michel

The example in Fig. 6 shows that single-view reconstruction needs not be limited
to block-like or highly regular objects. Horizontal coplanarity relations hold for
Fig. 6. (Left) Indoor scene with 114 identified points. (Middle, right) Reconstruction obtained from these
points and 39 known planes, shown with and without texture.



170 E. Grossmann, J. Santos-Victor / Computer Vision and Image Understanding 99 (2005) 151–174
points on the floor, for points on the wall that can be connected along a horizontal
row of bricks and for some points on the window. Vertical planes are identified on
the walls and arcades. Altogether, N = 114 points, 39 planes and no length ratios are
used. The scene has Q = 173 degrees of freedom. In this model, the principal point of
the camera was estimated. The error in the 3D points and camera orientation are
approximately 5.5% and 0.49�.

6.2.3. Folkemuseum

In this model, shown in Figs. 1A and B, N = 122 points were identified and there
are 75 planes and 26 known length ratios. The model has Q = 124 degrees of free-
dom. The error in the 3D points and camera orientation are approximately 1.53%
and 0.31�.

6.2.4. Multiple-view indoors

Fig. 7 shows two indoor images with very little overlap, taken from nearly the
same point, in almost perpendicular directions. No intrinsic parameter can reliably
be estimated because two vanishing points are almost at infinity. This is thus an
affine reconstruction. There are N = 61 points, 35 planes and one known ratio
of lengths: the distance from the point marked ‘‘A’’ in the first image to that
marked ‘‘A-prime’’ in the second image is equal to that from point ‘‘B’’ (first im-
age) to point ‘‘B-prime’’ second image. There is a unique reconstruction despite no
3D point is visible in both images. The error in the 3D points is approximately
3.01%.

6.2.5. Multiple-view outdoors—‘‘Conciergerie’’

Fig. 8 (top) shows two outdoors image with some overlap. Seventy-two points (24
in the first image, 48 in the second) and 21 planes are identified; two known length
ratios are given, to express that the spikes on the walls–represented by the small in-
clined planes near the top of the reconstruction—stick out by the same amount on
the left and front wall; without this information, the reconstruction would not be un-
iquely defined. The error in the 3D points and camera orientation are approximately
2.05% and 0.26�.
Fig. 7. (Left, middle) Two views with no overlapping points or lines. However, because some planes—the
floor, ceiling and a wall—are visible in both images and because the length of the hall is equal on both
sides, it is possible to obtain a reconstruction (Right).



Fig. 8. (Left, middle) Two outdoor images. (Right) Untextured reconstruction.
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7. Conclusions

We have presented an algebraic method for the of 3D reconstruction of geomet-
rically constrained scenes. Its good behavior is shown on synthetic and real-world
data. This method improves over the current state-of-the art by exploiting a wider
range of geometric constraints and by handling multi-view datasets naturally. A
parameterization of 3D points subject to geometric constraints was defined that al-
lows to obtain the least-squares reconstruction and to estimate its precision. More-
over, a geometric test that depends only on the geometric information determines
whether the input data defines a unique reconstruction.

The proposed method is applicable in a wide range of situations and can still be
extended in many ways. For example, the camera positions and motion could be
constrained linearly just like the 3D points, with very little change in the proposed
framework. Furthermore, like other methods that require the preliminary computa-
tion of dominant directions, it could benefit from different calibration techniques in
the single- [23,48,46] or multi-view [15] cases.

Finally, it should be noted that two original mathematical techniques were intro-
duced in this article. First, in testing the unicity, we use the fact that the outcome of
the test does not depend on the particular setup, but only on the geometric informa-
tion, to devise a test that is insensitive to noise. Second, we use a differentiable rep-
resentation of the nullspace of a matrix-valued function to parameterize a collection
of constrained 3D points.
Appendix A. Demonstrations

We show in this section some important properties of the systems of linear con-
straints used in this article.

First we show that the rank of B (v) is maximal for almost all possible values of the
dominant directions v1, . . . ,vD. This statement is imprecise because it omits that the
vi are not arbitrary: some are fixed (e.g., v1, v2, and v3), all have unit norm, and other
constraints may be imposed [21].

These constraints are expressed by a polynomial equation C (v) = 0, where
v = (v1,v2, . . . ,vD) and C (v) is a polynomial. This polynomial is a sum of non-nega-
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tive terms that are zero iff the constraint is met. For example the condition vi ¼ O3�1

yields the term iv1 � [1 0 0]>i2; ivii = 1 yields: (ivii2 � 1)2; known angles:
ðv>i vj � cos bÞ2(for some known b). The dominant directions are thus restricted to be-
long to the set V ¼ fv 2 R3D j CðvÞ ¼ 0g.

Note that C (v) is needed only for the purpose of this demonstration and not for
actually testing the unicity of the reconstruction.

Lemma 1. The rank of B (v) is maximal for all values of v ¼ ðv1; . . . ; vDÞ 2 V except

for a subset of empty interior in the topology of V induced by that of R3D.

This lemma holds because for any integer r, the sum of the squared minors of B
(v) of size r or more is either identically zero on V or zero on a subset of V that has
zero interior for the topology of V induced by the usual topology of R3. This is
shown using simple analytical arguments: we call Mr (v) the sum of squared deter-
minants of all minors of size r or greater of the matrix B (v). Thus, the rank of
B (v) is r iff Mr (v) = 0 and Mr�1 (v) 6¼ 0. Define Mr ¼ fv 2 R3D j MrðvÞ ¼ 0g;
Mr \V is a closed set of R3D and is thus a closed set of (the topological subspace)
V. If Mr contains a non-empty open set of V, then Mr (v) and C (v) coincide on
that open set and thus coincide on the whole set V. In that case, Mr (v) is identically
zero on V. Thus, for all r, Mr (v) is either identically zero on V or Mr (v) is zero at
most on a closed set of empty interior. That is, all minors of B of size r or greater
have zero determinant either for all values in V or at most on a set of empty
interior.

The following lemma states a similar property for the matrix A, when the obser-
vations are noiseless. While B (v) is a function of the dominant directions alone,
Aðv; xÞ also involves a vector of noiseless observations x.

Lemma 3. The rank of the matrix Aðv; xÞ is maximal for all possible dominant

directions v and noiseless observations x obtained by the perspective projection of 3D

points that verify BðvÞX ¼ O, except for a subset with empty interior.

This proof is similar to the previous : we define the set V � R3Dþ2N of pairs (v,x)
such that C (v) = 0 and x is the perspective projection of a collection of 3D points X
that verifies BðvÞX ¼ O. We call Mr (v,x) the sum of the squared determinants of all
minors of size r or greater of the matrix Aðv; xÞ. The lemma follows from the fact
that Mr (v,x) is either identically zero for all ðv; xÞ 2 V or is zero at most on a subset
of V of zero interior for the topology induced on V by that of R3Dþ2N .

In full rigor, these lemmas should be adapted to floating-point computation by
providing bounds (certainly very low) on the probability that they fail.
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