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This paper proposes an aiding technique to enhance error estimation in low-cost strap-
down inertial navigation systems with application to Unmanned Air Vehicles (UAVs). The
paper summarizes a high-accuracy, multi-rate integrated Global Positioning System/Inerti-
al Navigation System (GPS/INS) using Extended Kalman Filter (EKF) for error compen-
sation. A proposed new technique decomposes and optimally integrates the magnetic and
gravitational observations in the EKF, taking into account the vehicle’s dynamics band-
width information to properly trace inertial motion. In particular, the paper evidences
that inertial misalignment errors and biases can be effectively estimated resorting to the
gravity vector low frequency information embodied in accelerometer measurements. The
performance of the overall INS aiding architecture is assessed in simulation, and results
obtained about UAV typical trajectories are presented and discussed.

Nomenclature

Notation
s̄ Nominal vector
sr Sensor measurement of vector s̄
s Compensated vector
ŝ Estimated vector
δs = s− s̄ Vector error
[s×] Cross product operator for vector s
‖s‖ Magnitude of vector s
F s Vector expressed in coordinate frame {F}
A′ Transpose of matrix A

Nomenclature
{E}, {B} Earth and body coordinate frames
BaSF Specific force expressed in body frame
a,v,p Acceleration, velocity, and position expressed in Earth frame
ω Body angular rate expressed in body frame
ba,bω Accelerometer and rate gyro triads biases expressed in body frame
g, m Earth gravitational and magnetic fields
na,nω,nm Accelerometer, rate gyro, and magnetometer triads zero mean white noises with variances σ2

a, σ2
ω, σ2

m

λ Rotation vector with magnitude λ = ‖λ‖
E
BR(λ) Rotation matrix from body to Earth coordinate frames, parameterized by λ
R Shorthand notation for E

BR(λ)
In×n N -dimensional identity matrix
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Subscripts and Superscripts
k Time index
−,+ Predicted and updated filter states

I. Introduction

High maneuverability, versatility, and complex dynamics make model-scale helicopters a cost-effective
Unmanned Air Vehicle (UAV) platform with wide and valuable operational capabilities to perform realistic
missions. Among others, they include bridge monitoring, accurate terrain and natural resource surveying,
and crop fields spraying. The use of these platforms in surveying and monitoring missions requires low-cost,
ultra light weight, high performance, robust navigation systems, that can accurately estimate the UAV’s
position and attitude. These facts raised, in the last years, the Autonomous Vehicles scientific community
awareness towards strapdown navigation systems.

Accuracy and performance specifications often foster higher requirements for such cost effective navigation
systems. Low-cost aiding sensors require more complex filtering techniques in order to meet performance
specifications and to tackle noise and bias effects. New onboard aiding compensation techniques and multiple
inertial sensor error models have been recently taken into account in the navigation system’s structure, to
enhance its performance and robustness.

This paper proposes a solution to include vector observations and vehicle dynamics bandwidth information
directly in the Extended Kalman Filter (EKF). Attitude measurements based on vector observations are
usually integrated using standalone attitude estimation algorithms. In this work, the Kalman filter acts as an
attitude determination algorithm using magnetometer and gravity observations as direct inputs. Rate gyro
and accelerometer biases compensation enhancements are illustrated, using magnetometer measurements
and selective frequency contents from gravity information, provided by the accelerometer triad readings. An
arbitrary number of time-varying aiding vector readings and optimal sensor error modeling in the EKF are
made possible by using the proposed architecture.

Past work on attitude aiding devices focused on a Magneto-Pendular Sensor (MPS), Ref. 1. This stand-
alone unit computed an attitude estimate based on the Earth’s gravitational and magnetic fields, which was
externally fed to a Non-linear Complementary Kalman Filter. The new technique proposed in this paper
decomposes and optimally integrates the magnetic and gravitational observations in the EKF, taking into
account the vehicle’s dynamics bandwidth information to properly trace inertial motion.

Classical GPS/INS involving inertial sensor biases estimation are found to hold only partial observability
for a time-invariant configuration. As convincingly argued in Refs. 2–4, time-varying in-flight characteristic
maneuvers and disturbances excite the remaining observable variables and turn the system to full observabil-
ity under specific assumptions. Recent work has been directed towards replacing these on-flight alignment
maneuvers by equipping the filter with additional information sources, namely aiding sensors or vehicle dy-
namic model information, see Refs. 4–6. Moreover, a valuable survey on attitude determination methods
based on aiding vector observations is provided in Ref. 7, where a Matrix Kalman Filter is designed to
determine attitude rotation matrix and a set of normalization procedures is proposed.

The Inertial Navigation System (INS) is the backbone algorithm that performs attitude, velocity and
position numerical integration from rate gyro and accelerometer triads data, rigidly mounted on the vehicle
structure (strapdown configuration). Global attitude high-precision INS algorithms that account for high
frequency attitude, velocity and position motions (denoted as coning, sculling and scrolling respectively) are
developed in Refs. 8–10. Interestingly enough, Ref. 11 proposes a technique to convert the high accuracy
attitude algorithms into its velocity/position counterpart.

For highly maneuverable vehicles, the INS numerical integration must properly address the fast dynamics
of inertial sensors output, to avoid estimation errors buildup. Usually INS algorithm execution rates are set as
a trade-off between the available hardware and the performance requirements.8–10 Simulation environments
and trajectory profiles to tune the algorithm’s repetition rate according to the accuracy requirements are
thoroughly described by Savage12 and some pencil-and-paper algorithm evaluation procedures are presented
in Refs. 8,9. In recent vehicle literature Refs. 4–6,13,14, the EKF is adopted to dynamically compensate for
non-ideal sensor characteristics that otherwise would yield unbounded INS errors.

The proposed navigation system architecture is depicted in Figure 1. The system is based on a high-
precision INS to compute attitude, velocity and position, and performs error correction using a direct-
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feedback configuration. The EKF estimates the attitude error using an unconstrained, locally non-singular
attitude parameterization that can be assumed locally linear, as discussed by Markley.15 The attitude error
parameterization is reset after being applied to compensate, in a non-linear fashion, the global attitude
estimate, described in Direction Cosine Matrix (DCM) form. This incremental procedure can be regarded as
a storage technique that prevents the filter’s attitude error estimates to fall into singular configurations. In
this work, the attitude error is parameterized using the rotation vector representation in Earth coordinates.
Other equivalent frame coordinates and attitude parameterizations can be used, such as Gibbs vector and
Modified Rodrigues Parameters,15,16 that hold identical mathematical first order relationships.

The paper is organized as follows. Section II briefly discusses the INS algorithm adopted in this work.
In Section III, EKF equations are developed to model inertial sensor errors, and error correction procedures
are detailed. The main contribution of this paper is derived and illustrated in Section IV where generalized
vector readings are optimally introduced into the EKF. The technique is illustrated for GPS, magnetometer
measurements, and gravity vector information obtained from selective frequency contents of accelerometer
readings. It is also pointed out how vehicle dynamics bandwidth information can be merged into the EKF, to
enhance the overall navigation system performance. Section V details relevant implementation issues. Results
for bias estimation and trimming trajectory performance are presented in Section VI. Finally, Section VII
provides concluding remarks on the subject and comments on future work.

Figure 1. Navigation System Block Diagram

II. Inertial Navigation System Algorithm

In this section, an INS algorithm is briefly introduced, based on the tutorial work that can be found in
Ref. 8 for attitude and in Ref. 9 for velocity and position. Angular, velocity and position high-frequency mo-
tions, referred to as coning, sculling, and scrolling respectively, are properly accounted for using a multi-rate
approach. In this framework, a high-speed, low order algorithm computes dynamic angular rate/acceleration
effects at a small sampling interval, and its output is periodically fed to a moderate-speed algorithm that
computes attitude/velocity resorting to exact, closed-form equations. Limited operational time and confined
mission scenarios for the application at hand allowed to simplify the frame set to Earth and body frames and
to adopt an invariant gravity model without loss of precision, while equations were derived to the highest ac-
curacy. Interestingly enough, repetition rate’s upper bounds are found to run swift in a standard low-power
consumption DSP based hardware architecture. This allows to use maximal precision so that computational
accuracy of the INS output is only diminished by the inertial sensors’ noise and biases effects.

As depicted in Figure 2, the inputs provided to the inertial algorithms are the integrated inertial sensor
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Figure 2. INS with Error and Bias Correction

output increments

υ(τ) =
∫ τ

tk−1

BaSF dt (1)

α(τ) =
∫ τ

tk−1

ωdt (2)

where the inertial sensor readings are considered to be corrupted by white noise and bias

BaSF =B ā +B ḡ + b̄a + na − ba (3)

ω = ω̄ + b̄ω + nω − bω (4)

Attitude moderate-speed algorithm8 computes body attitude in DCM form

Bk−1
Bk

R(λk) = I3×3 +
sinλk

λk
[λk×] +

1− cos λk

λ2
k

[λk×]2 (5)

where {Bk} is the body frame at time k. Rotation vector dynamics, based on Bortz equation,17 are formulated
in order to denote angular integration and coning attitude terms αk and βk, respectively

λk = αk + βk (6)

where αk = α(t)|t=tk
and the coning attitude term measures the attitude changes due to the effects of

angular rate vector rotation. A high-speed attitude algorithm is required to compute βk as a summation of
the high-frequency angular rate vector changes using simple, recursive computations.8 Equations (5) and (6)
summarize both the moderate and high-speed attitude dynamics in the DCM format using exact, error-free
equations, enabling high-accuracy results.

Exact linear velocity updates can be computed at moderate-speed rate using the equivalence between
strapdown attitude and velocity/position algorithms,11 that yields

vk = vk−1 +E
Bk−1

R∆Bk−1vSF k + ∆vG/Cor k (7)

where ∆Bk−1vSF k is the velocity increment related to the specific force, and ∆vG/Cor k represents the
velocity increment due to gravity and Coriolis effects, see Ref. 9 for further details. High-speed velocity
rotation and high-frequency dynamic variations due to angular rate vector rotation, are likewise accounted
for in the high-frequency algorithm and included in the moderate-speed calculations as9

∆Bk−1vSF k = υk + ∆vrot k + ∆vscul k (8)

where υk = υ(t)|t=tk
and ∆vrot k and ∆vscul k represent velocity increments due to rotation and sculling,

respectively.

4 of 15

American Institute of Aeronautics and Astronautics



III. Extended Kalman Filter Algorithm

In a stand alone INS, bias and inertial sensor errors compensation is usually performed offline. The
usage of filtering techniques in navigation systems allows to dynamically compute the biases estimates and
to effectively bound the INS errors. The EKF state space model, used in this work, is derived based on
the attitude vector dynamics. The sensor’s noise characteristics are directly included in the covariance
matrices and attitude error compensation does not require attitude normalization procedures. Linearization
assumption is kept valid by executing error correction routines and resetting error estimates after each EKF
cycle.

A. Error State Space Model

The EKF error equations, based on perturbational rigid body kinematics, were brought to full detail by
Britting,18 and were applied to local navigation in Ref. 14. The attitude, velocity, and position error
dynamics can be written as 




δṗ = δv
δv̇ = RδBaSF − [RBaSF×]δλ
δλ̇ = Rδω

(9)

where BaSF =B a+Bg. Using the rotation error matrix definition18 R(δλ) , RR̄′, the attitude error
rotation vector δλ, expressed in {E}, is given by the first order approximation of DCM form (5)

R(δλ) ' I3×3 + [δλ×] ⇒ [δλ×] ' RR̄′ − I3×3 (10)

Error dynamics (9) are extended to include bias estimation errors using equations (3) and (4) to rewrite the
accelerometer and rate gyro additive errors as

δBaSF = −δba + na

δω = −δbω + nω (11)

Replacing in (9), the complete error state space model is





δṗ = δv
δv̇ = −Rδba − [RBaSF×]δλ +Rna

δλ̇ = −Rδbω +Rnω

˙δba = −nba

˙δbω = −nbω

(12)

where nba , nbω are zero mean white noises, and the inertial sensors biases are modeled as random walk
processes, ˙̄ba = nba , ˙̄bω = nbω .

The continuous-time error state space model δẋ = F(x)δx + G(x)nx is described by




δx̂ =
[
δp̂′ δv̂′ δλ̂′ δb̂′a δb̂′ω

]′

nx =
[
n′p n′a n′ω n′ba

n′bω

]′

F(x) =




0 I 0 0 0
0 0 −[RBaSF×] −R 0
0 0 0 0 −R
0 0 0 0 0
0 0 0 0 0




(13)

G(x) = blkdiag(I3×3,R,R,−I3×3,−I3×3)

where blkdiag(...) represents a block diagonal matrix and np is a fictitious zero mean white noise associated
to the position error estimate.
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B. Error Compensation

After each EKF update, error estimates are fed into the INS error correction routines as depicted in Figures 1
and 2. It is important to stress that linearization assumptions are kept valid during the algorithm execution
since the EKF error estimates are reset after being used to compensate the corresponding variables. The
error correction procedures are specific to the INS algorithms and error state space representations. For the
INS described in Section II, error routines are detailed next.

Attitude estimate, R−k , is compensated using the rotation error matrix R(δλ) definition, which yields

R+
k = R′k(δλ̂k)R−k (14)

where matrix R′k(δλ̂k) is described exactly as

R′k(δλ̂k) = I3×3 −
sin(

∥∥∥δλ̂k

∥∥∥)
∥∥∥δλ̂k

∥∥∥

[
δλ̂k×

]
+

1− cos(
∥∥∥δλ̂k

∥∥∥)
∥∥∥δλ̂k

∥∥∥
2

[
δλ̂k×

]2

(15)

and is computationally implemented using power series expansion of the scalar trigonometric terms up to
an arbitrary accuracy.12 In the case where few computational resources are available, R′k(δλ̂k) can be ap-

proximated to first order by R′k(δλ̂k) ' I3×3−
[
δλ̂k×

]
that, nonetheless, introduces DCM orthogonalization

problems in R+
k whose compensation usually requires considerable computational effort.19 The remaining

state variables are simply compensated using

p+
k = p−k − δp̂k

v+
k = v−k − δv̂k

ba
+
k = ba

−
k − δb̂a k (16)

bω
+
k = bω

−
k − δb̂ω k

The INS block structure with EKF corrections is depicted in Figure 2, where the error compensation
and bias update routines, (14) and (16), are executed after the INS outputs have been fed to the EKF and
errors estimates are available. Note that the EKF sampling rate is synchronized with the moderate-speed
INS output rate and that no corrections are involved in the high-speed computation algorithms. After the
error correction procedure is completed, the EKF error estimates are reset δx̂k=0. At the start of the next
computation cycle (t = tk+1), the INS attitude and velocity/position updates from Section II are performed
on the corrected estimates (R+

k ,v+
k ,p+

k ) to provide new inputs (R−k+1,v
−
k+1,p

−
k+1) to the EKF.

IV. Vector Aiding Techniques

The EKF relies on aiding sensor readings to successfully estimate the error states. The physical coupling
between attitude and velocity errors (9) enables the use of GPS position readings to partially estimate
attitude errors. As convincingly argued by Goshen-Meskin,3 for observability analysis purposes a GPS
based navigation system with bias estimation can be split into a concatenation of piece-wise time-invariant
systems with little loss of accuracy and, under that assumption, full observability is met by performing specific
maneuvers along the flight path. Even though the GPS itself does not suffice to implement a fully observable
navigation system, in-flight characteristic maneuvers and disturbances are shown to alternately excite the
non-observable variables. This circle of ideas directed the scientific community research effort towards
including additional aiding sources to strengthen the system observability for typical vehicle maneuvers, see
Refs. 4–6.

The vector observation technique major contribution is to enhance the system observability by providing
attitude observations and vehicle dynamics bandwidth information to the EKF. Reference 1 previously
derived a self-contained device to compute attitude matrix RMPS using the magnetometer triad readings
and the Earth’s gravitational field available from processing the accelerometer triad measurements. The
attitude measurement residual δzλ MPS presented to the filter was described by

[δzλ MPS×] = RR′MPS − I3×3 (17)
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and modeled in the filter as
δzλ MPS = δλ+nMPS (18)

using a noise term nMPS to compensate for the magnetometer, accelerometer, rate gyro and INS disturbances
impact on the attitude algorithm. Nonetheless, characterizing nMPS as white noise could degrade the filter
performance because it did not properly model the non-linear influence of inertial/magnetic sensors errors
in RMPS computations.

In this work, vector observations are directly embedded in the EKF, as depicted in Figure 1. The gravity
selective frequency contents provided by the accelerometer triad yield a precise nMPS equivalent, endowing
the filter with a much more clear and accurate stochastic description of the navigation system error sources
and disturbances.

The EKF implicitly computes the attitude based on the vector observations, presenting an alternate
optimal solution to the Wahba’s problem20 that encloses system dynamics, without external attitude deter-
mination algorithms and using actual optimal criteria. Sensor error characteristics other than just white
noise are properly modeled in the filter, using the EKF covariance matrices and the structure of the error
state space model. The algorithm presented herein can be generalized to any number of vector observations,
devising a straightforward procedure to enhance the accuracy of the navigation system results which also
reinforces the EKF linearization assumption.

Figure 3. Vector Measurement Residual Computation (Magnetometer and Gravity)

A. General Vector Measurements

Consider a generic vector s, the attitude measurement residual δzs = (Bs − sr) is computed by comparing
the vector body frame coordinates readings

sr = R̄′E s̄ + ns (19)

with the INS estimate
Bs = R′E s̄ (20)

Replacing the INS attitude estimate R′ by the attitude error δλ approximation (10) yields

sr = R̄′E s̄ + ns = R′ [I3×3 + δλ×]E s̄ + ns

=B s−R′ [E s̄×]
δλ+ns (21)

which relates the EKF measurement residual δzr with the attitude error δλ, bearing

δzs = R′ [E s̄×]
δλ− ns (22)

where ns is the vector readings sensor noise. An equivalent result for the attitude error expressed in body
frame is discussed in the Appendix. In general, other additive sensor disturbances are found in the vector
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readings (19). These include sensor errors such as biases bs that are compensated in the INS block, or sensor
disturbances ds whose dynamics are modeled in the EKF filter, bearing

sr = R̄′E s̄ + ns + δbs + ds (23)

where δbs represents the error term associated to bs and ds is described by augmenting the EKF state
model. The measurement residual is thus described by

δzs = R′ [E s̄×]
δλ− δbs − ds − ns (24)

This result shows how to introduce the aiding sensor measurement residual δzs in the EKF based on a
vector measurement sr. The derived result applies to the magnetometer readings by replacing the generic
vector s with Earth’s magnetic field m, as depicted in Figure 3. The proposed technique enhances the state
observability and is suited for an arbitrary number of vector observations. Aiding sensor parameters like
noise variances σ2

s directly fit in the EKF observation noise covariance matrix, which allows to integrate new
attitude sensors without time-consuming parameter tuning procedures.

Intermediate attitude estimates computation is plainly skipped since the vector readings sources are
directly modeled and fed into the filter. In review, while the INS calculates the body attitude estimates
using high-precision algorithms described in Section II, the EKF main function is to turn aiding sensor
readings into attitude, velocity, position error and biases estimates to be fed back into the INS.

B. Frequency Components of Vector Observations

Based on the main result of previous section (24), gravity vector readings are derived from the accelerometer
measurements. The gravity vector expressed in the body coordinate system is obtained from the accelerom-
eter triad as

gr ,B aSF − ω ×B v (25)

and is compared to the INS gravity estimate

Bg = R′E ḡ (26)

The INS gravity estimate Bg description is identical to the Bs definition (20). The accelerometer triad
gravity measurement gr contains additional acceleration compensation terms (3), yielding

gr =B ḡ + aLA − δba − δ
(
ω ×B v

)
+ na (27)

where the δ
(
ω ×B v

)
= ω×B v−ω̄×B v̄ is the error related to the centripetal acceleration removal in (25),

and aLA =
[
aLAx aLAy aLAz

]′
represents the linear acceleration. Note that equation (27) is according to

the methodology introduced in (23).

(a) Bode Plot (b) Specific Force Model

Figure 4. Linear Acceleration Characteristics

In general Autonomous Vehicles can only produce linear acceleration for short time periods and their
accelerations can be assumed as relatively high frequency signals. Based on this assumption, each of the
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aLA components can be modeled as a band pass signal whose bandwidth is shaped according to the vehicle
characteristics, often to filter out high-frequency INS acceleration jitter and to simultaneously avoid the
influence of erroneous low-frequency accelerometer bias. The state model dynamics for the x-axis component,
is generically represented in Figure 4, and can be written as

ẋLA ,
[

ẋ1 LAx

ẋ2 LAx

]
=

[
0 1

−αhαl − (αh + αl)

][
x1 LAx

x2 LAx

]
+

[
0
αh

]
nLAx (28)

aLAx = x2 LAx

where αh and αl are the high-frequency and low-frequency cutoff frequencies, respectively, and nLAx is a
white noise input with variance σ2

LA.
The centripetal acceleration compensation term is derived using (4) and (10) to yield

δ
(
ω ×B v

)
= [ω×]R′δv + [ω×]

[
Bv×]R′δλ+

[
Bv×]

(δbω − nω) (29)

where the first two right-hand-side terms arise from the velocity estimation errors and the third is originated
by rate gyro errors.

The gravity measurement residual δzg is defined by δzg =
(
Bg − gr

)
, as depicted in Figure 3. Using the

previously derived result (24), the vector measurement residual can be expressed as

δzg = R′ [E ḡ×]
δλ + δba + δ

(
ω ×B v

)− aLA − na (30)

Replacing the centripetal acceleration term (29), the complete gravity measurement residual equation yields

δzg = [ω×]R′δv +
(R′ [E ḡ×]

+ [ω×]
[
Bv×]R′) δλ + δba +

[
Bv×]

δbω − na −
[
Bv×]

nω − aLA (31)

which includes the EKF state augmentation introduced in (28) for vehicle acceleration modeling.

V. Implementation

The complete continuous state model vectors and matrices are




x̂C =
[
δx̂′ x′LAx x′LAy x′LAz

]′

nxC =
[
n′x nLAx nLAy nLAz

]′ (32)

FC(x) = blkdiag(F (x) ,FLA,FLA,FLA) (33)
GC(x) = blkdiag(G(x),GLA,GLA,GLA) (34)

FLA =

[
0 1

−αlαh −(αl + αh)

]
,GLA =

[
0
αh

]
(35)

and the measurements are described using the classical state model observations δz = H (x) δx + nz where




δz =
[
δz′p δz′m δz′g

]′

nz =
[
−n′GPS −n′m

(−na −B v × nω + nδg

)′]′ (36)

H (x) =



I 0 0 0 0 0
0 0 R′ [Em̄×]

0 0 0
0 [ω×]R′ R′ [E ḡ×]

+ [ω×]
[
Bv×]R′ I3×3

[
Bv×]

HLA


 (37)

HLA = blkdiag(
[
0 −1

]
,
[
0 −1

]
,
[
0 −1

]
) (38)

and nδg is a fictitious white noise associated with δzg observation. The position measurement residual δzp

is classically obtained from the GPS readings.14

The state and observation noise covariance matrices are

QC = blkdiag(σ2
pI3×3, σ

2
vI3×3, σ

2
ωI3×3, σ

2
ba

I3×3, σ
2
bω

I3×3, σ
2
LAI3×3) (39)

RC (x) = blkdiag(σ2
GPSI3×3, σ

2
mI3×3, σ

2
aI3×3 − σ2

ω[Bv×]2) (40)
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The discrete-time state space model is obtained using the zero order hold discretization technique

Φk = eFkT ,Hk = H(x)|t=tk
(41)

and the discrete-time noise covariance matrices are21

Qk ' [GkQCG′
k]T,Rk ' RCk

T
(42)

where T is the sampling period, Fk = FC(x)|t=tk
, Gk = GC(x)|t=tk

, RCk = RC(x)|t=tk
and Φk =

Φ(tk+1, tk) denotes the state transition matrix.
The gravity measurement residual δzg introduces state and measurement noise correlation matrix22

CC (x) =



0 0 0 0 0 0
0 0 0 0 0 0
0 −σ2

aI3×3 σ2
ω[Bv×]′ 0 0 0




′

(43)

Ck =
1
T

∫ tk

tk−1

φ (tk, τ)G (τ)CC (τ) dτ ' (I3×3 +
FkT

2
)GkCCk (44)

where CC (x) is the continuous state and measurement noises correlation matrix and CCk = CC(x)|t=tk
.

The discrete-time equivalent matrix Ck is computed using a first order approximation similar to those
discussed in Ref. 22 for Qk and Rk. The following Kalman gains and error covariance matrix equations are
adapted to include the state and measurement noises correlation matrix

Kk = (P−k H′
k + Ck)[HkP−k H′

k + Rk + HkCk + C′
kH

′
k]−1 (45)

P+
k = (In×n −KkHk)P−k −KkC′

k (46)

and the filter covariance matrix is updated using P−k+1 = ΦkP+
k Φ′

k + Qk.

VI. Results

The impact of the magnetometer and gravity vector measurements on the system performance is assessed
next using three case study simulations. The first simulation sets initial alignment errors in order to evidence
the gravity vector measurement role on tackling the filter estimation errors. The second simulation focuses
on the filter’s ability to estimate linear acceleration by processing the selective frequency contents from the
accelerometer readings. The third simulation assesses the navigation system performance about a standard
trimming trajectory, with constant centripetal acceleration. In addition, the event of sparse/unavailable GPS
signal is studied to point out how the position estimates are smoothed by the gravity vector measurements.

The INS high-speed algorithm is set to run at 100 Hz and the normal-speed algorithm is synchronized
with the EKF, both executed at 50Hz. The GPS provides position measurements at the nominal frequency
of 1Hz. The noise and bias characteristics of the sensors are presented in Table 1.

Table 1. Sensor Errors

Sensor Bias Noise Variance (σ2)
Rate Gyro 0.05 ◦/s (0.02 ◦/s)2

Accelerometer 10 mg (0.6 mg)2

Magnetometer - (1 µG)2

GPS - 10 m2

10 of 15

American Institute of Aeronautics and Astronautics



A. Initial Alignment Error

The contribution of the gravity selective frequency contents on the state variables estimation is shown in
simulations for the following initial misalignment cases

a. Roll angle: δφ = 5o;

b. Body frame x-axis rate gyro bias: δbωx = 0.57o/s;

c. Body frame z-axis accelerometer: δbaz = 1mg.

The vehicle is subject to constant linear and centripetal acceleration inputs, thus describing an ascending
helix (trimming) trajectory, as depicted in Figure 5(a). Results show that the gravity vector readings improve
the GPS and magnetometer combination, as errors converge to zero in less than 10 seconds. As depicted
in Figure 5, the rate gyro bias, roll angle φ and vertical accelerometer bias b̄az estimation is enhanced by
the gravity vector readings. Interestingly enough, position and velocity error build up due to ill gravity
compensation are reduced by the proposed compensation technique.
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B. Linear Accelerated Motion

The second simulation is run for a straight line trajectory with initial acceleration along the x-axis, Figure
6(a). In this experiment, vehicle velocity increases until the input acceleration is compensated by the linear
drag effects, as depicted in Figure 6(a), and linear uniform motion is attained. Figure 6(b) validates the
assumption that autonomous vehicle’s linear acceleration can effectively be modeled as a band pass signal
(28), leaving the gravity vector low frequency contents free to successfully improve INS errors. Numerical
results obtained with the proposed technique are presented in Table 2, where improvements due to the
inclusion of aiding vector observations are evident.

0 10 20 30 40
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

V
x(m

/s
)

V
x

GPS
GPS + Mag + Grav

(a) Velocity Profile

0 10 20 30 40
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

X
−

A
xi

s 
A

cc
el

er
at

io
n 

(m
/s

2 )

Time (s)

x
2LAx

dBV
x

(b) Linear Acceleration Estimation

Figure 6. Linear Accelerated Motion Results

Table 2. Filter Results, Straight Path Trajectory

Average Square Error
X Y Z Yaw Pitch Roll

δz = δzp 1.08 m 0.39 m 0.16 m 2.90× 10−4 ◦ 6.90× 10−5 ◦ 1.79× 10−4 ◦

δz =




δzp

δzm

δzg


 0.24 m 0.23 m 0.15 m 5.64× 10−11 ◦ 6.04× 10−11 ◦ 1.54× 10−4 ◦

C. Trimming Trajectory

The long term navigation system behavior is assessed in simulation about an Unmanned Aerial Vehicle
standard trimming trajectory without initial alignment errors, although inertial sensor noise and bias are
present. Navigation system position estimates are compared in Figure 7 for the single GPS and for the
proposed technique. Numerical results are brought to detail in Table 3.

Figure 7 depicts the performance enhancements introduced by the magnetometer readings and the se-
lective frequency contents of the accelerometers measurements. Adding the magnetometer readings clearly
smoothes out yaw errors, as presented in Table 3. Due to the position and attitude errors correlation (12),
x-axis position errors are also improved. Finally, the gravity readings are found to help attitude and position
estimation, despite the constant centripetal acceleration in the trimming trajectory and the initial linear
acceleration.

The gravity readings contribution is more noticeable in the case of a sparse GPS signal. Simulations for
a GPS signal with output frequency of 1

15 Hz are depicted in Figure 8. The figure shows that x and y axes
position estimates are enhanced by the selective frequency contents of the accelerometers measurements.,
which extends the navigation system autonomy with respect to the GPS aiding source.
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Table 3. Filter Results, Trimming Trajectory

Average Square Error
X Y Z Yaw Pitch Roll

δz = δzp 1.22 m 2.21 m 0.88 m 1.58 ◦ 2.37× 10−4 ◦ 1.79× 10−4 ◦

δz =

[
δzp

δzm

]
0.44 m 2.27 m 0.86 m 1.46× 10−10 ◦ 1.37× 10−4 ◦ 1.20× 10−4 ◦

δz =




δzp

δzm

δzg


 0.42 m 1.90 m 0.86 m 1.28× 10−10 ◦ 1.25× 10−4 ◦ 1.04× 10−4 ◦
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Figure 7. Trimming Trajectory Results
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Figure 8. Sparse GPS Signal Results
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VII. Conclusion

An aiding technique to enhance strapdown inertial navigation systems error estimation was presented and
discussed. An advanced, Global Positioning System/Inertial Navigation System (GPS/INS) using Extended
Kalman Filter (EKF) was outlined and an aiding technique that resorts to the use of selective frequency
contents from vector readings was detailed. From the performance results obtained with the INS aiding
architecture applied to typical UAV trajectories, it became clear that inertial sensors’ misalignment errors
can be estimated resorting to the gravity vector low frequency information embodied in the accelerome-
ter measurements. Moreover, the navigation system accuracy and autonomy with respect to GPS were
improved. Future work will focus on implementation issues of the proposed high-accuracy, multi-rate inte-
grated GPS/INS architecture on a low-power consumption DSP based hardware. Hands-on tests will be run
on a Vario X-Treme model-scale helicopter, property of the Institute for Systems and Robotics.
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Appendix: Attitude Error Coordinate Frame

Interestingly enough, some filters represent the attitude error in body frame coordinates15,16

Bδλ = R′δλ (47)

Using Coriolis theorem, which relates general vector r dynamics in body (Br) and Earth (Er) frames coor-
dinates,

d

dt

B

r = R′ d

dt

E

r− ω ×B r (48)

and replacing r by δλ, yields

d

dt

B

δλ = R′ d

dt
δλ− ω ×B δλ. (49)

From δλ rotation vector dynamics (12), the Bδλ dynamics are retrieved

d

dt

B

δλ = R′(−Rδbω +Rnω)− ω ×B δλ ⇒
d

dt

B

δλ = −ω ×B δλ− δbω + nω (50)

setting the correspondence between the current EKF dynamics and the results derived in Refs. 15,16.
If the attitude error is depicted in body coordinate frame, the proper observation equation is obtained

using cross-product matrix properties in (22)

δzr = R′ [E r̄×]
δλ− nr =

[R′ E r̄×]R′δλ− nr =
[
Br×]B

δλ− nr (51)

Due to the equivalency in first order attitude error parameterizations, eqs. (50) and (51) hold for rotation
vector, Gibbs vector and Modified Rodrigues Parameters.
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