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1 Introdu
tion and State-of-the-ArtOmni-dire
tional 
atadioptri
 vision systems have been around for years [1℄.Using a suitable 
ombination of lenses and mirrors, these systems, when assem-bled on a mobile robot, 
onsiderably enlarge the �eld of view of the imagingsystem.There are many di�erent ways of assemblying a 
amera on a robot:� Fixed 
amera pointing to the front of the robot: in this 
ase a typi
alimage that 
an be seen from the robot is depi
ted in Fig. 1. The maindisadvantages of this solution results from the limited amount of availableinformation, and from the in
reasing o

uren
e of o

lusions of the s
eneba
kground due to nearby obje
ts.

Fig. 1. Image seen by a robot with a 
amera pointing to its front.� Motorized 
amera: this results from assemblying the 
amera on a stru
-ture linked to a motor. The �eld of view is in
reased by moving the 
ameraup and down (tilt) and/or left and right (pan). A major problem is also�nding an e�e
tive way of 
oordinating robot and 
amera motion.� More than one 
amera: more than one 
amera 
an be used, on one hand,to a
hieve stereo vision and determine the distan
e to relevant obje
ts; onthe other hand, to wat
h di�erent spots around the robot. This is howevera 
ostly solution. Furthermore, reliability is de
reased due to the in
reasingnumber of devi
es and the power 
onsumption 
an be 
onsiderable.� Fixed 
amera pointed to one or more mirrors: these belong to the
lass of solutions known as 
atadioptri
 vision systems. One important ex-ample are the omni-dire
tional vision systems, based on a 
amera pointingupwards to a 
onvex mirror (see Fig. 2-a). The main disadvantage of omni-dire
tional 
atadioptri
 vision systems is the distortion, on the image, ofthe shape of relevant obje
ts in the observed s
ene. Nevertheless, if the in-formation to be extra
ted from the image is only the relative orientation,Italian Ministry of University and S
ienti�
 and Te
hnologi
al Resear
h throughthe ENEA. 2



a) b)Fig. 2. a) Omni-dire
tional 
atadioptri
 vision system 
onsisting of a 
amera and aparaboli
 mirror; b) An image taken by a 
oni
al-spheri
al sensor.distortion is irrelevant, sin
e the angles between radial lines are preserved[2℄. Di�erent mirrors pro�les 
an be used, su
h as 
oni
 mirrors, paraboli
mirrors or spheri
al mirrors, to name a few, ea
h one with a di�erent typeof distortion. When the mirror pro�le is pre
isely known, the image 
anbe unwarped with a suitable transformation, i.e., the inverse of the trans-formation performed by the mirror. Another solution is to design mirrorswhi
h unwarp the image dire
tly, saving CPU time [3℄ [4℄. Another poten-tial problem is the support type used for the mirror. The support must be
arefully 
hosen, sin
e it may introdu
e further distortion and/or o

lusion(e.g., in Fig. 2-a the image is partially o

luded by the supporting stru
tureof the mirror and by the 
amera itself). An example of image 
aptured byan omni-dire
tional mirror 
an be seen in Fig. 2-b.This paper fo
us on the design and use of omni-dire
tional 
atadioptri
 vi-sion systems for so

er robots. In the RoboCup-So

er 
ompetitions, the �eldfeatures are mainly distinguishable by their 
olor (e.g., the �eld is green withwhite lines, the goals are blue and yellow, the ball is orange), hen
e vision isa sensor naturally shared by all parti
ipant teams.In the middle-size league of RoboCup-So

er, the teams are 
omposed of fullyautonomous robots, with no global view of the �eld and most, if not all,pro
essing done on board. Among those, an in
reasing number of teams isusing omni-dire
tional 
atadioptri
 vision, so that many di�erent importantenvironment features 
an be seen simultaneously whenever an image frame isa
quired. In the paper we des
ribe the approa
h to omni-dire
tional vision inthe middle-size league of RoboCup-So

er by three su
h teams:� ART Team, partially represented here by the Polite
ni
o di Milano and the3



Universit�a degli Studi di Milano { Bi
o

a, Italy, and� Minho, from the University of Minho, Portugal,� ISo
Rob, from the Instituto Superior T�e
ni
o, Portugal.Three main topi
s are 
overed by the paper:� The design of a multi-part omni-dire
tional mirror.� Virtual sensors to extra
t important environment features from the image.� Omni-dire
tional vision-based self-lo
alization.Ea
h of the above groups 
on
entrated on one of the topi
s (listed in the sameorder). This paper aims at demonstrating that an integration of the work done,based on the des
ribed 
atadioptri
 vision system with a multi-part mirror,is possible. Nevertheless, the results presented were obtained with mirrorsseparately designed by the di�erent groups, ea
h 
orresponding to parti
ularparts of the multi-part mirror.In the literature, di�erent mirror geometries have been proposed [5℄ [6℄ andeven in RoboCup-So

er middle-size league some teams already used mir-rors [7℄ [8℄ [9℄ with pro�les other than the original 
oni
al one [5℄. In 1999, the�rst multi{part mirror designed to obtain spe
i�
 properties of the image waspresented at RoboCup [10℄ [11℄.Many resear
hers have used several distin
t approa
hes to self-lo
alization ineither indoors and outdoors environments, and either using natural or arti�
ialenvironment landmarks [12℄. One 
urrently popular approa
h are the so-
alledMarkov Lo
alization methods [13,14℄.An in
reasing number of teams parti
ipating in RoboCup-So

er middle-sizeleague is approa
hing the self-lo
alization problem. The proposed solutionsare mainly distinguished by the type of sensors used: Laser Range Finders(LRFs), vision-based omni-dire
tional sensors and single frontal 
amera. TheCS-Freiburg and Stuttgart-Cops teams 
an determine their position with ana

ura
y of 1 and 5 
m, respe
tively, using LRFs [15℄. However, LRFs requirewalls surrounding the so

er �eld to a
quire the �eld border lines and, in asense, 
orrelate them with the �eld re
tangular shape to determine the teampostures. Other teams propose a vision based approa
h to self- lo
alizationbased on a single frontal 
amera, used to mat
h a 3D geometri
 model ofthe �eld with the border line segments and goal lines in the a
quired im-age [16℄ [17℄. RoboCup's Agilo team [16℄ proposes a single frontal 
amera tomat
h a 3-D geometri
 model of the �eld with the border lines and goalsline segments in the a
quired image. Only a partial �eld view is used in thismethod. Io

hi and Nardi [17℄ also use a single frontal 
amera and mat
h thelines with a �eld model using the Hough Transform. Even though similar to thework on vision-based self-lo
alization des
ribed in this paper, their approa
h
onsiders lines dete
ted lo
ally (again due to a partial �eld view), rather than4



a global �eld view, and requires odometry to remove ambiguities. The robotsof the Tuebingen team use omni-dire
tional vision for self-lo
alization, butonly the distan
e to the walls is used [18℄. Several teams use a vision-basedomni-dire
tional 
atadioptri
 system similar to the one des
ribed here, butonly for ball and opposing robots tra
king.Omni-dire
tional Vision-based approa
hes to self-lo
alization have been usedalready outside RoboCup. One su
h approa
h is des
ribed in [19℄, where theauthors use a 
oni
 mirror to implement a 
atadioptri
 vision system thatextra
ts radial straight lines from the surrounding environment, and an Ex-tended Kalman Filter to integrate the lo
alization data so-obtained by trian-gulation with odometry.The paper is organized as follows: in Se
tion 2, the design of the multi-partomni-dire
tional mirror is des
ribed. Appli
ations to roboti
 so

er based onomni-dire
tional 
atadioptri
 vision systems, whi
h 
an use the di�erent partsof the multi-part mirror are introdu
ed in Se
tions 3 and 4: virtual sensorsthat lo
ate relevant obje
ts/landmarks in the s
ene and a self-lo
alization al-gorithm, respe
tively. Finally, some 
on
lusions and a des
ription of envisagedfuture work are drawn in Se
tion 5.2 Designing a Multi-Part Omni-Dire
tional MirrorAn a

urate design of an omni-dire
tional vision sensor should enable therobot to observe the parts of the s
ene relevant for the spe
i�
 appli
ation.By analyzing the rules and aims of RoboCup-So

er middle-size league, it ispossible to de�ne a set of requirements for su
h a vision system.2.1 Inferring Requirements for the Per
eption System from RoboCup RulesAn omni-dire
tional per
eption system should be able to dete
t points of inter-est (dire
tion and distan
e) with the a

ura
y required by the appli
ation. Thefollowing requirements and appli
ations have been identi�ed in the RoboCupdomain:� When the point of interest is in 
onta
t or very near to the robot, a very gooda

ura
y is required for both dire
tion and distan
e, in order to properly
ontrol the robot motion. An example is the 
ontrol of ball ki
king.� When the point of interest is within a few meters from the robot, a gooda

ura
y is required for both dire
tion and distan
e. It is very useful thatthe error a�e
ting distan
e measure of s
ene points in this range to be5



independent from the points position. An example is self-lo
alization whi
h,basing on lo
alization of known points, would be eased if su
h points areobserved with the same a

ura
y.� When the point is quite far, a good a

ura
y is required for the dire
tion,less a

ura
y may be a

epted for the distan
e. An example is moving tothe ball: the dire
tional a

ura
y is required in order to be able to headtowards it.� The last requirement deals with the markers, whi
h allow to distinguishteam-mates from opponents. The per
eption system should be able to ob-serve the markers in the range of distan
es and heights where they arepla
ed.In 1999, a mirror was designed [10℄ [11℄ only partially mat
hing these require-ments. The aims were both to have enough resolution to dete
t and lo
alizethe ball even when observed at the farthest distan
e, and to in
lude in theimage the maximum part of the ball when it is 
lose to the robot body. Theserequirements 
ould not be mat
hed by any of the 
lassi
al mirror shapes usedtill then, and we de
ided to implement a 2-part mirror. The �rst part was a
oni
al mirror and the se
ond one a spheri
al apex, sharing a 
ommon tan-gent at the interse
tion points. The spheri
al part proje
ted s
ene points atthe ground level up to 1.5 m from the sensor, thus allowing the angle of the
oni
al part to be steep enough to observe points distant up to 6 m from thesensor (see Fig. 2-b). The sensor, implemented with a large, low-
ost mirror(18.5 
m of diameter) and a low 
ost 
amera, was good enough to make itpossible the implementation of su

essful behaviors [11℄.Sin
e then, all requirements have been taken into a

ount and the per
eptionsystem was redesigned. We de
ided to develop a new design methodology toimplement a new set of mirrors based on a 
omprehensive analysis of theabove requirements and satisfying them through an a

urate 
ontrol of thedistribution of the image resolution [4℄.2.2 Isometri
 Mirror PartVision systems measure the distan
e between image points in order to estimatethe distan
e between s
ene points. The relationship between image and s
enedistan
es, for omni-dire
tional system based on 
onventional 
oni
al mirrors isnot linear. Su
h non-linearity turns into a distortion at the image level (see theouter part of Fig. 2-b). This distortion grows qui
kly with the distan
e fromthe obje
t to the observer. On one hand, it is quite obvious that the nominalvalue of the estimates 
an be easily 
orre
ted given the pro�le fun
tion of themirror. On the other hand, the a

ura
y of these measurements is 
orruptedby the joint e�e
t of su
h distortion and image sampling, without any possi-6



bility to 
ompensate for it. The a

ura
y degradation implied by 
onventionalmirrors 
on
i
ts with the requirement of a reasonably limited amount of in-a

ura
y for any distan
e measure in the intermediate range. Therefore, oneof the obje
tives of this work was to develop an opti
al 
ompensation of theabove-des
ribed distortion, working dire
tly on the mirror pro�le in su
h away that the absolute lo
alization error remains limited with respe
t to theobje
t distan
e. In other words, the driving idea was to 
ontrol the distri-bution of the image resolution on a pixel basis, in order to get the desireda

ura
y. The analyti
al setup for this opti
al 
ompensation turned out to bevery similar to previous work [3℄ (see also [20℄) where the aim was to ex-ploit re
e
tive surfa
es as 
omputational sensors. This opti
al 
ompensationresults in a 
onstant absolute error in the distan
e measurement. The trans-formation between two 2D Eu
lidean spa
es (ground and sensor) performedby su
h 
amera/mirror system, keeps angles un
hanged and 
hanges lengthsby a 
onstant fa
tor. This transformation, being linear, does not 
hange themetri
 tensor, negle
ting the 
onstant. Therefore, we 
all this kind of mirrorisometri
 be
ause of its 
apabilities to keep the image metri
, property thatdoes not hold for 
onventional mirrors.An even more relevant point driving our design 
on
erns the dete
tion ofimage features. The proposed design has the e�e
t of keeping 
onstant theimage size of the s
ene features at the ground level, inside the 
overed rangeof distan
es. This makes less likely a dete
tion failure when the feature is farfrom the observer.
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h for inferring the di�erential equation generating the isometri
 part ofthe mirror ((xi+1 � xi) = k(Xi+1 �Xi)8i).The design problem is modelled by the following di�erential equation 1, whi
h
an be inferred by applying the laws of Linear Opti
s (see Fig. 3).7



XY + 2Y 01�Y 021� XY 2Y 01�Y 02 = �Y �X2X(Y +H); 8><>:Y (0) = Y0Y 0(0) = 0 (1)where: Y 0 = dY=dX, � = k �, � is the fo
al length, k is the proportionality
onstant from X to x, H is the pin-hole height from the ground. Di�erentlyfrom [3℄, [20℄ we developed a geometri
al integration of equation 1. Ourapproa
h is based on a lo
al �rst order approximation of the pro�le: at ea
hpoint the mirror has been approximated by its tangent spa
e. The resultingpro�le looks quite similar to the one obtained in [3℄. It is 
onvex into its �rsthalf, i.e. the part that goes from the axis of symmetry toward the outside ofthe mirror; then it has an in
e
tion point and �nally it gets slightly 
on
ave.Establishing point by point the relationship between the mirror pro�le andthe s
ene is one way to 
ontrol the distribution of the image resolution. Es-tablishing the amount of image resolution devoted to a single part is a anotherway to 
ontrol the distribution of the image resolution.2.3 Constant Curvature Mirror PartIt would be desirable if the above des
ribed design approa
h 
ould 
over thewhole range of distan
es required for the RoboCup purposes, but the useof 
onventional low-
ost 
olor 
ameras does not allow a reliable dete
tion ofrelevant features on the whole range of distan
es. Thus we have designed ase
ond mirror part that satis�es jointly two requirements of the previouslymentioned ones. The �rst of su
h requirements is the 
overing of the farthestrange of distan
es. The se
ond is the markers dete
tion and lo
alization. Thesetwo requirements do not imply an a

ura
y as high as for the other ones.Another aspe
t of the design of this part is to preserve the 
ontinuity betweenthe two portions of the image in order to ease the asso
iation of the robot bodyto its marker, when they are a
ross the two parts. Su
h image 
ontinuity 
an beguaranteed by imposing the 
ontinuity of the tangent at the jun
tion betweenthe isometri
 and the new part of the mirror (point A in Fig. 4-a). Another
ondition 
omes from �xing point B = (XB; YB) and setting the height Hmaxso that it 
an be observed at distan
e dmax. This 
onstraint gives the tangentto the pro�le in point B.tan(�) = (Hmax � YB)(dmax �XB) ; tan(�) = xb� ; tan(
) = tan((� + � � �)2 ); (2)where: � is the fo
al length.Be
ause there is no other 
onstraint, this portion of the mirror 
an be de-signed, e.g., by imposing a 
onstant variation of the tangent between the two8
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b)Fig. 4. a) Sket
h for the design of the 
onstant 
urvature part of the mirror; b)Sket
h for the design of the planar part of the mirror.endpoints. Hen
e the name \
onstant 
urvature" given to this part of the mir-ror. The mirror will 
over 
ompletely the highest part of the s
ene (Zone B).On the other hand, when the robots are quite near, they will be observed bythe �rst part of the mirror (Zone A).2.4 Planar Mirror PartThe so far designed mirror does not satisfy the requirement 
on
erning thenearer range of distan
es. Due to the robot o

lusion (see Fig. 4-b), it is notpossible to observe the s
ene immediately 
lose to the robot. The relativelysmall image of a feature, when very near and imaged in the isometri
 part,results in a less than required a

ura
y, while the highest should be obtainedin the very 
lose range. To satisfy the requirement, a third part of mirror hasbeen introdu
ed. This part should be the outmost to su�er the least o

lusionfrom the robot body. The simplest solution to this design problem is a planarmirror lying on a plane perpendi
ular to the rotational axis. The height ofthis part has to be as low as possible, with respe
t to the 
amera, in orderto give the largest images of the features. At the same time, this part shouldnot be on the line sight of others. Hen
e the 
hoi
e has been to have a planarmirror at the same height of the last point of the 
onstant 
urvature part ofthe mirror (point B). The point C is set as follows:XC(YC � ��HSensor) = x
� YC = YB; (3)where HSensor is the height of sensor plane and � is the fo
al length. The ballimage produ
ed by this part is large enough to allow a reliable dete
tion andan a

urate lo
alization. 9



2.5 The Resulting MirrorThe mirror pro�le resulting from the above des
ribed design is shown in Fig. 5-a. It enables the system to observe up to 6 m far away without image distortionat the ground level; thanks to the 
onstant 
urvature part it 
an observe upto the maximum height, 0.6 m, at the maximum distan
e in the ground (11.2m). Its outer part allows the observation of obje
ts from 0.39 m to 0.51 m.The last prototype of the mirror is depi
ted in Fig. 5-b; an image obtained bythis mirror and a very low-
ost 
amera is shown in Fig. 6. You may noti
e thatsu
h image have been 
olle
ted after a rough me
hani
al setup. This a
tivityshould have aligned opti
al and mirror axis, put the mirror at the designeddistan
e from the pin-hole, et
. It is extremely likely that some defe
t is stillpresent on the image.
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a) b)Fig. 5. a) Pro�le of the overall mirror; b)The last mirror prototype.3 Virtual Image Sensors for Roboti
 So

erMany visual features are important in the RoboCup-So

er domain. A set ofvirtual image sensors 3 was designed to extra
t a 
ru
ial subset of those fea-tures for middle-size league robots, and handle the ne
essary a
tions, namely:� other robots and walls, for obsta
le avoidan
e,� goals,� far ball, to move towards it,� near ball, to ki
k it,� 
atadioptri
 system 
alibration.3 A virtual image sensor extra
ts features from a (sub)image, su
h as the 
entroidor whether an obje
t is present or not. Di�erent virtual sensors operate over theimage provided by just one transdu
er: the CCD 
amera plus the video a
quisitionboard. 10
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Fig. 6. Image taken with the robot near to the 
enter of the ground (Melbourne,31.08.00, �eld B of the initial tournament). Noti
e the e�e
t of the isometri
 opti
al
ompensation, whi
h lasts up to 6 m; in the 
onstant 
urvature part it is possibleto dete
t a goal and the marker. However, their distan
es from the observer, thanksto the 
ontinuity with the �rst part, 
an be measured at the ground 
onta
t pointwith the limited error provided by the isometri
 design. Noti
e also the dimensionof the farther ball, whi
h is even larger that when nearby be
ause of the isometri
property holding at the 
oor level only. There was no marker on the robot besidesthe farther ball.Those virtual sensors 
an be used with any 
atadioptri
 vision system, parti
-ularly the one des
ribed in the pre
edent se
tion. This se
tion goes throughtheir implementation details for a paraboli
 mirror that was built to test onlythe virtual sensors.3.1 The Importan
e of ColorsAfter 
apturing an image, what 
an be done with it in order to instru
t arobot to play so

er? An important step is the reliable extra
tion of visualfeatures from the image, 
orresponding to relevant obje
ts on the �eld.First, the obje
ts must be re
ognized. These are the two goals, the ball, thesurrounding walls, the other robots and their markers. All those obje
ts arere
ognized by their known 
olors. Eight di�erent 
olors are used:� the ball is red,� the playing �eld is green,� one goal is blue,� the other goal is yellow,� the surrounding walls are white (in
luding some letters and symbols in11



bla
k),� the robots are predominantly bla
k,� one team 
olor is magenta,� the other team 
olor is 
yan.These eight 
olors 
orrespond pre
isely to the eight verti
es of the RGB 
ube[21℄.Color segmentation is obviously an important problem for RoboCup-so

erplaying robots. The image pro
essing system must not only 
orre
tly dis
rim-inate the eight signi�
ant 
olors, but also avoid the identi�
ation of obje
tsexternal to the game as relevant ones. This is a 
riti
al issue sin
e many peoplewalks around the playing �eld wearing 
olourful T-shirt, and sometimes otherred balls are left nearby the �eld.3.2 Image Formats and Color SegmentationDi�erent 
ameras provide images in di�erent formats. The most usual onesare RGB and YUV. Due to its video 
hara
teristi
s, YUV is the most suitable
olor spa
e for 
olor segmentation. Its main advantages 
an be des
ribed as:� the signal is separated (to analyse shape, we don't need 
olor, but justluminan
e);� it is very mu
h light independent;� it is fast, sin
e no hardware 
onversion is required;� lookup tables are 2-dimensional, and thus they are easy to a

ess and requireless storage spa
e than \true" 3-D 
olor spa
es;� allows 
exible 
onversions to RGB for display;� many 
ameras output their image in the YUV format.The main disadvantages are:� it needs to be 
onverted to RGB to be displayed on a 
omputer s
reen;� it is a format most suitable for video rather than for still images.3.3 Sensor Readings from an Image SystemMost sensorial information required in RoboCup-So

er 
an be extra
ted bya vision system. Our approa
h was to de�ne image windows where 
ertainattributes are expe
ted to be found. An example 
an be seen in Fig. 7, for aparaboli
 mirror. Noti
e that the image windows must be 
hanged a

ordingto the parti
ular mirror pro�le used and/or mirror assembly on the robot.12



Fig. 7. Captured image, with superimposed de�ned windows for virtual sensors.This system starts by applying a �lter to every image pixel. All 
olors aresegmented onto the eight possible and a

eptable options.The main virtual sensors used in this system are designated as Obsta
le Avoid-an
e, Goal Dete
tion, Ball Dete
tion, Eminent Ki
k and Catadioptri
 System Cal-libration. We shall now des
ribe ea
h of them in detail.� Obsta
le Avoidan
e The nine squares around the 
amera are used as virtualbumpers (window E in Fig. 7). The amount of bla
k and white inside ea
hsquare is 
al
ulated and, should it be over a 
ertain prede�ned value, anobsta
le is dete
ted, for
ing the motion 
ontroller to move the robot awayfrom the obsta
le. The \bumpers" are numbered from 1 to 9, starting on theleft side. In the image shown, bumpers 2, 3 and 9 are darker whi
h meansthey are 
agged showing eviden
e of an obsta
le dete
ted.� Goal Dete
tion By �nding the maximum value of blue (window A in Fig. 7)in the image and applying a threshold, the blue goal 
an be found. A similarte
hnique is used for the yellow goal. In order to avoid noise from outsidethe �eld, whi
h 
ould be 
onfused with the a
tual blue (yellow) goal, thismaximum must be inside the top three re
tangles on the image (window Bin Fig. 7).� Ball Dete
tion The maximum value of red (window C in Fig. 7) represents theball. The red 
olor is the easiest to tra
k and the one with least interferen
e,sin
e the ball has a very unique and bright 
olor. Due to its motion, theball 
an be seen anywhere on the image, and so 
an window C be lo
ated.� Eminent Ki
k The robot should not a
tivate the ki
king devi
e when the ballis not ready to be ki
ked, to save energy and avoid hurting its opponents.Therefore, the ki
king devi
e is a
tivated only when the ball (red 
rossrepresented by letter C in Fig. 7) is inside the red re
tangle (letter D on thesame image). This also means that the robot will ki
k the ball only when13



the ball is tou
hing the robot.� Catadioptri
 System Callibration Should, for some reason, the mirror and/orthe 
amera 
omposing the 
atadioptri
 vision system be moved from itsposition, the robot will not �nd the relevant obje
ts in the 
orre
t imagewindows. Therefore, for easy 
allibration of the 
atadioptri
 system, the
amera lens must be pla
ed inside the square given by letter F in Fig. 7.Many other virtual sensors 
an be 
reated. However, the number of sensorsis 
riti
al for system performan
e and therefore their number must be lim-ited, otherwise, the number of frames pro
essed per se
ond will substantiallyde
rease.
4 Omni-Dire
tional Vision-Based Self-Lo
alizationThe navigation system is one of the most important sub-system of a mobilerobot. In many appli
ations, espe
ially those 
on
erning well-stru
tured in-doors environments, one important feature of the navigation system 
on
ernsthe ability of the robot to self-lo
alize, i.e., to autonomously determine its po-sition and orientation (posture). On
e a robot knows its posture, it is 
apableof following a pre-planned virtual path or of smoothly stabilizing its posture.If the robot is part of a 
ooperative multi-robot team, it 
an also ex
hangethe posture information with its teammates so that appropriate relational andorganizational behaviors are established. In roboti
 so

er, these are 
ru
ialissues. If a robot knows its posture, it 
an move towards a desired posture(e.g., fa
ing the goal with the ball in between). It 
an also know its team-mate postures and prepare a pass, or evaluate the game state from the teamlo
ations [22℄.In this se
tion we des
ribe a self-lo
alization algorithm based on the isometri
part of the multi-part mirror of the 
atadioptri
 vision system des
ribed inSe
tion 2. The algorithm determines the posture of a middle-size league robot,with respe
t to a given 
oordinate system, from the observation of naturallandmarks of the so

er �eld, su
h as the �eld lines and goals, as well as its
orrelation, in the Hough transform spa
e, with a geometri
 �eld model. Eventhough the interse
tion between the �eld and the walls is also 
urrently used,the wall repla
ement by the 
orresponding �eld lines would not 
hange thealgorithm. The algorithm is a parti
ular implementation of a general methodappli
able to other well-stru
tured environments, and was �rst introdu
ed in[23℄. 14



4.1 Method Des
riptionEven though the self-lo
alization algorithm was designed motivated by its ap-pli
ation to roboti
 so

er, it 
an be des
ribed in general terms and applied toother well-stru
tured environments, with the assumption that the robot moveson 
at surfa
es and straight lines 
an be identi�ed and used as des
riptive fea-tures of those environments. An important requirement is that the algorithmshould be robust to image noise. Given an image a
quired from the isometri
part of the 
atadioptri
 system, the basi
 steps of the algorithm are:(1) Build a set T of transition pixels, 
orresponding to image pixel represen-tatives of environment straight lines (e.g., interse
tion between 
orridorwalls and ground, obtained by an edge dete
tor).(2) For all transition pixels pt 2 T , 
ompute the Hough Transform [21℄ usingthe normal representation of a line� = xti � 
os (�) + yti � sin (�) ; (4)where (xti; yti) are the image 
oordinates of pt and �; � the line parameters.(3) Pi
k the q straight lines (�1; �1); : : : ; (�q; �q) 
orresponding to the top qa

umulator 
ells resulting from the Hough transform des
ribed in theprevious step.(4) For all pairs f(�j; �j); (�k; �k); j; k = 1; : : : ; q; j 6= kg made out of the qstraight lines in the previous step, 
ompute��= j�j � �kj (5)��= j�j � �kj: (6)Note that a small �� denotes almost parallel straight lines, while ��is the distan
e between 2 parallel lines.(5) Classify, in the [0; 100℄ range, the ��s and ��s determined in the previousstep, for its relevan
e (fun
tion Rel(:)) using a priori knowledge of thegeometri
 
hara
teristi
s of the environment (e.g., in a building 
orridorof width d, only �� ' 0, �� ' 180 and �� ' d should get high grades).For ea
h pair of straight lines, assign a grade in the [0; 200℄ range to thepair, by adding up Rel(��) and Rel(��).(6) Pi
k up the most relevant pair of straight lines (i.e., the pair of largestRel(��) + Rel(��) in the previous step), and use it to extra
t somerelevant feature regarding environment lo
alization (e.g., the orientation� of the robot w.r.t. the 
orridor walls, represented by the most relevantpair of parallel straight lines, in the example above).(7) Use the relevant feature from the previous step to pro
eed. For instan
e,assuming � in the 
orridor example is su
h a feature, it is used to sele
t
olumns from the a

umulator 
ells matrix referred in Step 3. The idea isto 
orrelate a number of a
tual straight lines, found in the image, sharing15



the same des
riptive parameter (e.g., the angle � 
orresponding to �) withthe expe
ted straight lines obtained from an environment model (e.g., thebuilding layout). To attain this, up to n � values from the a

umulatormatrix 
olumn 
orresponding to � are pi
ked up, 
orresponding to upto n straight lines found in the image. To handle un
ertainty in �, aneven better solution is to pi
k up not only one 
olumn but a few 
olumnssurrounding the a

umulator matrix 
olumn 
orresponding to �, usingthe top n � values from those 
olumns. Con
atenate all these Houghspa
e points in an array and 
all it �̂�.(8) Create an array �� similar to �̂�, but obtained from a geometri
 model ofthe environment. A
tually, �� measures distan
es of environment straightlines to the origin of the world referen
e frame. Correlate �� and �̂� byshifting one array over the other, and in
rementing a 
ounter for ea
hmat
hing (��; �̂�) pair. The maximum of the 
orrelation 
orresponds tothe best mat
h between up to n straight lines in the image and the nknown environment straight lines. From this result and similar resultsobtained for other straight lines non-parallel to them (determined by thesame pro
edure for di�erent �s), the image 
oordinates of environmentfeature points, whose lo
ation in the world referen
e frame is known, aredetermined and used to determine the robot position w.r.t. that frame,by a suitable transformation from image to world 
oordinates.4.2 Appli
ation to Roboti
 So

erThe self-lo
alization of a middle-size league so

er robot, using the methoddes
ribed in the previous se
tion, takes advantage of the so

er �eld geometryand of the di�erent 
olors used for the �eld (green), the surrounding walls andthe �eld lines (white). The �eld is a 9�4:5 m 
at re
tangle that 
an be almostfully observed by the robot 
atadioptri
 system from most �eld lo
ations.The self-lo
alization algorithm was implemented based on the isometri
 partof the 
atadioptri
 system mirror.4.3 Geometri
 Field ModelThe bird's eye view of the so

er �eld, shown s
hemati
ally in Fig. 9-a, shows6 horizontal and 7 verti
al straight lines (
onsidering interrupted lines as onlyone line). In this work, all horizontal lines and 5 of the verti
al lines (ex
ludingthose 
orresponding to the ba
k of the goals) were 
onsidered. Ex
luded lineswere 
hosen be
ause they are often o

luded by the goalkeeper robots. Allthe distan
es between lines are known from RoboCup rules. Changes in the16



dimensions are parameterized in a table. The model referen
e frame is lo
atedat the bottom left of the model image.4.4 Orientation DeterminationSteps 1-6 of the algorithm des
ribed in Se
tion 4.1 are followed to determinethe initial robot orientation estimate (with a �90Æ or 0Æ/180Æ un
ertainty, tobe solved later). The set T of transition pixels is obtained by determining thewhite-to-green and green-to-white image transitions over 36 
ir
les 
enteredwith the robot, shown in Fig. 8. The number of 
ir
les was determined basedon a tradeo� between a

ura
y and CPU time.

Fig. 8. Image obtained with a preliminary prototype of the isometri
 part of the
atadioptri
 system mirror { noti
e the distortion on the outer part { showing the36 
ir
les used to determine transition pixels.The Hough transform is then applied to the pixels in T { a variable numberfrom image to image { depending on the number and length of observed lines.In Step 3, q = 6 is used, based on experimental analysis of the tradeo� betweenCPU time and a

ura
y. The relevan
e fun
tions for �� and ��, used in Steps5-6, are plotted in Fig. 9-b and -
. The latter re
e
ts a priori knowledge ofthe environment, by its use of the known distan
e between relevant �eld linesthat 
an be observed by the 
atadioptri
 system in one image.
a) b) 
)Fig. 9. a) So

er �eld model as seen in a bird's eye view image (
oordinates inpixels). Also shown are the relevan
e fun
tions for b) �� and 
) ��.17



The a

umulator 
ells of the Hough transform in Step 2 are obtained by in-
rementing � from 0 to 180Æ in 0.5Æ steps, leading to a line slope resolutionin the image of tan 0:5Æ. � is in
remented from 125 to 968 in steps of 1 pixel,
orresponding to an a
tual �eld resolution of 6.95 mm 4 . The �90o or 180oambiguity referred above results from the absen
e of information on whi
h�eld lines lead to the most relevant pair. This information is obtained in Steps7-8.4.5 Position DeterminationThe �nal step in the self-lo
alization pro
ess 
onsists of determining the robotposition 
oordinates in the so

er �eld. This is done together with the dis-ambiguation of the relevant feature � determined in Steps 1-6 of the self-lo
alization method, by 
reating not only the �� and �̂� arrays referred inSteps 7-8, but also their \orthogonal" arrays ��+90 and �̂�+90. The 
orrela-tion in Step 8 is made between all 4 possible pairs (��+90; �̂�+90), (��+90; �̂�),(��; �̂�+90) and (��; �̂�) with n = 6 (the maximum number of �eld lines that
an be found in the image). The maximum of the 4 
orrelation maxima o

ursfor the array pair representing the best mat
h between image and a
tual �eldlines. The array immediately identi�es whether �� 90Æ or � = 0Æ _ � = 180Æ isthe robot orientation. A 
ompanion array pair exists for ea
h best pair. The2 pairs uniquely identify 2 (approximately) orthogonal �eld lines, by 
he
kingthe array positions where the maximum o

urred (verti
al �eld lines are num-bered 1; : : : ; 5 from left to right and horizontal lines are numbered 1; : : : ; 6 fromtop to bottom). The interse
tion of the two lines is a referen
e point, whose
oordinates are known in the world referen
e frame, from the �eld model.The explanation above is summarized in the following table (the best and
ompanion pairs positions 
an be ex
hanged):Best Pair Companion Pair �(��; �̂�) (��+90; �̂�+90) � = �� 90Æ(��; �̂�+90) (��+90; �̂�) � = � _ �+ 180ÆThe robot position is 
omputed from a rotation of � (one of the possible valuesis used, with no spe
ial 
riterion), followed by a translation that expresses the
enter of the image (i.e., the robot position in image 
oordinates) in the modelreferen
e frame, and another translation plus a s
ale fa
tor f to express it inworld 
oordinates. The world referen
e frame is lo
ated in the middle of the4 The relation between � values and the a
tual �eld resolution is given by the s
alefa
tor k between �eld and image 
oordinates (see Se
tion 2.2)18



so

er �eld, with the x axis pointing towards the blue goal and the y axis issu
h that a 3-D 
oordinate frame would have z pointing upwards. The ori-entation � is measured from x to the straight line passing through the robot
enter and the 
enter of the robot front. The s
ale fa
tor f depends on thegeometry of the 
atadioptri
 system and 
an be 
allibrated experimentally.This transformation 
an be expressed by the following equation, using homo-geneous 
oordinates:2666664 xrfyrf1 3777775 = 2666664 
os � sin � xrefi + xrefm� sin � 
os � yrefi + yrefm0 0 1 3777775 � 2666664 xriyri1 3777775� 2666664 4502250 3777775 � f (7)
where the subs
ripts i;m; f stand for the image, �eld model and a
tual �eldreferen
e frames, and the supers
ripts ref and r stand for the referen
e pointand the robot, respe
tively.A further validation and disambiguation of the robot posture is required, sin
e,when only two parallel lines are used to determine the position, and due to�eld symmetry, the robot side of the �eld is unknown, as well as its orientation.To solve this problem, two tests are made. First, the algorithm 
he
ks whetherthe robot position is not outside the �eld. The se
ond test 
onsists of usingthe 
urrent estimated posture to seek the nearest goal in the image.This is a
hieved by sele
ting m points lo
ated inside one of the goals (blue oryellow) in the a
tual �eld and applying to ea
h of those points of 
oordinates(xgf ; ygf) the inverse transform of (7).Should the majority of the 
orresponding pixels in the image have the same
olor of the �eld pixels, � = 0Æ and the estimated position is validated. Shouldthey have the 
olor of the opposing goal, � = 180Æ and the symmetri
al 
oor-dinates of the 
urrent position estimate must be used for the robot position.When the majority of image pixels is green, the top maximum of the 
orre-lation pro
ess is removed and the whole pro
ess re-started using the se
ondmaximum, and if needed, the third one and so on until the a
tual posture isdetermined.4.6 Experimental ResultsThe des
ribed self-lo
alization algorithm has been implemented in C. Themethod was applied to a set of 90 images obtained by a 
atadioptri
 systemmounted on a Super S
out II robot. The images were taken at di�erent �eldspots, with several images taken at ea
h spot, and were pro
essed in about19



0.5 se
ond ea
h, in a Pentium 233MHz with 64Mb of RAM, the Super S
outII on board 
omputer. The results from the 90 experiments give an averagea

ura
y � of 3.2 mm for the x 
oordinate, -18 mm for the y 
oordinate and0:22Æ for �, with standard deviations of 100 mm, 92 mm and 1:8Æ, respe
tively.In Fig. 10, the histogram of the a

ura
y, for the x and y 
oordinates, is shown,as well as an adjusted Gaussian fun
tion. The re
tangle on the plot 
ontainsall the a

ura
ies within one standard deviation from �, i.e., 68,2% of thepostures obtained have an a

ura
y of less than or equal to 10 
m in x and 9
m in y.The a

ura
y was determined as the di�eren
e between the estimated valuesand the ones measured on the �eld, using pre-de�ned spots whose lo
ation iswell known (e.g., the 
orner of the goal area). The pre
ision (i.e., the di�eren
ebetween the measured value and the measurements average value for the samelo
ation) results are similar, and visual inspe
tion made the average valuesseem trustable.
Fig. 10. Position error histogram.

Fig. 11. Test image results.Figure 11 shows an example of an image to be pro
essed. The lines representedare the possible lines of the �eld. In this 
ase, the best pair was (��; �̂�+90) andposture was estimated with an error of �x=+1 
m, �y= +1 
m and ��=+1Æ. Note that, in this test, the robot is 
lose to one of the �eld walls, makingharder the posture determination pro
ess, be
ause the other wall is not seen,and a relevant parallel line 
an not be found by the algorithm.20



5 Con
lusionsThis paper has shown the potential of omni-dire
tional 
atadioptri
 systemsfor 
omprehensive solutions for mobile robots moving within stru
tured en-vironments, ranging from the extra
tion of relevant image features to self-lo
alization. Moreover, the paper introdu
es the design of a multi-part mirrorwhi
h 
an be used, by 
ontrolling the distribution of image resolution onto thes
ene, to ta
kle all the requirements with the same devi
e.Further steps towards a more re�ned usage of the information provided byomni-dire
tional vision systems, as des
ribed here, in
lude:� Endowing many teammates with su
h a system, so that they 
an shareinformation on all teammate postures through 
ommuni
ations, enablingthe display of teamwork behaviors.� Sharing also the information on the position of other relevant obje
ts (e.g.,the ball, the opponent robots), observed by ea
h self-lo
alized robot, so thata more a

urate world model 
an be built and shared by all teammates.Referen
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