
Minimax Value Iterarion Applied to Robotic Soccer

Gonçalo Neto and Pedro Lima
Institute for Systems and Robotics

Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal
{gneto,pal}@isr.ist.utl.pt

Abstract— This work focuses on developing a dynamic
programming algorithm to solve a class of Stochastic Games
called two-person zero-sum games, inspired by the reinforce-
ment learning algorithm Minimax-Q. In each state of the
game, linear programming is used to find a Nash equilibrium,
which ensures optimality in a worst-case scenario. The method
is then applied to a behavioral model of a robotic soccer game.
The goal is to find the worst case scenario strategy for such
a team, so that a lower bound for the team’s performance is
guaranteed. Most of the times it converges to a conservative
solution that tries, above all, to keep the opponent from
scoring, rather than trying to score itself.

Index Terms— Stochastic Game, Dynamic Programming,
Nash Equilibrium, Robotic Soccer.

I. I NTRODUCTION

The field of multi-agent robotics has been growing, in
the past few years, as a promising way of solving some
difficult problems otherwise hard to tackle. Particularly,
robotic soccer is proving to be an interesting testbed for
many algorithms and methodologies.

Several discrete event systems techniques (Cassandras
and Lafortune, 1999) have been used to model such sys-
tems, not without success. For example, Markov Decision
Processes (Sutton and Barto, 1998) is a framework that
allows us to model decision making problems in many
robotic environments. An agent living in a MDP-like world
must try to maximize its reward over time by choosing
appropriate actions at each state. Concepts like dynamic
programming (Bertsekas, 1995; Sutton and Barto, 1998),
Monte Carlo methods (Sutton and Barto, 1998) and re-
inforcement learning (Sutton and Barto, 1998) allow the
agent to find optimal decision policies.

These techniques work very well in MDPs because
they assume stationarity of the environment. On the other
hand, they do not work so well for multi-agent systems
where, from each agent point of view, the environment is
not stationary. Game Theory (von Neumann and Morgen-
stern, 1947) provides a way of finding solutions for such
systems by introducing equilibrium notions (Nash, 1950)
and explicitly handling multiple agents and their joint ac-
tions. Particularly, Matrix Games solve the multi-agent and
single state problem and Stochastic Games (Shapley, 1953)
act as an extension of both MDPs and Matrix Games,
working over a multi-agent and multi-state system.

Many of the concepts associated with MDPs or with Ma-
trix Games can be extended to Stochastic Games, having
produced several successful algorithms for certain subsets
of Stochastic Games (Littman, 1994; Littman, 2001; Hu
and Wellman, 2003; Claus and Boutilier, 1998). The work

presented in this paper was inspired by that of (Littman,
1994), creating an algorithm which mixes Dynamic Pro-
gramming and a Matrix Game solver to find worst-case
optimal decision solutions for one of the teams, before the
execution of the game. The algorithm was applied to a
Stochastic Game modeling a robotic soccer environment.

The paper has the following outline: In Section II we
describe the frameworks of MDPs, Matrix Games and
Stochastic Games as well as some solution concepts. In
Section III we present a dynamic programming algorithm
– Minimax Value Iteration – to solve a particular kind
of Stochastic Game. Section IV describes the Stochastic
Game model used for the soccer game. Finally, Section
V presents the results of applying the algorithm to the
described model, Section VI discusses those results and
Section VII presents future work directions.

II. BACKGROUND

A. Markov Decision Processes

An MDP can be defined as a 4-tuple(S, A, T,R) where
S is a set of states andA a set of available actions.T :
S×A×S → [0, 1] is a transition function defining how the
agents’ actions affect the environment andR : S×A×S →
R is an expected reward function, giving some insight on
the desired task for the agent.

The concept ofpolicy plays a key role in MDPs in
the sense that it is responsible for the decision making of
the agent. Generally, a policyπ(st, at−1, st−1, at−2, ...) ∈
PD(A) (wherePD(A) is the set of probability distribution
functions overA) is nothing more than a collection of
probability distribution functions, one for each trace of the
system, defining the probability that some action will be
chosen. Assuming the process is Markovian (by definition
for MDPs) when can just refer toπ(st) ∈ PD(A), ignoring
the history of the system.

The concept of optimality in a MDP is equivalent to
maximizing the expected reward, which on itself aggre-
gates a myriad of formulations. Three possible criteria
are: maximization of the expected sum of the nextk
rewards, maximization of the expected average reward or
maximization of the sum of all future rewards (which may
not converge for some MDPs), to state but a few. A usual
formulation is to try to maximize, with some policyπ, the
discounted reward over time, with discount factorγ. In this
context, we can write a value for each state defined as:

V π(s) = Eπ

{ ∞∑
k=0

γkrt+k+1

∣∣∣ st = s, π

}



We could also consider the expected reward conditioned
not only by the current state but by particular action. The
resulting function depends on the state-action pair and the
expected rewards are usually named Q-values:

Qπ(s, a) = Eπ

{ ∞∑
k=0

γkrt+k+1

∣∣∣ st = s, at = a, π

}
Having defined the state values we can obtain an equation,
called the Bellman equation, which recursively relates
them:

V π(s) =
∑

a

π(s, a)
∑
s′

T (s, a, s′) [R(s, a, s′) + γV π(s′)]

The optimal policy is one that, for each state, maximizes
the state value functionV (s). This will be a deterministic
policy that satisfies a stronger relation, named the Bellman
optimality equation:

V ∗(s) = max
a

∑
s′

T (s, a, s′) [R(s, a, s′) + γV ∗(s′)]

The dynamic programming algorithm known asValue
Iteration is based on the Bellman optimality equation and
can be written in a simple form:

Vk+1(s) = max
a

∑
s′

T (s, a, s′) [R(s, a, s′) + γVk(s′)]

for all s ∈ S.
It can be shown that this recursive equation assures

convergence of the state values to the optimal ones
(Bertsekas, 1995). The optimal policy will be deterministic,
giving probability1 to just one action, and greedy, always
choosing the action that will lead to higher expected
reward.

B. Matrix Games

Matrix Games are the right framework to deal with
single-shot games, that is, games where there are mul-
tiple players but just one state with an associated re-
ward structure. Formally, they can be defined by a tuple
(n, A1...n, R1...n) wheren represents the number of agents,
Ai is the action set for playeri (A = A1× · · ·×An is the
joint action set) andRi : A→ R is the reward function of
player i. One important characteristic of Matrix Games is
the fact that each agent’s reward function depends on the
actions of all the players and not just its own actions. The
name Matrix Games arises from the fact that each player’s
reward structure can be represented as ann-dimensional
matrix.

Games like Rock-Paper-Scissors (Tables I and II) or the
Prisoner’s Dillema (Tables III and IV) are examples of two-
person Matrix Games. One usual convention in two-person
games is that the first player always specifies the row
index and the second player (the opponent in adversarial
situations) specifies the column index.

In this framework, the concept ofstrategyplays a similar
role to that of policy in MDP. A strategyσi ∈ PD(Ai)
defines the way agenti decides on a Matrix Game. A
collection of n strategies, one for each of the agents, is

Rock Paper Scissors
Rock 0 -1 1
Paper 1 0 -1

Scissors -1 1 0

TABLE I

ROCK-PAPER-SCISSORS REWARD MATRICES– PLAYER 1

Rock Paper Scissors
Rock 0 1 -1
Paper -1 0 1

Scissors 1 -1 0

TABLE II

ROCK-PAPER-SCISSORS REWARD MATRICES– PLAYER 2

called ajoint strategyand it can be writtenσ = 〈σi, σ−i〉,
where the notationσ−i is used to refer to a joint strategy
for all players except for playeri. For every joint strategy,
there is an associated reward for each of the playersRi(σ)
– note that the reward for one of the players depends on
the strategies followed by all of them.

An individual strategy is said to be abest-response
strategy if, for a given σ−i played by all other players,
it achieves the highest possible reward. We write:

σi ∈ BR(σ−i)

where BR(σ−i) represents the set of all best-response
strategies of playeri to σ−i. A Nash equilibrium is a
collection of strategies, one for each player, that are best
response strategies, which means that none of the players
can do better by changing strategy, if all others continue
to follow the equilibrium.

∀i σi ∈ BR(σ−i)

An important characteristic of Matrix Games is that all of
them have at least one Nash equilibrium.

A usual way of classifying Matrix Games is the follow-
ing:

• Zero-sum gamesare two-player games (n = 2) where
the reward for one of the players is always symmetric
to the reward of the other player. Actually, this type
of games is equivalent toconstant-sum games, where
the sum of both players rewards is always constant
for every joint action. An example is Rock-Paper-
Scissors, as shown in Tables I and II.

• Team-gameshave a general number of players but
their reward is the same for every joint action. An
example is the Matrix Game shown in Tables V and
VI that models a shared resource channel where the
agents are playing cooperatively.

• General-sum gamesare all types of matrix games.
However, the term is mainly used when the game can
not be classified as a zero-sum one. An example is the
Prisoner’s Dillema, as shown in Tables III and IV.

The first kind of games, also calledtwo-person zero-
sum games, is very appealing because although they can



Tell Not Tell
Tell 2 0

Not Tell 5 1

TABLE III

PRISONER’ S DILLEMA REWARD MATRICES – PLAYER 1

Tell Not Tell
Tell 2 5

Not Tell 0 1

TABLE IV

PRISONER’ S DILLEMA REWARD MATRICES – PLAYER 2

contain several equilibria, all of them have equal reward
structure and are interchangeable. So, in this situation a
Nash equilibrium corresponds to a worst-case scenario: if
player 1 is playing an equilibrium strategyσ1 then there
is nothing that player 2 can do to improve its own payoff
besides playing the corresponding strategyσ2 and, because
the game is zero-sum, there is no way player 1 can get a
lower payoff than it is already receiving. This does not
mean there are not higher reward possibilities but playing
them also involves the risk of ending up receiving lower
reward than in the equilibrium.

We can think of the equilibrium value as an optimal
value in the sense that, for each of the players, the payoff
will never be worst than that value. In alternated games
the way of solving the game in the worst-case scenario is
using a minimax approach where we maximize our reward
given the other player is doing everything to minimize it;
this procedure returns a deterministic strategy. However, in
Matrix Games both players choose their actions at the same
time and, in this situation, we cannot reason exactly like
in alternated games.

We can still think, however, of a minimax operator that
acts on the strategy space, rather than on the action space
and, for the class of games considered, a way of finding
an equilibrium can be written as:

max
σ∈PD(A)

min
o∈O

∑
a∈A

σ(a)R(a, o)

whereA represents player 1 action set,O represents player
2 (the opponent) action set andR(a, o) the reward when
joint action 〈a, o〉 is played. The optimal value will be a
probability distribution function over the agent’s actions
instead of a singular action. This is a linear program which
can be easily solved using a simplex algorithm. For further
explanation on how to formulate the problem above as a
linear program refer to (Owen, 1995) or (Littman, 1994).

C. Stochastic Games

As above mentioned, Stochastic Games can be thought
as an extension of Matrix Games and/or Markov Decision
Processes in the sense that they deal with multiple agents
in a multiple state situation. Formally, they can be defined
as a tuple(n, S,A1,...,n, T, R1,...,n) wheren represents the
number of agents,S the state set,Ai the action set of agent
i andA = A1×· · ·×An the joint action set. The transition

Wait Go
Wait 0 1
Go 4 -2

TABLE V

MODELLING OF A SHARED RESOURCE– PLAYER 1

Wait Go
Wait 0 1
Go 4 -2

TABLE VI

MODELLING OF A SHARED RESOURCE– PLAYER 2

function in a Stochastic Game depends on the actions of
all playersT : S×A1×· · ·×An×S → [0, 1]. The reward
function, asT , also depends on the actions of all players
R : S ×A1 × · · · ×An × S → R.

When can think of a SG as a succession of Matrix Games
– a distinct game to every state. As with MDPs, the concept
of policy can be defined for a Stochastic Games but, in this
case, we are normally interested in the policies of each of
the playersπi(s) ∈ PD(Ai). Like the concept of strategy
for MGs, a joint policy can be definedπ = 〈πi, π−i〉 with
π−i denoting a collection of policies for all the players
excepti.

III. M INIMAX VALUE ITERATION

A two-person zero-sum Stochastic Game is one in which
the Matrix Games for all of the states are two-person
zero-sum ones. In this situation, we can guarantee the
existence of one Nash equilibrium (or multiple interchange-
able equilibria) in each of the intermediate games. So, a
way of finding an optimal policy, in the Nash equilibrium
sense, is to find the Nash equilibrium policy for the state
values: it will guarantee that the player will not get a lower
expected reward than the Nash equilibrium value. In order
to adapt value iteration to make this kind of computation we
should replace the max operator in the Bellman optimality
equation with a minimax operator, as it was used to find
equilibria for two-person zero-sum MGs. So, the Bellman
optimality condition for two-person zero-sum games can
be written as the following equations:

V ∗(s) = max
π∈PD(A)

min
o∈O

∑
a∈A

π(a)Q(s, a, o)

with

Q(s, a, o) =
∑
s′

R(s, a, o, s′) + γT (s, a, o, s′)V ∗(s′)

wherea ∈ A represent the actions of one of the players
ando ∈ O the actions of the other player.

One problem with this method is that it can only be
applied to two-person stochastic games with a symmetrical
reward structure (hence making it zero-sum). However, it
would be nice to apply it to team situations with opposite
objectives, hence with a zero-sum reward structure, but
with several agents. A possible approach, which we used
in this work, is that of (Littman, 1994) in his Minimax-Q



algorithm which thinks of teams as augmented agents and
performs the minimax operation on the joint-action sets of
each team, reducing the problem to a two-person zero-sum
one. As for the reward question in each team, this approach
assumes a purely teamwork situation, with every member
of the team receiving the same reward.

So, if we have a Stochastic Game with the firstn agents
of one team and the remainingm agents of another team,
and with the reward functions verifyingR1 = · · · = Rn =
R andRn+1 = · · · = Rn+m = −R, we can define a new
stochastic game where:

• A = A1 × · · · ×An

• O = An+1 × · · · ×An+m

• R = R1 = · · · = Rn = −Rn+1 = · · · = −Rn+m

This stochastic game is now a two-person zero-sum and we
can apply the Minimax Value Iteration algorithm, whose
recursive equation is directly taken from the Bellman
optimality equation for this kind of games:

V k+1(s)← max
π∈PD(A)

min
o∈O

∑
a∈A

π(a)Qk+1(s, a, o)

with

Qk+1(s, a, o)←
∑
s′

R(s, a, o, s′) + γT (s, a, o, s′)V k(s′)

for all s ∈ S.

IV. SOCCERGAME MODEL

A. Individual Players

In this work, we chose to model by looking at two
characteristics: ball possession and current player role.

The roles correspond not to specific positions in the
field or to the exclusivity of doing certain actions, but
rather to the opportunity of doing certain actions. The roles
considered wereAttacker and Defender. The Attacker
role, for example, does not guarantee exclusivity of attack
but, if the player shoots the ball while in theAttacker role,
it has higher probability of succeeding in its task. On the
other hand, if it tries to block an attack it will not be so
successful as if it was on theDefender role.

As for the actions, the ones considered were:

• get-ball - try to get the ball.
• shoot - shoot for the opponent goal.
• block - defend own goal.
• attack - switch to attacker role.
• defend - switch to defender role.

With this approach it is also easy to definepassandreceive
actions but that would make an already hard computation
even harder.

The finite state automaton that models such agents can
be seen in Fig. 1. When can see that most actions are non-
deterministic, meaning that they will not always lead to
the same state. Moreover, although there is a probability
structure behind those transitions, the transition probabili-
ties depend on the states and actions of all the players (the
agent, its teammates and its opponents) and so, from each
agent’s point of view, those probabilities are not stationary.

Opp
Goal

Our 
Goal

Attacker 
Role

No Ball

Attacker 
Role

Has Ball

Defender 
Role

Has Ball

Defender 
Role

 No Balldefend

attack

defend

attack

shoot shoot

defend attack

all actions all actions

get-ball

block, 
shoot get-ball

block, 
shoot

block, shoot, defend, get-ballblock, shoot, attack, get-ball

block, attack, get-ball block, defend, get-ball 

Fig. 1. Model of the players

The bottom line is: although the automaton gives an idea
of what each player can do, it is usually not possible to
decouple its behavior from that of the other players. The
overall behavior of the stochastic game is presented in the
next section.

B. Stochastic Game Definition

To construct the complete game we added to the state
of each player the information about the team they belong
to. The complete state space for the Stochastic Games was
constructed with the combination of all individual states
plus the two possible goal outcomes, with the restriction
that only one player could have the ball. So, for a Stochastic
Game consisiting of four players with a model like the
one of Fig. 1 the total number of states would be 82. For
example, the state represented in Fig. 2 is allowed. On the
other hand, the one of Fig. 3 is not because two players
have possession of the ball.

The transition function was defined by a set of rules
summarized in Algorithm 1.

With the transition rules defined, we used a Monte-Carlo
method to estimate the complete transition function. Note
that, as mentioned, to apply the method we needed to
consider each team as an agent, with the actions being
each teams’ joint actions.

The reward function was defined simply as being zero
in almost every state except when we arrive at a terminal
state, where there is a positive unitary reward attributed to
the scoring team and a negative unitary reward attributed
to their opponent, which ensures the necessary zero-sum



Player 1
Team A

Defender Role
Has Ball

Player 2
Team A

Defender Role
No Ball

Player 3
Team B

Defender Role
No Ball

Player 4
Team B

Attacker Role
No Ball

Fig. 2. One of the Stochastic Game states

Player 1
Team A

Attacker Role
Has Ball

Player 2
Team A

Defender Role
No Ball

Player 3
Team B

Defender Role
Has Ball

Player 4
Team B

Attacker Role
No Ball

Fig. 3. A state which is not part of the Stochastic Game

condition. In fact, when the reward is backward propagated
by the Minimax Value Iteration algorithm, the zero-sum
condition is maintained and that is why the team only needs
to maintain value-states for itself – the expected reward for
the other team will always be a symmetrical value.

C. Game Setups

We tested the method with different setups using the
agents presented in Table VII. Looking back at the au-
tomaton in Fig. 1 we can see that the agent of Type B
corresponds to restricting the automaton to the right part
while the agent of Type C corresponds to restricting the
automaton to the left part. The setups considered were the

Type Roles Actions
A Attacker, Defender get-ball, shoot, block, attack, defend
B Defender get-ball, shoot, block
C Attacker get-ball, shoot, block

TABLE VII

SOCCER AGENT TYPES

ones shown in Table VIII. With each setup, we analyzed
the characteristics of the Minimax Value Iteration method
applied to the setup and, afterwards, tested its performance
against two kinds of teams: the dual optimal team (in
the Nash equilibrium sense) and a team which randomly
chooses actions.

Algorithm 1 Transition Rules for Stochastic Game

S ← State (which is a list of players)
A← Action (one action for each player)

for all p ∈ S anda ∈ A do
if a is attack or defendthen

change role ofp
end if

end for

if no player has ballthen
n← number of players witha = get-ball
with probability 1

n
one player gets ball

else
c← Carrier of the ball
if c hasa = block then

with probability 0.5 c looses ball
else if c hasa = shoot then

t← team ofc
c looses ball
if c hasAttackerrole then

attackFactor ← 0.8
else

attackFactor ← 0.2
end if
k ← number of Attackers not oft doing block
m← number of Defenders not oft doing block
defenseFactor ← 0.4×m + 0.1× k
if defenseFactor < attackFactor then

Teamt scores a GOAL
end if

else
Do nothing

end if
end if

Setup Our Team Opponent Team
Setup 1 1 type A + 1 type C 1 type A + 1 type C
Setup 2 1 type A + 1 type B 1 type A + 1 type B

TABLE VIII

TEAM SETUPS

V. RESULTS

A. Optimal Computation

The first setup described in Table VIII had the following
characteristics:#S = 22 states and#A = #O = 15
actions. So, a total number of22 state-values and4950
Q-values had to be stored. Nevertheless, although these
numbers are not very high, it still took approximately4706
seconds to complete250 steps in a 865 Mhz PowerPC
G4 machine, with 640Mb of RAM. Note that each step
performs one update on all state-values and Q-values,
corresponding to all states inS, and solves a total of5500
linear programs.

However, the convergence rate was high and, as can
be seen in Fig. 4, usually after 5 iterations the difference
between consecutive values was smaller than1x10−4. For
the second setup, the number of states and actions is exactly
the same and, in this case, so is the size of the state-
values table and Q-values table. However, the same number



0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Iterations

S
t
a
t
e
 V

a
lu

e

-1,002

-1

-0,998

-0,996

-0,994

-0,992

-0,99

-0,988

-0,986

-0,984

-0,982

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Iterations

S
t
a
t
e
 V

a
lu

e

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Iterations

S
t
a
t
e
 V

a
lu

e

Fig. 4. Convergence of Minimax Value Iteration for three different states

of steps of the Minimax Value Iteration algorithm took
3418 seconds, with the same machine, a bit faster than the
previous case. This is probably due to a higher sparsity of
the constraint matrices making it easier for the simplex to
compute the equilibrium policies.

The convergence in this situation was faster because the
equilibrium policies converged to defensive tactics, due to
the fact that one of the players could not attack very well
(the actionshoot in theDefendrole is not very successful).
In fact, the optimal policy in this setup was deterministic
for almost all states, favoring actions likedefendandblock
over more aggressive actions. The optimal strategy seemed
to keep both players just defending – not scoring goals but
not suffering any either.

B. Game Simulation

In terms of simulation, Table IX summarizes the results
from both cases. Surprisingly, in most of the cases none
of the teams scored any goal, after10000 steps of the
simulation. For Setup 1 playing against its dual, both teams

Test Goals Scored Goals Suffered
Optimal Setup 1 vs Random 2974 326

Optimal Setup 1 vs Dual Optimal 0 0
Optimal Setup 2 vs Random 0 0

Optimal Setup 2 vs Dual Optimal 0 0

TABLE IX

RESULTS AFTER10 000SIMULATION STEPS

have Nash equilibrium policies and they do not allow each
other to reach a state where one of them has the advantage.
In fact, with complete identical teams (but with opposite
objectives) it would be expected that none of them could
exploit the other as both play the equilibrium. Note that,
when playing against a random opponent, the Nash team
had quite a big advantage, winning90% of the games
played.

In setup 2 not even playing against a random opponent
the team scored a goal. As referred above, the optimal
policy takes advantage of the fact that there is always a
defender in the field. So, while training the method assumes
the worst possible outcome (according to the minimax
principle) and just tries to defend, doing it perfectly – it is
so focused on defending that seldom tries to get the ball.

VI. CONCLUSIONS

From all types of multi-robot systems, competitive and
adversarial ones have some particular interest due to the
compromises each team as to learn. Robotic soccer is a
great example: each team has to attack while maintaining
a solid defense base. By using the Minimax Value Iteration
method, we were able to find an policy that follows a notion
of equilibrium – the Nash equilibrium – in each of the
states, based on the assumption that the other player will
always play the policy that could damage our team the most
(considering the objectives of both teams are symmetric).

Our tests showed that with a team that favored attack,
the Nash equilibrium finder converged to a policy that did
its best to defend itself, at least against another optimal
team, but still risked a bit, which gave it advantage against
a random player. In a defensive setup, the algorithm con-
verges to a purely defensive tactic, preferring to keep its
score rather than trying to achieve higher rewards. So, we
can say that a equilibrium player is never a risky one and,
in most situations, it could better serve as a starting point
for future online learning algorithms, which would take
an adaptation approach and improve the performance to a
better one, exploiting the opponents weaknesses.

As for the method itself, it was shown that even for
a small number of states, it still runs very slowly if the
associated linear programs have large constraint matrices
(the same that define the Matrix Game for each state),
converging relatively fast nevertheless in terms of total
number of steps. This problem is worst when the joint-
space-set for each of the teams is considerably larger. Still,
if we have a estimate of the game model (opponents, re-
ward and transitions), the Dynamic Programming algorithm
presented can be applied before any real game and provide



an equilibrium policy from where best-response learners,
which try to adapt to the current opponent team rather than
to the Nash team with same joint-action set, could make
adjustments.

In fact, we see our algorithm as a way of providing a
knowledge base, a starting point for the online reinforce-
ment learning algorithms that would be applied during the
game itself, working as a kick-off and lower bound to what
these adaptation methods can do - if the team is in a losing
stream it can always return to the equilibrium policy and
try to maintain the result in hands.

Another limitation of the method is the fact that it
assumes full observability, in the state and in the opponent
actions. Again, after obtained the equilibrium policy we just
need to know the state we are in to obtain the policy. This
fact works in favor of the application of Minimax Value
Iteration prior to the game itself, assuming we have an
estimated model of the game. As for the state observability
problem, it would be interesting to study what happens if
we assume full-observability while running the algorithm
but partial observability during the simulation itself.

VII. F UTURE WORK

Picking up where the previous section left, an interest-
ing line of work for future development is to study the
observability problem, whether training with full observ-
ability and playing with partial observability or always
using partial observability. Following the hypothesis, our
interest is to use the method as prior training of policy
reinforcement learners and, in this situation, the model for
training could assume full-observability, provide we have
sufficient information to build such a model. Nevertheless,
it would always be interesting to test both situations.

Another important question is the fact that the rein-
forcement learning / dynamic programming algorithm has
to change according to whether we are playing against
an opponent or trying to do teamwork, as shown by the
work of (Littman, 2001) – he uses a different algorithm
depending on the the other player being a friend or a foe.
Perhaps even between opponents, the algorithms or param-
eters should be different, according to the aggressiveness of
the opponent . A possible future work direction is to create
some measure of to what degree each agent ”likes” another
agent and affect the global learning / dynamic programming
algorithm of such measure. This implies that the agent is
able to distinct between other agents which, itself, is surely
another topic for discussion.

As a final proposal of future work directions, we point
the fact that the training would be much faster if some
actions, which we know do not make sense, were disabled
in some states – this would produce much smaller linear
programs and a much faster algorithm. An example is the
fact that actionsshoot andpassproduce no change in the
outcome if the player does not have the ball. To accomplish
this, we could use supervisory control to disable actions
that lead us to dangerous states or leading us nowhere –
note that in this situation we are only interested in the logic
aspect of the process. An example is the theory described

in (Cassandras and Lafortune, 1999) but something like a
rule-based system could also be used – it is a question of
how to implement the supervisor.

REFERENCES

Bertsekas, Dimitri P. (1995).Dynamic Programming and Optimal Control.
Vol. 1. 2nd ed.. Athena Scientific.

Cassandras, Christos G. and Stéphane Lafortune (1999).Introduction to
Discrete Event Systems. Kluwer Academic Publishers. Boston.

Claus, Caroline and Craig Boutilier (1998). The dynamics of reinforce-
ment learning in cooperative multiagent systems. In:Proceedings of
the Fifteenth National Conference on Artificial Intelligence. AAAI
Press.

Hu, Junling and Michael P. Wellman (2003). Nash Q-learning for general-
sum stochastic games.Journal of Machine Learning Research
4, 1039–1069.

Littman, Michael L. (1994). Markov games as a framework for multi-
agent reinforcement learning. In:Proceedings of the Thirteenth
International Conference on Machine Learning. New Brunswick.
pp. 157–163.

Littman, Michael L. (2001). Friend-or-foe Q-learning in general-sum
games. In:Proceedings of the Eighteenth International Conference
on Machine Learning. Williamstown. pp. 322–328.

Nash, John F. (1950). Equilibrium points in n-person games. In:Classics
in Game Theory. Princeton University Press.

Owen, Guillermo (1995).Game Theory. 3rd ed.. Academic Press.
Shapley, L. S. (1953). Stochastic games. In:Classics in Game Theory.

Princeton University Press.
Sutton, Richard S. and Andrew G. Barto (1998).Reinforcement Learning.

MIT Press.
von Neumann, John and Oskar Morgenstern (1947).Theory of Games

and Economic Behavior. Princeton University Press. Princeton.


