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Abstract

This thesis addresses two problems in content-based video analysis: the segmentation of

a 2D rigid moving object; and the inference of 3D rigid structure.

In Part I, we consider motion segmentation. Existing methods often fail to detect

the motions of low textured regions and regions moving against low contrast background.

We describe an algorithm to segment low textured moving objects that move against a

low contrast background. Our approach has two distinguishing features. Our algorithm

processes all frames available, as needed, while the majority of current motion segmenta-

tion methods use only two or three consecutive images. Second, we model explicitly the

oclusion of the background by the moving object and recover the shape of the moving

object directly from the image intensity values. This contrasts with other approaches

that deal with low textured scenes by attempting to smooth out a sparse set of motion

measurements.

In Part II, we develop a factorization method that recovers the 3D shape and 3D mo-

tion of rigid moving objects whose surface shape is parameterized by a �nite set of pa-

rameters. Our approach induces a parametric model for the 2D motion of the brightness

pattern in the image plane. To estimate the 3D shape and 3D motion parameters from

the 2D motion parameters, we introduce the surface-based rank 1 factorization algorithm.

Our method uses an appropriate linear subspace projection that leads to the factorization

of a matrix that is rank 1 in a noiseless situation. This allows the use of fast iterative

algorithms to compute the 3D structure that best �ts the data. We track regions where

the 2D motion in the image plane is described by a single set of parameters. Our method

contrasts with the original factorization method that required tracking a large number of

pointwise features, in general a di�cult task, and the factorization of a rank 3 matrix.

We apply to both problems Maximum Likelihood estimation techniques. Illustrative

examples show the good quality of our algorithms.

Keywords: Rigid Structure from Motion, Surface-based Rank 1 Factorization, Motion

Segmentation, Motion Analysis, Video Sequence Processing, Maximum Likelihood.
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Resumo

Esta tese trata dois problemas de an�alise de sequências de video: a segmenta�c~ao de

objectos r��gidos 2D em movimento; e a inferência de estrutura r��gida 3D.

A parte I �e dedicada �a segmenta�c~ao baseada em movimento. Os m�etodos existentes

falham frequentemente na detec�c~ao do movimento de regi~oes de textura uniforme e de

regi~oes que se movem sobre um fundo de baixo contraste. Na parte I, desenvolve-se

um algoritmo que segmenta objectos de textura uniforme que se movem sobre fundo de

baixo contraste. A t�ecnica proposta tem duas caracter��sticas pr�oprias que a distinguem

das existentes. Primeiro, o algoritmo desenvolvido processa todas as imagens dispon��veis,

como necess�ario, enquanto a maioria dos m�etodos de segmenta�c~ao baseada em movimento

usam apenas duas ou três imagens consecutivas. Segundo, modeliza-se explicitamente a

oclus~ao do fundo pelo objecto em movimento e estima-se a forma deste directamente a

partir dos valores de intensidade das imagens. Esta particularidade contrasta com outros

m�etodos que, para lidar com cenas de textura uniforme, tentam suavizar um conjunto

esparso de medidas de movimento.

Na parte II, desenvolve-se um m�etodo de factoriza�c~ao para inferir forma 3D e movi-

mento 3D de objectos r��gidos cuja superf��cie �e parameterizada por um conjunto �nito de

parâmetros. A abordagem proposta induz um modelo param�etrico para o movimento 2D

do padr~ao de intensidade luminosa no plano da imagem. Para estimar os parâmetros de

forma 3D e movimento 3D a partir dos parâmetros de movimento 2D, desenvolve-se o

algoritmo de factoriza�c~ao de caracter��stica 1 baseada em superf��cies. Este m�etodo usa

uma projec�c~ao num subespa�co linear que leva �a factoriza�c~ao de uma matriz de carac-

ter��stica 1 na ausência de ru��do. Deste modo, podem-se usar algoritmos iterativos r�apidos

para calcular a estrutura 3D que melhor se ajusta �as observa�c~oes. A t�ecnica proposta faz

o seguimento de regi~oes onde o movimento 2D no plano da imagem �e descrito por um

�unico conjunto de parâmetros. O m�etodo desenvolvido contrasta com o m�etodo da fac-

toriza�c~ao original que requer o seguimento de um elevado n�umero de regi~oes elementares

(pontuais), em geral uma tarefe dif��cil, e a factoriza�c~ao de uma matriz de caracter��stica 3.

Aplicam-se t�ecnicas de estima�c~ao de M�axima Verosimilhan�ca a ambos os problemas.

A qualidade dos algoritmos propostos �e demonstrada atrav�es de exemplos ilustrativos.

Palavras-chave: Estrutura R��gida a partir do Movimento, Factoriza�c~ao baseada em

Superf��cies, Segmenta�c~ao baseada em Movimento, An�alise de Movimento, Processamento

de Sequências de Video, M�axima Verosimilhan�ca.
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Chapter 1

Introduction

The human capability of understanding visual data is impressive. We easily infer en-

vironmental characteristics from a single photographic image. Since the early days of

image analysis and computer vision, scientists attempt to reproduce this capability on

the computer. Appropriate image formation models and computer algorithms have been

developed that analyze an image from inferences with respect to those models. These

algorithms are useful when analyzing single images in terms of primitives like edges and

textures. When the goal is the inference of three-dimensional (3D) structure, methods

that use a single image are based on cues such as shading and defocus. These methods

fail to give reliable 3D shape estimates for unconstrained real-world scenes. If no prior

knowledge about the scene is available, very little can be inferred from a single image

with respect to the 3D structure.

With the ever increase of computational power, attention has turned to the analysis

of sequences of images. Motion is a powerful cue in an image sequence that is absent

when single images are considered. The motion of the image brightness pattern contains

signi�cant information about the 3D structure of the scene. This thesis is about motion

analysis, the task of analyzing an image sequence according to the motions present. In

section 1.1, we start by motivating the speci�c problems addressed in the thesis, pointing

out bibliographic references that inspired our work. Then, in section 1.2, we describe the

overall approach to the recovery of rigid structure from video. Finally, in section 1.3, we

13



14 CHAPTER 1. INTRODUCTION

detail the organization of the thesis.

1.1 2D and 3D Content-Based Video Representations

This thesis addresses two problems within motion analysis. The �rst problem concerns

the accurate segmentation of a two-dimensional (2D) rigid moving object. The second is

the inference of three-dimensional (3D) rigid structure. We address these problems from

the fundamental point of view of digital video representation [57].

The segmentation of 2D moving objects is motivated in the context of Generative

Video (GV). GV is a framework for content-based video sequence representation, intro-

duced by Jasinschi and Moura in references [35, 36]. In GV the operational units are not

the individual images in the original sequence, as in standard methods, but rather the

world images and the ancillary data. The world images encode the non-redundant infor-

mation about the video sequence. They are augmented views of the world { background

world image { and complete views of moving objects { �gure world images. The ancillary

data registers the world images, strati�es them at each time instant, and positions the

camera with respect to the layering of world images. The world images and the ancillary

data are the GV representation, the information that is needed to regenerate the original

video sequence. We discuss the segmentation of 2D moving objects in the context of

generating the world images and ancillary data for the GV representation of a video clip.

Just like an image is worth ten thousand words and video enhances tremendously our

visual perception of the environment, 3D represents the next higher level in recreating

a natural immersive multimedia environment for participants to interact collaboratively,

and/or viewers to enjoy. The volume experience enables users to perceive di�erently the

same scene from their own vantage point of view. In the original formulation of GV, world

images are modeled as simple planar scenarios. This representation fails when the relative

depth of the scene structure is not negligible. We generalize to 3D shaped scenarios the

GV representation. This framework motivates the second problem addressed in the thesis
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{ the recovery of the 3D structure (3D shape and 3D motion) from a 2D video sequence.

2D motion segmentation in low texture and low contrast

An important task in building a GV representation of a video sequence is the automatic

segmentation of the moving objects. Motion segmentation methods often fail to detect low

textured regions and regions moving against a low contrast background. To appreciate this

di�culty, we apply the algorithm of reference [23] to segmenting a low textured moving

object. The two left images in Figure 1.1 show two consecutive frames of a video sequence.

The right image of Figure 1.1 displays the template of the moving car reconstructed by

excluding from the regions that changed between the two co-registered frames the ones

that correspond to uncovered background areas, see reference [23]. The small regions, for

example in the top left corner, that due to the noise are misclassi�ed as belonging to the

car template can be discarded by an adequate morphological post-processing. However,

the car template is highly incomplete, with the regions in the interior of the car being

misclassi�ed as belonging to the background, due to the low texture of the car.

Figure 1.1: Motion segmentation in low texture.

In the thesis we focus on the segmentation of low textured objects moving against

a low contrast background. We develop an algorithm that integrates across the frames

in the sequence the intensity di�erences between the moving object and the background.

Through this temporal integration, the algorithm recovers accurate templates of the mov-

ing objects, even when they move against a low contrast background.

Our approach is characterized by two distinguishing features. First, while the majority

of the current motion segmentation methods use only two or three consecutive images,
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our algorithm processes all frames available, as needed. Second, while other approaches

deal with the incompleteness of the templates by attempting to smooth out a sparse set

of motion measurements, our method recovers the shape of the moving object directly

from the image intensity values.

Some authors cope with low textured scenes by attempting to smooth out a sparse set

of motion measurements. Their approaches work by coupling motion-based segmentation

with prior knowledge about the scene as in statistical regularization or by combining mo-

tion with other attributes. In general, these methods lead to complex and time consuming

algorithms. Irani, Rousso, and Peleg [31, 32] proposed one of the few approaches using

temporal integration to segment a moving object. Their method works by averaging the

images registered according to the motion of the di�erent objects in the scene. After

processing a number of frames, each of these integrated images is expected to show only

one sharp region corresponding to the tracked object. This region is found by detecting

the stationary regions between the corresponding integrated image and the current frame.

With low textured objects in low contrast background, this technique does not perform

well. Our approach is related to this one. However, we use all the frames available rather

than just a single frame to estimate the templates of the moving objects. We will see

that, by integrating the small di�erences across several images, our technique resolves the

di�culties that arise in low texture and low contrast video sequences.

Fast 3D rigid structure from video

The key step in generating automatically 3D model-based representations for video is the

recovery of the 3D shape of the environment and the 3D motion of the camera from the

video sequence. If no prior knowledge about the scene is available, the cue to estimating

the 3D structure (3D shape and 3D motion) from a video sequence is the 2D motion of the

brightness pattern in the image plane. For this reason, the problem is generally referred

to as structure from motion (SFM). Early approaches to SFM processed a single pair

of consecutive frames. Two-frame based algorithms are highly sensitive to image noise,
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and, when the object is far from the camera, i.e., at a large distance when compared

to the object depth, they fail even at low level image noise. More recent research has

been oriented towards the use of longer image sequences. The problem of estimating

3D structure from multiple frames has a larger number of unknowns (the 3D shape and the

set of 3D positions) but it is more constrained than the two-frame SFM problem because of

the rigidity of the scene. Among the existing approaches to the multiframe SFM problem,

the factorization method introduced by Tomasi and Kanade in references [59, 60, 61] is an

elegant method to recover rigid structure from an image sequence. In references [59, 61],

the 2D projection of a set of feature points is tracked along the image sequence. The

3D shape and motion are then estimated by factorizing a measurement matrix whose

entries are the set of trajectories of the feature point projections. Tomasi and Kanade

pioneered the use of linear subspace constraints in motion analysis. In fact, the key idea

underlying the factorization method is the fact that the rigidity of the scene imposes that

the measurement matrix lives in a low dimensional subspace of the universe of matrices.

Tomasi and Kanade have shown that the measurement matrix is a rank 3 matrix in

a noiseless situation. References [59, 61] use the orthographic projection model. The

factorization method was later extended to the scaled-orthography and para-perspective

models, see references [47, 48, 49], and to the multibody scenario, see references [19, 20, 21].

In this thesis, we use linear subspace constraints to solve SFM in the more general

scenario of recovering 3D motion and a parameteric description of the 3D shape from a

sequence of 2D motion parameters. Exploiting further the existing subspace constraints,

we solve the SFM problem by factorizing a matrix that is rank 1 in a noiseless situation,

rather than a rank 3 matrix as in the original factorization method.

To recover in an expedite way the 3D motion and the 3D shape, we introduce the

surface-based factorization. Under our general scenario, we describe the shape of the

object by a parameterization of its surface. We show that this parametric description of

the 3D shape induces a parameteric model for the 2D motion of the brightness pattern

in the image plane. The surface-based factorization approach overcomes a limitation
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of the original factorization method of Tomasi and Kanade. Their approach relies on

the matching of a set of features along the image sequence. To provide dense depth

estimates, their method usually needs hundreds of features that are di�cult to track and

that lead to a complex correspondence problem. Instead of tracking pointwise features,

our method tracks regions where the optical 
ow is described by a single set of parameters.

Our approach avoids the correspondence problem and is particularly suited when there

is good prior knowledge about the shape of the 3D objects. A good practical scenario

is when constructing 3D models for buildings that are well described by piecewise 
at

surfaces.

The algorithm that we develop has a second major feature { its computational sim-

plicity. By making an appropriate linear subspace projection, we show that the unknown

3D structure can be found by factorizing a matrix that is rank 1 in a noiseless situation.

This contrasts with the factorization of a rank 3 matrix as in the original method of

Tomasi and Kanade. This allows the use of faster iterative algorithms to compute the

matrix that best approximates the data.

1.2 Maximum Likelihood Inference of Rigid Struc-

ture from Video

We formulate the problem of inferring rigid structure from video by using the analogy

between the visual perception mechanism and a classical communication system, see Fig-

ure 1.2. This analogy has been used to deal with perception tasks involving a single image,

see references [38] and [45].

In a communication system, see top of Figure 1.2, the transmitter receives the mes-

sage S from a source and sends it to the receiver. The transmitter codes the message and

sends the resulting signal I� through the channel. The receiver gets the signal I at the

output of the channel, a noisy version of the signal I�. The receiver decodes I obtaining

the estimate bS of the message S. In statistical communications theory, we describe statis-

tically the channel distortion and design the receiver according to a statistically optimal
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Figure 1.2: Communications system and image sequence analysis: analogy.

criteria. For example, we can estimate bS as the message S that maximizes the probabil-

ity of receiving the signal I, conditioned on the message S sent. This is the Maximum

Likelihood (ML) estimate. If a statistical description of the message source is available,

this can be incorporated into the estimation by using a Bayesian framework.

The communication system is a good metaphor for the problem of recovering real world

structure from video, represented at the bottom of Figure 1.2. The message source is the

environment in the real world. The transmitter is the geometric projection mechanism

that transforms the real world S into an ideal image I�. The channel is the video camera

that captures the image I, a noisy version of I�. The receiver is the image sequence

analysis system. The task of this system is to recover the reality that originated the

image sequence that was captured.

The ultimate goal of the research work described in this thesis is to design an image

sequence analysis system that computes in an expedite way the ML estimate of the real

world environment. The joint ML estimation of the complete set of unknowns { motions,

shapes, and textures (these terms will be de�ned in a precise way later on) { leads to the

minimization of a complex cost function. The minimization of the ML cost function with

respect to the complete set of unknowns is a highly complex task { in general its analytic

solution can not be found. The large number of unknowns usually excludes standard
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numerical iterative optimization techniques due to their high computational cost, and

to their serious common problems with local minima. A major problem in this type of

complex optimization is the unsupervised search for good initial guesses. Rather than

blindly applying standard optimization methods, our approach is guided by the speci�c

characteristics of each of the problems we address.

The remaining of this section outlines the methods we propose to accomplish the ex-

pedite minimization of the ML cost functions for the problems of two-dimensional (2D)

motion segmentation and inference of three-dimensional (3D) structure. To derive com-

putationally simple algorithms, we make approximations well supported by practical ex-

perience. These sub-optimal solutions to the ML estimate can be further improved if used

as the initial guess for a standard iterative optimization method. We want to emphasize

that our algorithms solve a key task in this type of complex optimization problems { the

unsupervised search for good initial guesses.

Multiframe segmentation of a 2D moving object

To segment accurately a 2D moving object, we process a set of multiple frames. By

modeling the rigidity of the moving object across time, we succeed where other methods

fail { in segmenting low textured moving objects and objects moving against low contrast

background.

According to the analogy illustrated in Figure 1.2, we accomplish the segmentation of

a 2D moving object by computing the ML estimate of all the unknown parameters in the

2D image sequence model: the template of the moving object, the intensity level of the

object pixels (object texture), the intensity level of the background pixels (background

texture), the 2D motions of the object, and the 2D motions of the background (camera

motion). We consider that the moving object is in the foreground of the scene in front

of the background. The moving object is opaque and it is visible through the entire

sequence.

The joint ML estimation of the complete set of unknown parameters is a complex



1.2. MAXIMUM LIKELIHOOD INFERENCE OF RIGID STRUCTURE FROM VIDEO 21

task. Motivated by our experience with real video sequences, we decouple the estimation

of the motions (moving object and camera) from that of the remaining parameters. The

motions are estimated on a frame by frame basis by using known methods. We will

see that this procedure minimizes a simpli�ed version of the overall ML cost function.

Then, we introduce the motion estimates into the ML cost function and minimize this

function with respect to the remaining parameters. The estimate of the object texture

is obtained in closed form. To estimate the texture of the background and the moving

object template, we develop a fast two-step iterative algorithm. The �rst step estimates

the background for a �xed template { the solution is obtained in closed form. The second

step estimates the template for a �xed background { the solution is given by a simple

binary test evaluated at each pixel. The algorithm converges in a few iterations, typically

three to �ve iterations.

Our algorithm recovers low textured moving objects taking into account the rigidity of

the object over the set of multiple frames. Furthermore, our approach is well suited to the

even more challenging situation where the object moves against a low contrast background

because the ML cost function integrates across time the small intensity di�erences between

the object and the background. The template estimated by minimizing the ML cost

function is accurate. It corresponds to the object shape that better describes the entire

set of multiple observed images.

Inference of 3D rigid structure: surface-based rank 1 factorization

We develop algorithms that recover 3D structure from a monocular video sequence by

processing a sequence of multiple frames, rather than only two. We avoid the quagmire

of tracking a large set of features by describing the 3D shape of the scene by a parame-

terization of its surface. This parametric description of the 3D surface induces, in turn,

a parametric model for the 2D motion of the brightness pattern in the image plane. We

start by tracking regions where the 2D motion in the image plane is described by a single

set of parameters. Then, our method estimates the parameters that describe the 3D shape
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and the 3D motion by factorizing a matrix that collects the parameters describing the

2D motion in the image plane. We show that this matrix is rank 1 in a noiseless situation;

our method �nds suitable factors of this matrix by using a fast algorithm to compute its

largest singular value and associated singular vectors.

According to the analogy of Figure 1.2, the problem of recovering 3D structure from

a 2D video sequence is formulated as the joint ML estimation of all the unknowns: the

3D motions, the 3D shape of the object, and the texture of the object. Again, we do

not attempt the direct minimization of the ML cost function with respect to the entire

set of parameters by using generic optimization methods. Rather, we exploit the speci�c

characteristics of the problem to develop a computationally feasible approximation to the

ML solution. We start by expressing the estimate of the texture in terms of the 3D shape

and 3D motion parameters. Then, we replace the texture estimate into the ML cost

function and are left with a cost function that depends on the 3D shape and 3D motion

parameters only through the 2D motion of the brightness pattern in the image plane.

This way, we show that the classic structure from motion (SFM) approach is in fact an

approximation to the ML estimate of the 3D structure.

To compute the 3D structure in an expedite way, we develop the surface-based rank 1

factorization method. We parameterize the 3D shape of the object surface. This parame-

terization induces a parametric description for the 2D motion in the image plane. We start

by computing the parameters describing the 2D motion in the image plane for a set of

regions. This step corresponds to the minimization of a simpli�ed version of the ML cost

function with respect to the 2D motion parameters. The relation between the parameters

that describe the 3D structure and the parameters describing the 2D motion depends on

the geometric projection mechanism. We use the orthographic projection model that is

known to be a good approximation to the perspective projection when the relative depth

of the scene is small when compared to the distance to the camera. The relation between

the two sets of parameters referred above enables us to recover the parameters describing

the 3D structure by factorizing a matrix that collects the 2D motion parameters. We
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show that this matrix is rank 1 in a noiseless situation. The estimates of the 3D motion

parameters and the 3D shape parameters are then obtained from the column and row

vectors whose product best matches the data in the matrix of 2D motion parameters. We

factorize this matrix by using a fast algorithm to compute its largest singular value and

the associated singular vectors.

Our technique is simultaneously a generalization of the original feature-based factor-

ization method of Tomasi and Kanade [59, 61], and a further step into the use of linear

subspace contraints in motion analysis. The surface-based rank 1 factorization is a gener-

alization of the original factorization method because the original feature-based approach

of [59, 61] corresponds to a special case of our framework where the 3D shape is described

by a set of pointwise patches with constant depth. The surface-based rank 1 factoriza-

tion method is also a further step into the use of subspace contraints in motion analysis

because we show how to reduce the dimension of the space of the measurement matrix

by making an adequate linear subspace projection. This projection enables us to recover

SFM by factorizing a matrix that is rank 1 in a noiseless situation, rather than a rank 3

matrix like in the original factorization method. This simpli�es both the decomposition

and normalization steps involved in the factorization approaches.

Since the accuracy of the 2D motion estimates is not the same for all image regions

{ it depends on the the size of the estimating region and on the variability of the image

intensity pattern, { a robust estimate of the 3D structure would weight more the contri-

bution of more accurate estimates of 2D motion. To compute this weighted estimate in

an expedite way, we develop the weighted factorization method that takes into account

the accuracy of the 2D motion estimates without paying additional computational cost.

This is achieved by rewriting the problem with weights as the non-weighted factorization

of a modi�ed matrix.

The estimate of the 3D shape provided by the SFM step is described by the set of

depths of the regions for which the 2D motion was computed. This estimate of the

3D shape can be a rough approximation of the true 3D shape because the set of regions
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for which the 2D motion was computed can be sparse. To overcome this fact, we propose

a �nal step that estimates the 3D shape directly from the image intensity values. We

introduce the 3D motion estimates into the ML cost function and minimize it with respect

to the 3D shape. To accomplish this minimization, we use a computationally simple

continuation-type multiresolution algorithm. Our algorithm starts by estimating coarse

approximations to the 3D shape. Then, it re�nes the estimate as more images are being

taken into account. The computational simplicity of our algorithm comes from the fact

that each stage, although non-linear, is solved by a simple Gauss-Newton method that

requires no more than two or three iterations.

Other researchers also estimate the 3D structure directly from the image intensity val-

ues. Horn and Weldon [29] estimate the 3D structure parameters by using the brightness

change constraint between two consecutive frames. Heel [28] builds on this work by using

a Kalman �lter to update the estimates over time. As outlined in the paragraph above,

we infer 3D structure directly from the image intensity values, through ML estimation,

but, in contrast with [28], we model the rigidity of the scene over the set of available

frames, rather than trying to fuse a set of possibly inaccurate estimates obtained from

pairs of consecutive frames.

1.3 Thesis Overview

The thesis in organized in two parts. Part I addresses the problem of segmenting a

two-dimensional (2D) rigid moving object. Part II addresses the problem of recovering

three-dimensional (3D) rigid structure from a monocular video sequence. Part I includes

chapters 2 through 6, while Part II corresponds to chapters 7 through 11. Chapter 12

concludes the thesis. The following paragraphs overview the contents of each chapter of

the thesis.
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Part I

Chapter 2 introduces the 2D motion segmentation problem. We identify the limitations

of current methods, in particular when the object is low textured or moves against low

contrast background. Then, we describe the observation model and formulate the Max-

imum Likelihood (ML) estimate. The 2D shape of the moving object is described by a

discretized binary template. The high 
exibility of this description enables the accurate

representation of non-smooth shapes, as for example the shape of a boat with a mast

(such as the one appearing in the coast-guard test sequence [40] for the MPEG-4 video

standard [57]), or complex shapes, as for example the shape of objects with holes. Each

pixel of each frame in the video sequence is modeled as a noisy version either of the

moving object intensity level (object texture), if that pixel belongs to the template of the

moving object, or of the background intensity level (background texture), if otherwise.

The object moves relative to the background, covering some regions of the background

and uncovering other regions. Also the position of the background relative to the camera

changes, due to the camera motion, letting di�erent views of the background appear in

the camera window. The segmentation problem is formulated as the ML estimation of

all the unknowns from the video sequence: the motions of the object, the motions of the

camera, the binary template of the object, the texture of the object, and the texture of

the background. This chapter also introduces important notation used in the thesis.

To minimize the ML cost function, we decouple the estimation of the motions from the

estimation of the remaining parameters. The motions are estimated on a frame by frame

basis. Chapter 3 is devoted to the estimation of the motion of the brightness pattern

in the image plane. We show that, for a single pair of frames, the ML estimation leads

to the usual approach of minimizing the brightness di�erence between those two frames.

Then, we use known methods to estimate the motion of the brightness pattern for two well

known 2D motion models: the translational motion model and the a�ne motion model.

An important contribution in this chapter is the derivation of expressions for the variance
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of the error of the estimates of the motion parameters in terms of the spatial variability

of the brightness pattern and the size of the region of analysis. These expressions provide

an easy way to predict the expected error in estimating the 2D motion of the brightness

pattern for a given region of the image. Basically, the larger the region or the larger the

variability of the brightness pattern, the more accurate are the estimates of the 2D motion

parameters.

Chapter 4 describes our two-step iterative algorithm to segment the 2D rigid moving

object. To minimize the ML cost function, we start by estimating the texture of the

moving object. By minimizing the ML cost function with respect to the object texture,

we obtain a closed-form expression. We insert the estimate of the object texture into the

ML cost function and are left with a function of the texture of the background and the

template of the moving object. Our algorithm minimizes this cost function by estimating

iteratively the following: (i) the background texture with known template; and (ii) the

object template with known background. The background estimate in step (i) is obtained

in closed-form. The template estimate in step (ii) leads to a simple binary test evaluated

at each pixel. We illustrate our approach with an experiment where we used real video

frames to construct a challenging sequence where an object with complex template moves

against low contrast background.

Chapter 5 analyzes the behavior of the segmentation algorithm. We present a statis-

tical analysis of the binary test involved in the two-step iterative algorithm and illustrate

with one experiment with synthetic data the behavior of the test.

Chapter 6 describes experiments with real video sequences that illustrate the perfor-

mance of the segmentation algorithm.

Part II

Chapter 7, the �rst chapter of Part II, states the problem of inferring 3D structure from

an image sequence. After reviewing the bibliography and contrasting our approach with

related work, we describe the observation model and formulate the ML solution for this
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problem. We consider one single object. The frames in the video sequence are modeled

as the orthogonal projection of the texture of the object plus noise. The orthogonal

projection is known to be a good approximation to the perspective projection when the

relative depth of the scene is small when compared to the distance to the camera (in this

scenario, it is not possible to recover the 3D shape by inferring the absolute depth). The

mapping of the texture of the object to the image plane depends both on the 3D shape

of the object and the 3D position of the object relative to the camera. The problem of

inferring 3D structure is then stated as the estimation of the 3D shape of the object, the

3D motion of the object relative to the camera, and the texture of the object from the

video sequence. By minimizing the ML cost function with respect to the object texture,

we express the ML estimate of the texture in terms of the remaining unknowns. We

replace the texture estimate into the ML cost function, obtaining a cost function that

depends on the 3D shape and 3D motion through the 2D motion induced in the image

plane. This way, we show that the usual structure from motion (SFM) approach can be

seen as an approximation to the ML solution { when inferring SFM, we minimize the

ML cost function by �rst computing the 2D motion of the brightness pattern in the image

plane, then estimating the 3D shape and 3D motion from the 2D motion.

Chapters 8 and 9 are devoted to SFM. They detail our approach to the recovery of

3D motion and 3D shape from the 2D motion of the brightness pattern of a sequence of

images of a rigid scene. In chapter 8 we introduce the rank 1 factorization. We consider

the scenario used by Tomasi and Kanade to introduce the factorization method [59, 61].

A set of features is tracked across a set of frames. The 3D shape is represented by the

set of 3D positions of the feature points. In the formulation of Tomasi and Kanade, the

3D shape and 3D motion are computed by using Singular Value Decomposition (SVD) to

approximate a measurement matrix that is rank 3 in a noiseless situation. We reformulate

the problem using the fact that the feature coordinates along the image plane are known

from their projection in the �rst frame. By using an appropriate linear subspace projec-

tion, we recover the 3D shape, i.e., the relative depths of the features, and the 3D motion,
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from the set of feature trajectories, by a simple factorization of a matrix that is rank 1

in a noiseless situation. This leads to a very fast algorithm to recover 3D structure from

2D motion, even when using a large number of features and a large number of frames.

This chapter includes an experimental comparison between the computational cost of

the rank 1 factorization and the one of the original factorization method of Tomasi and

Kanade [59, 61].

When the goal is the recovery of a dense representation of the 3D shape, the feature-

based approach may not solve the problem satisfactorily because it may require tracking a

very large number of features to obtain a dense description of the 3D shape. This leads to a

complex, if not impossible, correspondence problem because only distinguished points, as

brightness corners, can be accurately tracked. To overcome this di�culty, we introduce

in chapter 9 the surface-based factorization method. We represent the 3D shape by a

parametric description of the object surface. This representation induces a parametric

model for the 2D motion of the brightness pattern in the image plane. For example,

for piecewise planar 3D shapes, the 2D motion in the image plane is described by the

a�ne motion model with di�erent parameterizations for regions corresponding to di�erent

surface patches. We start by estimating the parameters describing the 2D motion by using

the method described in chapter 3. Then, we recover the parameters that describe the

3D shape and the 3D motion from the parameters describing the 2D motion in the image

plane. This is done by factorizing a surface-based measurement matrix that collects

the set of 2D motion parameters. To factorize this matrix in an e�cient way, we use

the methodology of the rank 1 factorization of chapter 8. In chapter 9 we also show

how to include con�dence weights in the estimates of the 2D motion parameters when

recovering the 3D structure, i.e., how to weight more the contribution of a large region

than the contribution of a small region, or the contribution of a region with a \highly

contrasted" brightness pattern than the contribution of a region with \smooth" brightness

pattern. These weights are computed from the variances of the estimates of the 2D motion

parameters, as detailed in chapter 3. We introduce the weighted factorization to recover
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the 3D structure using the con�dence weights without additional computational cost. This

is accomplished by rewriting the problem as the factorization of a modi�ed measurement

matrix, and using the rank 1 factorization method to factorize this matrix.

In chapters 8 and 9 we estimate the 3D shape and the 3D motion from the 2D motion

of the brightness pattern in the image plane. As mentioned above, this procedure approxi-

mates the ML estimation of the 3D structure. The quality of the estimate of the 3D shape

obtained this way is limited by the possibility of estimating the 2D motion over the entire

image. Since for textures that exhibit a predominant spatial orientation it is very di�cult

to compute the 2D motion of the brightness pattern (this problem is studied in detail in

chapter 3), the estimate of the 3D shape obtained by inferring SFM may be much rougher

than the corresponding ML estimate. In chapter 10 we propose a method to estimate the

3D shape directly from the image intensity values by minimizing the ML cost function,

after introducing the estimates of the 3D motions. Our approach provides an e�cient

way to cope with the ill-posedness of estimating the motion in the image plane. In fact,

the local brightness change constraint leads to a single restriction, which is insu�cient to

determine the two components of the local image motion (the so called aperture problem).

Our method of estimating directly the 3D shape overcomes the aperture problem because

we are left with the local depth as a single unknown, after computing the 3D motion in the

�rst step. To minimize the ML cost function we develop a multiresolution continuation-

type algorithm that works by estimating coarse approximations to the 3D shape at the

beginning and re�ning the estimate as more images are being taken into account. Each

stage of the continuation algorithm uses a Gauss-Newton method to update the estimate

of the 3D shape. The derivatives involved in the Gauss-Newton method are obtained from

image gradients in a very simple way.

Chapters 8, 9, and 10 include experiments using synthetic data to illustrate the ideas,

methodologies, and algorithms proposed. In chapter 11 we describe experiments that

demonstrate the performance of our algorithms in recovering 3D structure from real video

sequences.



30 CHAPTER 1. INTRODUCTION

The thesis ends with chapter 12 where we summarize our work, emphasize the original

contributions, and point out possible future research directions.

Parts of the work described in the thesis are published in references [1-9].



Part I

Segmentation of 2D Moving Object
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Chapter 2

Statement of the Segmentation

Problem

2.1 Introduction

Motion segmentation methods often fail to detect the motions of low textured regions.

We develop an algorithm for segmentation of low textured moving objects. While usu-

ally current motion segmentation methods use only two or three consecutive images our

method re�nes the shape of the moving object by processing successively the new frames

as they become available. By integrating across time the information content of the im-

age sequence, we achieve accurate motion-based segmentation for general unstructured

scenes.

The segmentation of an image into regions that undergo di�erent motions has received

the attention of a large number of researchers. According to their research focus, di�erent

scienti�c communities addressed the motion segmentation task from distinct viewpoints.

In section 2.2, we overview the common approaches in the video coding and computer

vision communities and relate ours to previously published research work.

We formulate image sequence analysis as a parameter estimation problem. As intro-

duced in chapter 1, we use the analogy between a communications system and image

sequence analysis. The segmentation algorithm is derived as a computationally simple

approximation to the Maximum Likelihood (ML) estimate of the parameters involved in

33
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the two-dimensional (2D) image sequence model: the motions, the template of the moving

object, its intensity levels (the object texture), and the intensity levels of the background

pixels (the background texture). The joint ML estimation of the complete set of param-

eters is a very complex task. Motivated by our experience with real video sequences, we

decouple the estimation of the motions (moving objects and camera) from that of the

remaining parameters. The motions are estimated on a frame by frame basis and then

used in the estimation of the remaining parameters. Then, we introduce the motion esti-

mates into the ML cost function and minimize this function with respect to the remaining

parameters.

The estimate of the object texture is obtained in closed form. To estimate the back-

ground texture and the moving object template, we develop a fast two-step iterative

algorithm. The �rst step estimates the background for a �xed template { the solution is

obtained in closed form. The second step estimates the template for a �xed background

{ the solution is given by a simple binary test evaluated at each pixel. The algorithm

converges in a few iterations, typically three to �ve iterations.

This chapter states the 2D rigid object segmentation problem. Section 2.3 introduces

notation. In section 2.4 we formulate the segmentation problem according to the analogy

between a communications system and image sequence analysis, as introduced in chap-

ter 1. We detail the observation model and the unknown parameters involved. Section 2.5

derives the ML estimate and outlines our approach to the minimization of the ML cost

function. Section 2.6 summarizes the content of the chapter.

2.2 Related Work

Several papers on image sequence coding address the motion segmentation task with com-

putation time concerns. They reduce temporal redundancy by predicting each frame from

the previous one through motion compensation. See reference [39] for a review on very low

bit rate video coding. Regions undergoing di�erent movements are compensated in di�er-
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ent ways, according to their motion. This type of approach is known as implicit model-

based image sequence coding. Implicit modeling means that the three-dimensional (3D)

structure of the scene is taken into account implicitly by a two-dimensional (2D) model

representing its projection onto the image plane. This is in opposition to explicit modeling,

where the 3D structure is taken into account explicitly.

The techniques used in image sequence coding attempt to segment the moving objects

by processing only two consecutive frames. Since their focus is on compression and not

in developing a high level representation, these e�orts have not considered low textured

scenes, and regions with no texture are considered unchanged. As an example, we ap-

plied the algorithm of reference [23] to segmenting a low textured moving object. Two

consecutive frames of a tra�c road video clip are shown in the left side of Figure 1.1, see

section 1.1. In the right side of Figure 1.1, the template of the moving car was found by

excluding from the regions that changed between the two co-registered frames the ones

that correspond to uncovered background areas, see reference [23]. The small regions that

due to the noise are misclassi�ed as belonging to the car template can be discarded by an

adequate morphological post-processing. However, due to the low texture of the car, the

regions in the interior of the car are misclassi�ed as belonging to the background, leading

to a highly incomplete car template.

High level representation in image sequence understanding has been considered in the

computer vision literature. Their approach to motion-based segmentation copes with

low textured scenes by coupling motion-based segmentation with prior knowledge about

the scenes as in statistical regularization techniques, or by combining motion with other

atributtes. For example, reference [25] uses a Markov Random Field (MRF) prior and

a Bayesian Maximum a Posteriori (MAP) criterion to segment moving regions. The

authors suggest a multiscale MRF modeling to resolve large regions of uniform intensity.

In reference [16], the contour of a moving object is estimated by fusing motion with color

segmentation and edge detection. In general, these methods lead to complex and time

consuming algorithms.
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References [31, 32] describe one of the few approaches using temporal integration by

averaging the images registered according to the motion of the di�erent objects in the

scene. After processing a number of frames, each of these integrated images is expected

to show only one sharp region corresponding to the tracked object. This region is found

by detecting the stationary regions between the corresponding integrated image and the

current frame. Unless the background is textured enough to blur completely the averaged

images, some regions of the background can be classi�ed as stationary. In this situation,

their method overestimates the template of the moving object. This is particularly likely

to happen when the background has large regions with almost constant color or intensity

level.

Our approach is related to the approach of references [31, 32], however, we model

explicitly the oclusion of the background by the moving object and we use all the frames

available rather than just a single frame to estimate the moving object template. Even

when the moving object has a color very similar to the color of the background, our

algorithm has the ability to resolve accurately the moving object from the background,

because it integrates over time those small di�erences.

2.3 Notation

We discuss motion segmentation in the context of Generative Video (GV), see refer-

ences [34, 35, 36, 37]. GV is a framework for the analysis and synthesis of video sequences.

In GV the operational units are not the individual images in the original sequence, as in

standard methods, but rather the world images and the ancillary data. The world images

encode the non-redundant information about the video sequence. They are augmented

views of the world { background world image { and complete views of moving objects

{ �gure world images. The ancillary data registers the world images, strati�es them at

each time instant, and positions the camera with respect to the layering of world images.

The world images and the ancillary data are the GV representation, the information that
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is needed to regenerate the original video sequence. We formulate the moving object

segmentation task as the problem of generating the world images and ancillary data for

the GV representation of a video clip.

We use the analogy between a communications system and an image analysis task, as

introduced in chapter 1 and illustrated in Figure 1.2. According to this approach, a key

step is the speci�cation of a model for the video sequence. To introduce this model, we

�rst de�ne building blocks such as image, world image, template, and registration.

An image is a real function de�ned on a subset of the real plane. The image space

is a set fI : D ! Rg, where I is an image, D is the domain of the image, and R is

the range of the image. The domain D is a compact subset of the real plane R2 , and

the range R is a subset of the real line R. Examples of images are the frame f in the

video sequence, denoted by If , the background world image, denoted by B, the moving

object world image, denoted by O, and the moving object template, denoted by T. The

images If , B, and O have range R = R. They code intensity gray levels1. The template

of the moving object is a binary image, i.e., an image with range R = f0; 1g, de�ning the

region occupied by the moving object. The domain of the images If and T is a rectangle

corresponding to the support of the frames. The domain of the background world imageB

is a subset D of the plane whose shape and size depends on the camera motion, i.e., D is

the region of the background observed in the entire sequence. The domain D of the

moving object world image is the subset of R2 where the template T takes the value 1,

i.e., D = f(x; y) : T(x; y) = 1g.

In our implementation, the domain of each image is rectangular shaped with size �tting

the needs of the corresponding image. Although we use a continuous spatial dependence

for commodity, in practice the domains are discretized and the images are stored as

1The intensity values of the images in the video sequence are positive. In our experiments, these values
are coded by a binary word of eight bits. Thus, the intensity values of a gray level image are in the set
of integers in the interval [0; 255]. For simplicity, we do not take into account the discretization and the
saturations, i.e., we consider the intensity values to be real numbers and the gray level images to have
range R = R. The analysis in the thesis is easily extended to color images. A color is represented by
specifying three intensities, either of the perceptual attributes brightness, hue, and saturation; or of the
primary colors red, green, and blue, see reference [33]. The range of a color image is then R = R

3 .
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matrices. We index the entries of each of these matrices by the pixels (x; y) of each

image and refer to the value of image I at pixel (x; y) as I(x; y). Throughout the text,

we refer to the image product of two images A and B, i.e., the image whose value at

pixel (x; y) equals A(x; y)B(x; y), as the image AB. Note that this product corresponds

to the Hadamard product, or elementwise product, of the matrices representing images A

and B, not their matrix product.

We consider two-dimensional (2D) parallel motions, i.e., all motions (translations and

rotations) are parallel to the camera plane. We represent this kind of motions by specifying

time varying position vectors. These vectors code rotation-translation pairs that take val-

ues in the group of rigid transformations of the plane, the special Euclidean group SE(2).

The image obtained by applying the rigid motion coded by the vector p to the image I is

denoted byM(p)I. The imageM(p)I is also usually called the registration of the image I

according to the position vector p. The entity represented by M(p) is seen as a motion

operator. In practice, the (x; y) entry of the matrix representing the imageM(p)I is given

by M(p)I(x; y) = I(fx(p; x; y); fy(p; x; y)) where fx(p; x; y) and fy(p; x; y) represent the

coordinate transformation imposed by the 2D rigid motion. We use bilinear interpolation

to compute the intensity values at points that fall in between the stored samples of an

image.

The motion operators can be composed. The registration of the image M(p)I ac-

cording to the position vector q is denoted by M(qp)I. By doing this we are using the

notation qp for the composition of the two elements of SE(2), q and p. We denote the

inverse of p by p#, i.e., the vector p# is such that when composed with p we obtain the

identity element of SE(2). Thus, the registration of the image M(p)I according to the

position vector p# obtains the original image I, so we have M(p#p)I = M(pp#)I = I.

Note that, in general, the elements of SE(2) do not commute, i.e., we have qp 6= pq,

and M(qp)I 6= M(pq)I. Only in special cases is the composition of the motion opera-

tors not a�ected by the order of application, as for example when the motions p and q

are pure translations or pure rotations.



2.4. PROBLEM FORMULATION 39

The notation for the position vectors involved in the segmentation problem is as fol-

lows. The vector pf represents the position of the background world image relative to the

camera in frame f . The vector qf represents the position of the moving object relative

to the camera in frame f .

2.4 Problem Formulation

Following the analogy between a communications system and an image analysis task, as

introduced in chapter 1 and illustrated in Figure 1.2, we specify the observation model

describing the video sequence.

The observation model considers a scene with a moving object in front of a moving

camera with two-dimensional (2D) parallel motions. The pixel (x; y) of the image If

belongs either to the background world image B or to the object world image O. The

intensity If(x; y) of the pixel (x; y) is modeled as

If(x; y) =M(p#f )B(x; y)
h
1�M(q#f )T(x; y)

i
+M(q#f )O(x; y)M(q#f )T(x; y)+Wf(x; y):

(2.1)

In equation (2.1), T is the moving object template, pf and qf are the camera pose and

the object position, and Wf stands for the observation noise, assumed Gaussian, zero

mean, and white.

Equation (2.1) states that the intensity of the pixel (x; y) on frame f , If(x; y), is a noisy

version of the true value of the intensity level of the pixel (x; y). If the pixel (x; y) of the

current image belongs to the template of the object, T, after the template is compensated

by the object position, i.e., registered according to the vector q#f , then M(q#f )T(x; y) =

1. In this case, the �rst term of the right hand side of (2.1) is zero, while the second

term equals M(q#f )O(x; y), the intensity of the pixel (x; y) of the moving object. In

other words, the intensity If (x; y) equals the object intensity M(q#f )O(x; y) corrupted

by the noise Wf(x; y). On the other hand, if the pixel (x; y) does not belong to the

template of the object, M(q#f )T(x; y) = 0, and this pixel belongs to the background
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world image B, registered according to the inverse p#f of the camera position. In this

case, the intensity If(x; y) is a noisy version of the background intensity M(p#f )B(x; y).

We want to emphasize that rather than modeling simply the two di�erent motions, as

usually done when processing only two consecutive frames, expression (2.1) models the

occlusion of the background by the moving object explicitly.

Expression (2.1) is rewritten in compact form as

If =
n
M(p#f )B

h
1�M(q#f )T

i
+M(q#f )OM(q#f )T+Wf

o
H; (2.2)

where we assume that If (x; y) = 0 for (x; y) outside the region observed by the camera.

This is taken care of in equation (2.2) by the binary image H whose (x; y) entry is such

that H(x; y) = 1 if pixel (x; y) is in the observed images If or H(x; y) = 0 if otherwise.

The image 1 is constant with value 1.

Figure 2.1 illustrates expression (2.2) for one-dimensional (1D) frames. The top plot,

a sinusoid, is the background world image B. The template T of the moving object is

the union of the two disjoint intervals shown on the left of the second level. The intensity

level of the moving object O is also sinusoidal, see the right plot on the second level. Its

frequency is higher than the background frequency. The camera window H is the interval

shown in the third level. It clips the region observed by the camera. Two frames I1 and I2

are shown in the two bottom curves. They are given by a noise-free version of the model

in expression (2.2). In between these two frames, both the camera and the object moved:

the camera moved 2 pixels to the right, corresponding to the background motion in the

opposite direction, while the object moved 3 pixels to the right relative to the camera.

The observation model of expression (2.2) and the illustration of Figure 2.1 emphasize the

role of the building blocks involved in representing an image sequence fIf ; 1 � f � Fg

according to the Generative Video (GV) framework [34, 35, 36, 37].
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Figure 2.1: Illustration of the 1D GV image formation and observation model.

Multiframe segmentation from motion

We formulate the segmentation problem as the recovery of the quantities that de�ne

the GV representation of the video sequence. Given F frames fIf ; 1 � f � Fg, we want

to estimate the background world image B, the object world image O, the object tem-

plate T, the camera poses fpf ; 1 � f � Fg, and the object positions fqf ; 1 � f � Fg.

The quantities fB;O;T; fpf ; 1 � f � Fg ; fqf ; 1 � f � Fgg de�ne the GV representa-

tion, the information that is needed to regenerate the original video sequence.
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2.5 Maximum Likelihood Estimation

Using the observation model of expression (2.2) and the Gaussian white noise assump-

tion, Maximum Likelihood (ML) estimation leads to the minimization over all Generative

Video (GV) [34, 35, 36, 37] parameters of the functional2

C2 =

Z Z FX
f=1

n
If(x; y)�M(p#f )B(x; y)

h
1�M(q#f )T(x; y)

i
�M(q#f )O(x; y)M(q#f )T(x; y)

o2
H(x; y) dx dy; (2.3)

where the inner sum is over the full set of F frames and the outer integral is over all

pixels.

The estimation of the parameters of expression (2.2) using the F frames rather than

a single pair of images is a distinguishing feature of our work. Other techniques usually

process only two or three consecutive frames. We use all frames available as needed. The

estimation of the parameters through the minimization of a cost function that involves

directly the image intensity values is another distinguishing feature of our approach. Other

methods try to make some type of post-processing over incomplete template estimates.

We process directly the image intensity values, through ML estimation.

The minimization of the functional C2 in equation (2.3) with respect to the set of

GV constructs fB;O;Tg and to the motions ffpfg ; fqfg ; 1 � f � Fg is a highly complex

task. To obtain a computationally feasible algorithm, we simplify the problem. We

decouple the estimation of the motions ffpfg ; fqfg ; 1 � f � Fg from the determination

of the GV constructs fB;O;Tg. This is reasonable from a practical point of view and is

well supported by our experimental results with real videos.

The rationale behind the simpli�cation is that the motion of the object (and the

motion of the background) can be inferred without having the knowledge of the exact

object template. When only two or three frames are given, even humans �nd it much

2We use a continuous spatial dependence for commodity. The variables x and y are continuous while f

is discrete. In practice, the integral is approximated by the sum over all the pixels.
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easier to infer the motions present in the scene than to recover an accurate template of

the moving object. To better appreciate the complexity of the problem, the reader can

imagine an image sequence for which there is not prior knowledge available, except that

there is a background and an occluding object that moves di�erently from the background.

Since there are no spatial cues, consider, for example, that the background texture and

the object texture are spatial white noise random variables. In this situation, humans can

easily infer the motion of the background and the motion of the object, even from only

two consecutive frames. With respect to the template of the moving object, we are able

to infer much more accurate templates if we are given a higher number of frames because

in this case we easily capture the rigidity of the object across time. This observation

motivated our approach of decoupling the estimation of the motions from the estimation

of the remaining parameters.

We perform the estimation of the motions on a frame by frame basis by minimizing

a simpli�ed version of the ML cost function. Chapter 3 studies in detail the motion

estimation method. After estimating the motions, we introduce the motion estimates

into the ML cost function and minimize with respect to the remaining parameters. The

minimization procedure is described in chapter 4. It uses a two-step iterative algorithm

that determines, recursively, the estimate of the background and the estimate of the

moving object template.

The solution provided by our algorithm is sub-optimal, in the sense that it is an ap-

proximation to the ML estimate of the entire set of parameters. As discussed in chapter 1,

the solution provided by our algorithm can be seen as an initial guess for the minimizer

of the ML cost function given by expression (2.3). Then, we can re�ne the estimate by

using a greedy approach. We must restate, however, that the key problem here is to �nd

the initial guess in an expedite way, not the �nal re�nement.
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2.6 Summary

This chapter introduces the problem of segmenting a two-dimensional (2D) rigid moving

object from a video sequence. We motivate the problem by illustrating the limitations

of the two-frame based algorithms. In contrast, our approach models the rigidity of the

object over a larger set of frames.

We formulate the 2D segmentation problem by using the analogy between a commu-

nications system and an image analysis task. We introduce the observation model, that

is based on the Generative Video (GV) [34, 35, 36, 37] image formation model. Rather

than modeling only the di�erent motions, our model also makes explicit the occlusion of

the background by the moving object.

The segmentation algorithmwe propose works directly with the image intensity values,

through Maximum Likelihood (ML) estimation, rather than trying to make some kind of

post-processing over template estimates. We start by formulating the ML estimate of the

entire set of unknowns involved, leading to the minimization of a complex cost function.

Then, we motivate and outline our approach to the minimization of the ML cost function.



Chapter 3

Image Motion Estimation

3.1 Introduction

This chapter is about the estimation of the motion of the brightness pattern in the image

plane. This is a crucial step in solving the problems addressed in this thesis and, in general,

in any motion analysis task. Both the problem of segmenting a two-dimensional (2D) rigid

object and the problem of inferring three-dimensional (3D) rigid structure require the step

of estimating 2D motion to accomplish their higher level goals. The problem of estimating

the motion of the brightness pattern has been widely addressed in the recent past. Any

known numerical technique to estimate the motion can be used in our approach. To make

the thesis self-contained, we overview the estimation method that we use. The most

signi�cant original contribution of this chapter is the study of the estimation error. We

derive expressions that approximate the variance of the estimation error. The variance

of the estimation error is a measure of the accuracy of the 2D motion estimate. We use

this measure of accuracy to weight di�erently the 2D motion estimates when inferring

3D structure from 2D motion, as done in Part II, chapter 9, section 9.4.

We estimate the motions on a frame by frame basis. The cue to estimate the motion

of the brightness pattern between two frames is the brightness constancy. Since the early

days of motion analysis, researchers have noticed that local motion estimation is an ill-

posed problem, see for example reference [30]. In fact, it is easily shown that it is not

possible to determine the 2Dmotion if we are allowed to see only through an in�nitesimally

45
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small spatial aperture. This limitation is usually referred to as the aperture problem. To

overcome the aperture problem, smoothing assumptions are commonly made. Several

smoothing techniques have been reported in the literature. In our work, we compute the

position vectors by �tting parametric motion models to regions of the image. To estimate

the motion parameters we use an approach made popular by Bergen, Anandan, Hanna,

and Hingorani, in reference [13]. This approach uses a hierarchical Gauss-Newton method

where the derivatives involved are computed from the image gradients.

The motion of the brightness pattern of the scenes we are interested in is not described

by a unique parametric model for the entire image. When segmenting the 2D rigid moving

object, we will have two di�erent parameterizations, one for the region corresponding to

the background, the other for the region corresponding to the moving object. When infer-

ring 3D rigid structure, we will have di�erent parameterizations for regions corresponding

to di�erent parameterizations of the 3D shape. This leads us to the more complex prob-

lem of estimating simultaneously the support regions and the motion parameters. This

problem was also well addressed in the past, see for example references [11, 18, 70]. Refer-

ence [11] suggests a classi�cation of the methods that estimate simultaneously the support

regions and motion parameters into two classes: the sequential methods and the compet-

itive methods. The sequential methods start by estimating the motion parameters that

best describe the motion of the entire image. Then, the images are co-registered accord-

ing to the estimated motion. The pixels where the registered frame di�erence is below

a threshold are considered to belong to the dominant region. Finally, the dominant re-

gion is discarded and the process is repeated with the remaining pixels. The competitive

methods use greedy algorithms to optimize, iteratively, criteria that take into account

both the �tting accuracy and the model complexity. These algorithms are in general

computationally heavy.

Since we do not require an accurate segmentation when estimating the image motion,

we resolve the simultaneous estimation of the support regions and the corresponding

motion parameters by using fast and simple methods. In the problem of segmenting the
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2D rigid moving object, we use the sequential method outlined above. We �rst estimate

the background motion by assuming that it is the dominant motion. Then, after co-

registering the images according to this dominant motion, the motion of the moving

object is estimated by considering the region formed by the pixels whose registered frame

di�erence is above a threshold. In the problem of inferring 3D rigid structure we used two

methods that lead to similar results. The �rst method simply slides a rectangular window

across the image and detects abrupt changes in the motion parameters. The second

method uses a quad-tree decomposition. We start by estimating the motion parameters

considering the entire image as the support region. The region is recursively decomposed

into smaller regions and the motion of each sub-region is estimated. Then we associate

regions with similar motion.

In this chapter we study the problem of estimating the motion of the brightness pat-

tern within a given support region. The chapter is organized as follows. In section 3.2

we describe the motion estimation algorithm. We show that the usual approach of min-

imizing the sum of the square intensity di�erences between the two co-registered images

corresponds to computing theMaximum Likelihood (ML) estimate of the unknown param-

eters when only two frames are taken into account. To estimate the motion parameters

we use the method introduced in reference [13]. We discuss the in
uence of the spatial

variability of the brightness pattern on the behavior of the motion estimation algorithm.

In section 3.3 we study the estimation error. We derive an expression for the variance

of the estimation error and discuss how to use this result to measure the accuracy of

the estimates of the motion parameters. Sections 3.4 and 3.5 particularize the study of

sections 3.2 and 3.3 to two special motion models: the translational model and the a�ne

model. These two motion models have been widely used in practice. Our work uses

the translational motion model to estimate trajectories of feature points, when inferring

3D structure, as described in Part II of the thesis. The a�ne motion model was used

to compute the 2D parallel motions involved in the segmentation of the 2D rigid object

and also to estimate the motion of planar surfaces in inferring 3D structure. Section 3.6
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summarizes the chapter.

3.2 Motion Estimation

Consider the pair of images fI1; I2g. Our goal is the estimation of the motion of the

brightness pattern between images I1 and I2 in a given region R of the image plane. We

parameterize the two-dimensional (2D) motion. We estimate the 2D motion parameters

by computing the Maximum Likelihood (ML) estimate of all parameters involved.

The ML cost function is a special case of the one introduced in expression (2.3), see

section 2.4. Considering only the frames I1 and I2, expression (2.3) is written as

C2 =

Z Z
R

n
[I1(x; y)�B(x; y)]2 +

�
I2(x; y)�M(p#)B(x; y)

�2o
dx dy; (3.1)

where the integral is over the support region R. Without loss of generality, we assume

in expression (3.1) that the region R belongs to the background (the same reasoning

can be made for a region that belongs to the moving object) . The image B is the

unknown real world brightness pattern. The unknown 2D motion is represented by the

vector p that parameterizes the motion operator M(p#), as introduced in section 2.2.

Note that expression (3.1) takes the image I1 as the reference, i.e., we have M(p#1 )B =

B and M(p#2 )B = M(p#)B according to the notation introduced in expression (2.3),

section 2.4.

To minimize the ML cost function C2, given by expression (3.1), with respect to the

unknowns B and p, we �rst express the estimate bB ofB in terms of the unknown vector p.

Then we insert the estimate bB of the real brightness pattern into expression (3.1) and

minimize with respect to the motion parameter vector p.

The ML estimate of the real brightness pattern is the average of the brightness pattern

of the two images, after registering I2 according to the image motion,

bB =
1

2

h
I1(x; y) +M(p)I2(x; y)

i
: (3.2)

Replacing B in expression (3.1) by bB given by expression (3.2), we obtain, after simple
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algebraic manipulations,

C2 =
1

2

Z Z
R

h
I1(x; y)�M(p)I2(x; y)

i2
dx dy: (3.3)

Expression (3.3) shows that the ML estimate of the motion parameter vector is the one

that best aligns I2 with I1 in the Least Squares (LS) sense.

To make explicit the warping of image I2 according to the motion operator p, we

rewrite M(p)I2(x; y) as

M(p)I2(x; y) = I2
�
fx(p; x; y); fy(p; x; y)

�
= I2

�
x + dx(p; x; y); y + dy(p; x; y)

�
; (3.4)

and the estimate bp of the motion vector p as

bp = argmin
p
E(p); where E(p) =

Z Z
R

e2(p; x; y) dx dy; (3.5)

and e(p; x; y) = I1(x; y)� I2

�
x + dx(p; x; y); y + dy(p; x; y)

�
: (3.6)

In expressions (3.4) and (3.5), the displacement of the pixel (x; y) between images I1

and I2 is denoted by d(p; x; y) = [dx(p; x; y); dy(p; x; y)]
T .

To minimize E in expression (3.5) we use a known technique introduced in refer-

ence [13]. This technique uses a Gauss-Newton method. The estimate bp is computed by

re�ning a previous estimate p0. When dealing with consecutive frames, the initial esti-

mate corresponds to the identity mapping, i.e., dx(p0; x; y) = 0 and dy(p0; x; y) = 0; when

computing the motion between non-consecutive frames, for example frames I1 and If ,

the initial estimate is the motion between frames I1 and If�1 previously computed, i.e.,

p0 = bpf�1. Since the Gauss-Newton method approximates the error function e(p) by

the truncated Taylor series expansion of e(p0 + �p), the initial estimate p0 must lie in a

tight neighborhood of the actual value of the vector p. This means that the motion be-

tween consecutive frames must be small, typically sub-pixel motion. To cope with larger

displacements, a spatial pyramid is used. The motion is �rst computed for the coarsest

level of resolution, and then it is propagated as initial estimate to the immediately �ner
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level. We outline the Gauss-Newton minimization procedure to make self-contained the

analysis of the 2D motion estimation algorithm presented in this chapter.

The error function e(p; x; y) is approximated by neglecting second and higher order

terms of the Taylor series expansion of e(p0 + �p),

e(p; x; y) ' e(p0; x; y) + �Tprpe(p0; x; y); (3.7)

where �p = p�p0 andrpe(p0; x; y) is the gradient of e(p; x; y) with respect to p evaluated

at p = p0.

After inserting the �rst-order approximation of expression (3.7) into the cost func-

tion (3.5), the estimate bp is given by

bp = p0 + b�p; with b�p = argmin
�p

E (p0 + �p) : (3.8)

Equating to 0 the gradient of E (p0 + �p) with respect to �p, we get the estimate b�p
as the solution of the linear system

�R(p0) b�p = 
R(p0); (3.9)

where �R(p0) =

Z Z
R

rpe(p0; x; y)rpe
T (p0; x; y) dx dy; (3.10)

and 
R(p0) = �

Z Z
R

e(p0; x; y)rpe(p0; x; y) dx dy: (3.11)

Denoting by Np the dimension of the unknown vector p of motion parameters, the

vector 
R(p0) has the same dimension of p, i.e., Np � 1 and the matrix �R(p0) is

square Np �Np.

The error e(p0; x; y) and its gradient rpe(p0; x; y) are computed from the spatial and

temporal derivatives of the brightness pattern as

e(p0; x; y) = �it(p0; x; y); (3.12)

rpe(p0; x; y) = �ix(x; y)rpdx(p0; x; y)� iy(x; y)rpdy(p0; x; y)

= �rpd
T (p0; x; y)ixy(x; y); (3.13)
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where it(p0; x; y) is the temporal derivative computed by

it(p0; x; y) = I2

�
x + dx(p0; x; y); y + dy(p0; x; y)

�
� I1(x; y); (3.14)

and ix(x; y) and iy(x; y) are the spatial derivatives computed from the reference im-

age I1(x; y). The 2� 1 vector ixy(x; y) is de�ned as

ixy(x; y) =

�
ix(x; y)
iy(x; y)

�
; (3.15)

and the Np � 2 matrix rpd
T (p0; x; y) is de�ned as

rpd
T (p0; x; y) =

�
rpdx(p0; x; y) rpdy(p0; x; y)

�
: (3.16)

By replacing expressions (3.12) and (3.13) into the de�nitions (3.10) and (3.11), we

express �R(p0) and 
R(p0) in terms of the image derivatives and displacement derivatives.

We obtain

�R(p0) =

Z Z
R

rpd
T (p0)ixyi

T
xyrpd(p0) dx dy; (3.17)


R(p0) = �

Z Z
R

it(p0)rpd
T (p0)ixy dx dy; (3.18)

where we omitted the dependence of the integrands on (x; y) for simplicity.

In order to obtain a reliable convergence of the Gauss-Newton method, the equation

system (3.9) must be well conditioned, i.e., the matrix �R(p0), given by expression (3.17),

must be well conditioned with respect to inversion. A widely used measure for the sen-

sitivity of the solution of the linear system is the condition number of the square matrix

involved, see reference [27]. The relative error of the solution of a linear system Ax = b

is approximated by the condition number k(A) of the square matrix A times the rela-

tive errors in A and b. The condition number depends on the underlying norm used to

measure the error. With the common choice of the matrix 2-norm, the condition number

of a matrix is given by the quotient of the largest singular value by the smallest singular

value, see reference [27]. Since the matrix �R(p0) is symmetric and semi-positive de�nite,

their eigenvalues are positive real and coincide with the singular values. The sensitivity
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of the iterates of the motion estimation algorithm are measured by

k(�R(p0)) =
�1(�R(p0))

�N(�R(p0))
; (3.19)

where �1(�R(p0)) is the largest eigenvalue of �R(p0) and �N(�R(p0)) is its smallest

eigenvalue.

If the condition number k(�R(p0)) is large, the matrix �R(p0) is said to be ill-

conditioned. In this case, the Gauss-Newton iterates are very sensitive to the noise and

the process can not be guaranteed to converge. We will see in sections 3.4 and 3.5 what

are the practical implications of requiring the condition number k(�R(p0)) to be small.

We will discuss there the di�culty of estimating the motion parameters in terms of the

variability of image brightness pattern within the support region R.

3.3 Estimation Error

This section studies the statistics of the error in estimating the vector p of motion pa-

rameters. This analysis is local, in the sense that we assume small deviations between the

true value of the vector of motion parameters and its estimate. This local analysis is very

common in estimation problems. It leads, for example, to the establishment of funda-

mental bounds like the Cram�er-Rao lower bound (CRB) for the variance of the estimation

error, see reference [62].

In our case, due to the speci�c structure of the estimator, the small deviation assump-

tion enables the derivation of an expression for the expected noise variance in terms of

image spatial gradients. The statistics that we obtain are valid in practice as good ap-

proximations to the real statistics if the estimation problem is well conditioned, i.e., if the

observations, regardless of the noise level, contain \enough information" to estimate the

desired parameters (this imprecise de�nition can be made precise in terms of the usual

signal to noise ratio parameter). This situation is the one in which we are interested in

because we only use the motion estimates when the corresponding estimation problem is

well conditioned in the sense discussed in the previous section.
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We denote the actual value of the vector of motion parameters by pa. The estimate bp
is written in terms of a small deviation relative to the actual pa. By proceeding in a

similar way as done in the previous section, using pa instead of p0 as the central point of

the Taylor series expansion, we obtain

bp = pa + ��1R (pa) 
R(pa); (3.20)

where, we recall, the matrix �R(pa) and the vector 
R(pa) are given by expressions (3.17)

and (3.18) with pa instead of p0. The random variable bp in expression (3.20) is a non-

linear function of the image derivatives fit(pa); ixy = [ix; iy]
Tg.

The derivatives it and ixy are random variables { they are noisy versions of the actual

values of the scene brightness derivatives. The actual value of it(pa) is ita(pa) = 0

because pa is the actual value of the vector of motion parameters. The actual value

of ixy is denoted by ixya = [ixa; iya]
T . Since the image noise Wf(x; y) is zero mean,

the noise corrupting the derivatives it, ix, and iy is also zero mean. Furthermore, the

noise corrupting the temporal derivative it is white because the noise images W1(x; y)

andW2(x; y) are independent. The variance of the noise corrupting the image derivatives

is denoted by �2t for it, �
2
x for ix, and �

2
y for iy.

We �nd the expected value of the estimate bp by computing the mean of expres-

sion (3.20) with respect to the noise of the image derivatives. For small deviations, the

�rst-order approximation of Efbpg is given by the value of expression (3.20) evaluated at

the mean values of the random variables it(pa) and ixy, see appendix A, section A.1. Since

the mean of it(pa) is zero, we get 
R(pa) = 0 and the mean of the estimate bp is

E fbpg = pa + E
n b�po = pa: (3.21)

Expression (3.21) states that, to �rst-order approximation, the estimate bp is unbiased.

The covariance matrix of the estimating error, denoted by �p, is de�ned as

�p = E
n
(bp� pa) (bp� pa)

T
o
: (3.22)
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The �rst-order approximation of the covariance matrix �p is related to the partial deriva-

tives of the estimate bp with respect to the random variables involved, i.e., with respect

to it, ix, and iy, and to the variances of those random variables. That result, known

from estimation theory, see appendix A, section A.2, states that the �rst-order approxi-

mation of the covariance matrix of a random vector bp that depends on a set of random

variables fvi; i 2 V g is given by

�p =
X
k;l2V

E f(vk � vk) (vl � vl)g
@bp
@vk

@bpT
@vl

; (3.23)

where vi denotes the mean of vi and the partial derivatives are evaluated at fvi = vi; i 2 V g.

From expressions (3.20), (3.17), and (3.18), we compute the partial derivatives of bp
with respect to the random variables it(x; y), ix(x; y), and iy(x; y), and evaluate them at

the mean values it(x; y) = ita(x; y) = 0, ix(x; y) = ixa(x; y), iy(x; y) = iya(x; y). We get

@bp
@it(x; y)

= �
@
�
��1R (pa)
R(pa)

�
@it(x; y)

= ��1R (pa)rpd
T (pa))ixya(x; y); (3.24)

@bp
@ix(x; y)

= �
@
�
��1R (pa)
R(pa)

�
@ix(x; y)

= 0; (3.25)

@bp
@iy(x; y)

= �
@
�
��1R (pa)
R(pa)

�
@iy(x; y)

= 0; (3.26)

where the last two are zero because 
R(pa) = 0, since the mean value of it is zero.

Since we use a continuous representation of the spatial variables x and y, we write

the continuous version of expression (3.23). Using the fact that the noise corrupting it is

white and noting that the derivatives in expressions (3.25) and (3.26) are zero, we obtain

for the covariance �p,

�p = �2t

Z Z
R

@bp
@it

@bpT
@it

dx dy: (3.27)

After replacing the derivative of bp with respect to it(x; y) given by (3.24), we get

�p = �2t�
�1
R (pa)

Z Z
R

rpd
T (pa)ixyai

T
xyarpd(pa) dx dy ��TR (pa): (3.28)

Noting that the integral above is the matrix �R evaluated at pa (compare to expres-

sion (3.17)), and that the matrix �R(pa) is symmetric, we obtain for the error covariance

�p = �2t�
�1
R (pa): (3.29)
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Expression (3.29) provides an inexpensive way to compute the reliability of the motion

estimates. The matrix �R(pa) is in general unknown because it depends on the actual

value pa of the unknown vector p. Obviously, the matrix �R(pa) can be approximated

by the matrix �R(p0) used in the iterative estimation algorithm. We note that when

the motion model is linear in the motion parameters, as it is the case with the majority

of motion models used in practice, the matrix �R(p) becomes independent of the vec-

tor p because the derivatives of the displacement d(p) involved in expression (3.17) do

not depend on the motion parameters. In this case, the matrix �R(p0) does not change

along the iterative estimation algorithm. The matrix �R(p0) depends uniquely on the

image region R and �R(p0) will be denoted simply by �R. Since the noise variance �
2
t is

considered to be constant, we measure the error covariance for di�erent regions by com-

paring the corresponding matrices ��1R . For example, the mean square Euclidean distance

between the true vector pa and the estimated vector bp, denoted by �2p, is proportional to

the trace of the matrix ��1R ,

�2p = E
n
(bp� pa)

T (bp� pa)
o
= �2t tr

�
��1R

�
: (3.30)

These concepts will become clearer in the next two sections where we particularize for

the translational motion model and to the a�ne motion model the results derived in this

section and in the previous section.

3.4 Translational Motion

This section studies the translational motion model. The translational motion model is

characterized by a constant displacement for all the pixels that fall into the region R.

We use the translational motion model to estimate the displacement of pointwise features

when inferring three-dimensional (3D) structure from two-dimensional (2D) motion, see

Part II, chapter 8. In this case the region R is a small square centered about the co-

ordinates of the feature. The translational model is also frequently used to represent

the motion within a larger region R for special cases of the 3D shape that is projected
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into R and for special cases of the 3D motion of the camera. This happens in a special

case of the Generative Video (GV) [34, 35, 36, 37] framework. GV assumes 2D parallel

motions, as described in chapter 2; if the motions are further restricted to be translations,

the 2D translational motion model studied in this section can be used to estimate the

position vectors.

For the translational motion model, the vector p of motion parameters is de�ned as

p =

�
p1
p2

�
; (3.31)

where p1 and p2 determine the displacement d(p) as

d(p) =

�
dx(p)
dy(p)

�
=

�
p1
p2

�
= p: (3.32)

Motion estimation

The motion parameters are estimated by particularizing to the model of expression (3.32)

the algorithm described in section 3.2.

To compute the matrix �R(p0) and the vector 
R(p0) needed for the Gauss-Newton

iterates, we start by making explicit the gradient of the displacement d with respect to

the vector p,

rpd
T =

�
rpdx rpdy

�
=

�
1 0
0 1

�
= I2�2: (3.33)

As advanced at the end of the previous section, the gradient in expression (3.33) does

not depend on the vector p. For this reason, the matrix �R will be independent of p0

and will remain constant along the iterative process. By replacing expression (3.33) into

expressions (3.17) and (3.18), we get

�R =

Z Z
R

ixyi
T
xy dx dy =

� RR
R
i2x dx dy

RR
R
ixiy dx dyRR

R
ixiy dx dy

RR
R
i2y dx dy

�
; (3.34)


R(p0) = �

Z Z
R

it(p0)ixy dx dy = �

� RR
R
ixit(p0) dx dyRR

R
iyit(p0) dx dy

�
: (3.35)

Each iteration of the algorithm updates the initial estimate p0 as bp = p0 + b�p with b�p
obtained from expression (3.9) with �R and 
R given by expressions (3.34) and (3.35).
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The behavior of the estimation algorithm depends on the condition number of the ma-

trix �R of expression (3.34). The condition number k(�R) was de�ned in expression (3.19)

for a general motion model. For the translational motion model, it is the quotient of the

�rst eigenvalue of �R by the second eigenvalue,

k(�R) =
�1(�R)

�2(�R)
; (3.36)

where �1(�R) and �2(�R) are the eigenvalues of �R in expression (3.34) with �1(�R) �

�2(�R). If the condition number k(�R) is large, the Gauss-Newton iterates are very

sensitive to the noise and the process can not be guaranteed to converge. If the condition

number k(�R) is small, i.e., if it is close to unity, since k(�R) � 1, the linear system

involved in the Gauss-Newton method is well conditioned.

We discuss when k(�R) has large values. To see the in
uence of the image brightness

pattern within region R on the condition number k(�R) consider that
RR

R
ixiy dx dy = 0.

The matrix �R becomes diagonal and the condition number is simply

k(�R) =

RR
R
i2x dx dyRR

R
i2y dx dy

(3.37)

if

Z Z
R

i2x dx dy �

Z Z
R

i2y dx dy (3.38)

or the inverse if the inequality goes in the opposite way. If one of the components of

the spatial image gradient is much larger than the other, k(�R) becomes large and the

equation system (3.9) is ill-conditioned. The condition

k(�R) < �; (3.39)

where � is a threshold, restricts the brightness pattern within region R not to have

variability along some direction much higher than the variability along the perpendicular

direction.

The analysis in the paragraph above explains the well known aperture problem. The

aperture problem is usually described as the impossibility of estimating locally the 2D mo-

tion. In fact, if the region R contains a single pixel, the matrix �R given by expres-
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sion (3.34) is singular; we obtain det(�R) = 0 by removing the integrals from expres-

sion (3.34), and the condition number k(�R) is +1. This happens because the two

motion parameters can not be determined by the single constraint imposed by the bright-

ness constancy.

The study of the condition number k(�R) shows that, for particular structures of the

brightness pattern, it is very di�cult to estimate the 2D motion, even when the region R

contains several pixels.

Expression (3.37) was obtained with
RR

R
ixiy dx dy = 0. We should note, however,

that the case where Z Z
R

ixiy dx dy 6= 0 (3.40)

does not correspond to a more general situation. In fact, it can be shown that an appro-

priate rotation of the brightness pattern makesZ Z
R

ixiy dx dy = 0; (3.41)

without changing the condition number k(�R) { as we would expect, the conditioning

of the estimation of the motion of the brightness pattern is independent of 2D rigid

transformations of the brightness pattern.

Figure 3.1 illustrates the dependence of the conditioning of the 2D motion estima-

tion on the structure of the brightness pattern. For each of the eight 10 � 10 images in

Figure 3.1, we determine the condition number of the matrix �R. The condition num-

ber k(�R), obtained by evaluating expression (3.36), is on the right side of each image

in Figure 3.1. The texture of the brightness pattern shown on the top left image is such

that there is no dominant direction over the entire region R. We expect that the es-

timation of the 2D motion of a pattern of this kind is very well conditioned. In fact,

over the entire image no component of the spatial gradient dominates, and the condition

number k(�R) captures this behavior. We get k(�R) = 1:34 { the value of k(�R) is close

to unity indicating that the linear system involved in the Gauss-Newton iterates of the

motion estimation algorithm is well conditioned. In contrast to this case, the texture of
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the brightness pattern shown in the bottom right image of Figure 3.1 exhibits a clear

dominant direction. It is very hard to perceive the 2D motion of these type of patterns

because only the component of the motion that is perpendicular to the dominant direction

of the texture is perceived. The condition number k(�R) captures the indetermination in

estimating the 2D motion { it is k(�R) = 133:82 indicating that the linear system involved

in the Gauss-Newton iterates of the motion estimation algorithm is ill-conditioned. The

other images of Figure 3.1 illustrate intermediate cases.

k(�R) = 1:34 k(�R) = 2:58

k(�R) = 4:99 k(�R) = 9:63

k(�R) = 18:59 k(�R) = 35:90

k(�R) = 69:31 k(�R) = 133:82

Figure 3.1: The dependence of the condition number k(�R) of the matrix involved in the
motion estimation algorithm on the structure of the image brightness pattern. When the
texture of the brightness pattern exhibits a dominant direction, the motion estimation is
ill conditioned { see the bottom right image and the high value of k(�R).
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Estimation error

The covariance matrix of the estimation error for the translational motion model is given

by expression (3.29) after replacing �R by expression (3.34),

�p = �2t�
�1
R = �2t

� RR
R
i2x dx dy

RR
R
ixiy dx dyRR

R
ixiy dx dy

RR
R
i2y dx dy

��1
: (3.42)

The knowledge of the error covariance matrix �p enables us to compute the reliability

of a displacement estimate in an easy way. In fact, in section 3.3, we saw that the mean

square error of the displacement estimate (in the sense of the Euclidean distance) is the

trace of the covariance matrix �p, see expression (3.30). In terms of image gradients, we

get the following expression for the mean square error, denoted by �2p,

�2p = �2t

R
R
i2y dx dy +

R
R
i2x dx dyR

R
i2x dx dy

R
R
i2y dx dy �

�R
R
ixiy dx dy

�2 : (3.43)

In Part II of the thesis, when recovering 3D structure from 2D motion estimates, we use

the estimate of the mean square error �2p given by expression (3.43) to weight motion

estimates corresponding to di�erent regions.

To interpret the mean square error �2p given by expression (3.43), let us consider

again that the matrix �R is diagonal. This is the general case because, as for the con-

dition number, it can be shown that any non-diagonal matrix �R can be made diag-

onal without changing �2p, by an appropriate rotation of the image brightness pattern.

When
RR

R
ixiy dx dy = 0, the mean square error �2p is

�2p = �2t

�
1RR

R
i2x dx dy

+
1RR

R
i2y dx dy

�
: (3.44)

Expression (3.44) states that the error in the estimate of the displacement is proportional

to the inverse of the sum of the square components of the image gradient within region R.

This coincides with the intuitive notion that the higher the spatial variability of the

brightness pattern is, the lower the error in estimating the motion is. As expected, it is

also clear that the estimation error decreases when the size of the region R increases.
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Figure 3.2 illustrates the dependence of the expected square error of the 2D motion

estimates on the image brightness pattern. To isolate the estimation error from the

eventual ill-posedness of the motion estimation problem, we used brightness patterns

that do not have a dominant texture direction, i.e., we used brightness patterns for which

the linear system involved in the motion estimation is well conditioned. In particular, we

used the brightness pattern of the top left image of Figure 3.1 to generate all the images

of Figure 3.2 by changing the brightness contrast. The conditioning of the linear system

involved in the motion estimation problem does not depend on the brightness contrast,

as shown by the constant value of the condition number, k(�R) = 1:34 for all the images

in Figure 3.2.

For each image in Figure 3.2, we computed the mean square error �2p by evaluating

expression (3.43). Since the goal is to illustrate the in
uence of the brightness pattern

on �2p, we made �2t = 1 when evaluating expression (3.43). The values obtained for �2p

are shown in Figure 3.2 on the right side of the corresponding image. The top left image

of Figure 3.2 has a very high brightness contrast. For this reason, we expect that the

estimate of the 2D motion of such a pattern is very accurate. In fact, the sum of the

square components of the image gradient has a high value and the value of the motion

estimation mean square error is low, �2p = 0:19. When the brightness contrast decreases,

we expect less accurate motion estimates. The values of �2p in Figure 3.2 are in agreement

with this. The expected square error �2p increases with the decrease of brightness contrast

because the square components of the image gradient decrease. The bottom right image of

Figure 3.2 shows the extreme situation of a pattern with almost zero brightness contrast.

For this pattern, the expected mean square estimation error is very high { larger than

60 times the error for the top left image. It is therefore hopeless to try to compute accurate

motion estimates for this kind of low contrast patterns. Note that this is due to the

fundamental bound on the motion estimation error, not to the conditioning of the linear

system involved in the motion estimation algorithm (the condition number k(�R) = 1:34

is close to unity indicating that the linear system is well conditioned).
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k(�R) = 1:34
�2p = 0:19

k(�R) = 1:34
�2p = 0:35

k(�R) = 1:34
�2p = 0:63

k(�R) = 1:34
�2p = 1:14

k(�R) = 1:34
�2p = 2:07

k(�R) = 1:34
�2p = 3:74

k(�R) = 1:34
�2p = 6:76

k(�R) = 1:34
�2p = 12:21

Figure 3.2: The dependence of the motion estimation error on the image brightness
pattern. The expected square error �2p increases with the decrease of the brightness
contrast.

In summary, for the estimation algorithm to be stable, the two components of the

image gradient should not have too radically di�erent magnitude values. With respect to

the mean square error of the displacement estimate, we argued that when the magnitude

of the components of the image gradient is large, the error is smaller.
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3.5 A�ne Motion

This section studies the a�ne motion model. The a�ne model is widely used in practice.

We use the a�ne motion model to compute the position vectors involved in the problem

of segmenting 2D rigid moving objects, as introduced in chapter 2. In Part II of the

thesis we will see that a planar surface moving far away from the camera, undergoing

an arbitrary three-dimensional (3D) motion, induces an a�ne motion of the brightness

pattern between pairs of frames. Thus, when inferring 3D structure from 2D motion, as

described in Part II, chapter 9, we will also use the a�ne motion model studied in this

section.

The vector p parameterizing the a�ne motion model has 6 components,

p =
�
p1 p2 p3 p4 p5 p6

�T
: (3.45)

The a�ne displacement d(p), to which we will also refer to as the a�ne mapping, is

given by

d(p) =

�
dx(p)
dy(p)

�
=

�
p1
p2

�
+

�
p3 p5
p4 p6

� �
x� xc
y � yc

�
; (3.46)

where xc and yc are arbitrary constants that in practice we choose to be the center of the

region R to improve the stability of the estimation algorithm, as will become clear below.

Motion estimation

The a�ne motion parameters are estimated by using the algorithm described in sec-

tion 3.1. To specialize the expressions of matrix �R(p0) and vector 
R(p0) involved in

the Gauss-Newton iterates to the a�ne motion model, we start by computing the gradient

of the a�ne displacement with respect to the motion parameters, obtaining

rpd
T =

�
rpdx rpdy

�
=

26666664
1 0
0 1

x� xc 0
0 x� xc

y � yc 0
0 y � yc

37777775 : (3.47)
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As with the translation motion model, because the a�ne motion model is linear on

the motion parameters, the gradient in expression (3.47) does not depend on the vector p.

The matrix �R will then be independent of p0 and remain constant along the iterative

process. By replacing expression (3.47) into expressions (3.17) and (3.18), we get the

following expressions for �R and 
R(p0),

�R =

26666664

R
R
i2x

R
R
ixiy

R
R
~xi2x

R
R
~xixiy

R
R
~yi2x

R
R
~yixiyR

R
ixiy

R
R
i2y

R
R
~xixiy

R
R
~xi2y

R
R
~yixiy

R
R
~yi2yR

R
~xi2x

R
R
~xixiy

R
R
~x2i2x

R
R
~x2ixiy

R
R
~x~yi2x

R
R
~x~yixiyR

R
~xixiy

R
R
~xi2y

R
R
~x2ixiy

R
R
~x2i2y

R
R
~x~yixiy

R
R
~x~yi2yR

R
~yi2x

R
R
~yixiy

R
R
~x~yi2x

R
R
~x~yixiy

R
R
~y2i2x

R
R
~y2ixiyR

R
~yixiy

R
R
~yi2y

R
R
~x~yixiy

R
R
~x~yi2y

R
R
~y2ixiy

R
R
~y2i2y

37777775 ; (3.48)


R(p0) = �

26666664

RR
R
ixit(p0) dx dyRR

R
iyit(p0) dx dyRR

R
~xixit(p0) dx dyRR

R
~xiyit(p0) dx dyRR

R
~yixit(p0) dx dyRR

R
~yiyit(p0) dx dy

37777775 ; (3.49)

where

�
~x = x� xc
~y = y � yc

: (3.50)

The stability of the motion estimation algorithm depends on the condition number of

the matrix �R above. If the condition number k(�R) is high, the linear system involved in

the motion estimation iterative algorithm is ill conditioned. If the condition number k(�R)

is low (close to one) that system is well conditioned and the algorithm is stable. To

understand the in
uence of the constants xc and yc on the condition number k(�R),

we evaluated k(�R) for a simpler case { the one-dimensional (1D) a�ne motion model.

The condition number k(�R) for the 2D a�ne model is complex to study because, in

opposition to the translational motion model, the matrix �R in expression (3.48) can not

be diagonalized by rotating the image brightness pattern. The condition number of the

matrix �R involved in the estimation of the parameters of the 1D a�ne model exhibits

the property we want to illustrate for the 2D a�ne model and leads to a much simpler

expression.
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The 1D a�ne motion model is parameterized by the vector p = [p1; p2]
T . The 1D dis-

placement is

d(p) = p1 + p2(x� xc): (3.51)

Proceeding as we did for the 2D case, we obtain the 2 � 2 matrix �R involved in the

1D a�ne motion estimation,

�R =

� R
R
i2x dx

R
R
(x� xc)i

2
x dxR

R
(x� xc)i

2
x dx

R
R
(x� xc)

2i2x dx

�
: (3.52)

The 2 � 2 semi-positive de�nite matrix �R in expression (3.52) is the 1D version of the

matrix in expression (3.48). We obtain the condition number of a generic semi-positive

de�nite 2 � 2 matrix in terms of the entries of the matrix, by expressing the quotient of

the larger by the smaller eigenvalue of the matrix,

A =

�
a11 a12
a12 a22

�
=) k(A) =

a11 + a22 +
p
(a11 � a22)2 + 4a212

a11 + a22 �
p
(a11 � a22)2 + 4a212

: (3.53)

In Figure 3.3 we plot the condition number of the matrix �R in expression (3.52) in

terms of the entries of the matrix. We �xed the entry

a11 =

Z
R

i2x dx = 1: (3.54)

We used expression (3.53) to evaluate the condition number k(�R) with

a22 =

Z
R

(x� xc)
2i2x dx (3.55)

ranging from 1 to 100, and

a12 =

Z
R

(x� xc)i
2
x dx (3.56)

ranging from �5 to 5. From Figure 3.3 we can see that the condition number k(�R) is

small if
R
R
(x� xc)

2i2x dx is close to one and
R
R
(x� xc)i

2
x dx is close to zero. In this case,

the linear system involved in the motion estimation algorithm is very well conditioned.

If either the value of
R
R
(x � xc)

2i2x dx or the absolute value of
R
R
(x � xc)i

2
x dx are very

high, the condition number k(�R) is high and the linear system is ill conditioned. For

this reason, the optimal choice for the constant xc is the center of the region R.
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Figure 3.3: A�ne motion estimation. The dependence of the condition number k(�R) on
the entries (1; 2) and (2; 2) of the matrix �R of expression (3.52). The entry (1; 1) was
kept �xed,

R
R
i2x dx = 1. If the constant xc is chosen to be far from the center of the

region R, the linear system involved in the motion estimation algorithm may be very ill
conditioned.

For the 2D a�ne motion model, the condition number of the 6 � 6 matrix �R is

given by

k(�R) =
�1(�R)

�6(�R)
; (3.57)

where �1(�R) is the largest eigenvalue of �R and �6(�R) is its smallest eigenvalue. We

expect the same kind of behavior of the condition number k(�R) in terms of the con-

stants xc and yc. We then choose the constants xc and yc to be the center of the support

region R, as noted at the beginning of the section.
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Estimation error

The covariance matrix of the estimation error for the a�ne motion model is given by

expression (3.29) after replacing �R by expression (3.48),

�p = �2t�
�1
R : (3.58)

The knowledge of the error covariance matrix �p enables us to compute the reliability

of a motion parameter estimate in an easy way. In Part II of the thesis, we will use the

reliability of the estimates of the motion parameters to weight the contribution of those

estimates on the recovery of 3D structure. We de�ne the error �2P as the mean square

error Euclidean distance between the true and estimated values of a subset of the set of

motion parameters,

�2P = E

(X
i2P

(bpi � pia)
2

)
; (3.59)

where P is the subset of the set of motion parameters and pia is the actual value of param-

eter pi. Since the error �2P depends only on the main diagonal entries of the covariance

matrix �p, we obtain from expression (3.58),

�2P = �2t
X
i2P

�ii; where � = ��1R : (3.60)

In expression (3.60), the set P is an arbitrary subset of the parameters of the a�ne

motion model. For example, we can compute the variance of the estimation error of a

single parameter pi by making P = fpig, or the mean square Euclidean error of the trans-

lational component of the a�ne motion by making P = fp1; p2g. In Part II, chapter 9,

section 9.4, we will be interested in the error �2P for particular subsets P of the set of

parameters of the a�ne motion model. We will show how to use the reliability of the esti-

mates of the motion parameters, measured by �2P , into the recovery of 3D rigid structure,

without additional computational cost.



68 CHAPTER 3. IMAGE MOTION ESTIMATION

3.6 Summary

In this chapter we studied the estimation of the motion of the brightness pattern between

a pair of frames. This task is crucial for both problems addressed in the thesis { the

segmentation of the two-dimensional (2D) rigid moving object, and the inference of three-

dimensional (3D) rigid structure.

The motion estimation technique we use was proposed by Bergen, Anandan, Hanna,

and Hingorani, in reference [13]. We overviewed their technique in this chapter to make

the thesis self-contained. The original contributions of the chapter are the discussion

on the conditioning of the 2D motion estimation problem and the computation of the

covariance of the estimation error. We discuss in section 3.2 the conditioning of the

2D motion estimation problem in terms of the condition number of the matrix involved in

the Gauss-Newton iterates of the method of reference [13]. We derive an expression for the

covariance of the estimation error in terms of the image spatial gradients in section 3.3.

In sections 3.4 and 3.5, we specialize the analysis to the two motion models we use

in practice { the translational motion model, and the a�ne motion model. For the

translational motion model, we relate the conditioning of the estimation problem to the

variability of the spatial brightness pattern. For the a�ne motion model, we also discuss

the in
uence of the origin of the a�ne mapping on the conditioning of the estimation

problem. For both motion models, we derive expressions for the expected square of the

Euclidean distance between the true and estimated values of the parameters.



Chapter 4

Direct Inference of 2D Rigid Shape

4.1 Introduction

In this chapter we develop an algorithm for segmenting a two-dimensional (2D) rigid

moving object from an image sequence. Our algorithm is a feasible approximation to

the Maximum Likelihood (ML) estimation of the unknowns involved in the problem, as

introduced in chapter 2. Two features distinguish our method from other approaches.

First, we take into account the rigidity of the moving object over a set of frames. Second,

we estimate the template of the moving object directly from the image intensity values.

We will see that our algorithm recovers accurate templates in challenging contexts such

as those when the texture of the object is similar to the texture of the background.

In chapter 2, we introduced the problem of segmenting a 2D rigid object and formu-

lated the ML estimate. In chapter 3 we described how we estimate the 2D motions. In

this chapter, we assume that the motions have been correctly estimated and are known.

We should note that, in reality, the motions are continuously estimated. Assuming the

motions are known, the problem we address in this chapter is the minimization of the

ML cost function with respect to the remaining parameters, i.e., with respect to the

template of the moving object, the texture of the moving object, and the texture of the

background.

We plug-in the 2D motion estimates into the ML cost function. The estimate of

the texture of the moving object is easily obtained in terms of the unknown template.

69
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The accurate segmentation of the moving object is achieved by using a two-step iterative

algorithm to minimize the ML cost function, after replacing the estimate of the texture of

the moving object. The steps of the iterative algorithm are: (i) estimate the background

for known object template; (ii) estimate the object template for known background. The

algorithm converges in a few iterations. Typically, the estimate of the template of the

moving object stabilizes after three to �ve iterations. The algorithm is computationally

very simple, because we �nd closed-form solutions for the two steps involved. In step (i),

the estimate of the background is an average of the appropriate regions of the observed

frames. In step (ii), the estimate of the template of the moving object leads to a binary

test evaluated at each pixel.

Once the two-step iterative algorithm converges, i.e, when the template estimate sta-

bilizes, if new frames are available, we proceed only with the updating of the textures

of the object and of the background. The template estimate is frozen and, as new im-

ages become available, the object and background textures are updated by computing

recursively their ML estimates.

We illustrate with an experiment the convergence of the two-step iterative method.

We apply the segmentation algorithm to one computer generated image sequence using

real images. In this experiment, the task of reconstructing the moving object template is

particularly challenging due to the complexity of the template.

This chapter is organized as follows. Section 4.2 describes how we initialize the seg-

mentation algorithm. The initialization phase provides an initial estimate of the object

template to be used in the next step of the algorithm. The procedure to minimize the

ML cost function is described in section 4.3. We detail the two-step iterative algorithm

to recover the template of the moving object. In section 4.4 we present an illustrative

experiment. Section 4.5 summarizes the chapter.

In chapter 5, we study the behavior of the binary test involved in the segmentation

algorithm. Experiments with real video sequences are reported in chapter 6.
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4.2 Initialization: Object Mask

To initialize the segmentation algorithm, we need an initial estimate of the background.

A simple, often used, estimate for the background is the average of the images in the

sequence, including or not a robust statistic technique like outlier rejection, see for example

reference [41]. The quality of this background estimate depends on the occlusion level of

the background in the images processed. Depending on the particular characteristics of

the image sequence, our algorithm can recover successfully the template of the moving

object when using the average of the images as the initial estimate of the background. This

is the case with the image sequence we use in the experiment reported in section 4.3. In

this section we propose a more elaborate initialization that leads to better initial estimates

of the background.

Rather than ignoring the moving objects, we initialize the background estimate by

averaging the registered images, excluding the regions detected as being in movement. It

corresponds to taking in our algorithm as the initial estimate bT for the object template T

the detected moving regions. These regions do not necessarily form the exact object

templates. We call these moving regions the object mask. The object mask is computed

by averaging a set of two-frame mask estimates. Each two-frame mask estimate is obtained

from the moving regions detected between the two frames.

Given a pair of images, registered according to the estimate of the background mo-

tion, M(pf)If and M(pg)Ig, we detect the region whose motion di�ers from the back-

ground motion by thresholding the di�erence between the given images:

Rfg(x; y) =

�
1 if jM(pf)If(x; y)�M(pg)Ig(x; y)j > �
0 otherwise

: (4.1)

This region contains the template of the moving object in both images M(pf )If and

M(pg)Ig. If the moving object is su�ciently textured, and its intensity level is not

very similar to the background intensity level, the region Rfg contains the union of the

templates of that object positioned in each of the frames (see example shown in Figure 4.1).

We obtain an estimate of the template of the object by intersecting Rfg with itself,
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registered according to the estimate of the motion of the object between frames If and Ig,

Mfg =M(qfp
#
f )Rfg M(qgp

#
g )Rfg: (4.2)

We call the estimate Mfg a two-frame mask of the moving object. In the example of

Figure 4.1, this mask successfully detects the moving object.

Image f Image g

Detected Region Rfg Object Mask Mfg

Figure 4.1: Object mask from a pair of images. On the top, images If and Ig. On the
bottom left, the detected moving region Rfg. On the bottom right, the two-frame object
mask Mfg obtained by intersecting Rfg with itself, registered according to the motion of
the object.

When the moving objects contain regions of low texture, or when its intensity level

is very similar to the background intensity level, the detected moving region Rfg does

not detect the entire moving region, and Mfg does not represent a reliable mask of the

object. Also, with some speci�c object shape, or motions, or due to noise, the two-frame
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mask Mfg may contain regions not belonging to the object. To deal with this type of

scenes, we take into account masks Mfg obtained from several pairs of frames f(If ; Ig)g,

to generate the initial object template. We compute the average of these masks. This

computation is done recursively by:

Mf =
f � 2

f
Mf�1 +

2

f(f � 1)

f�1X
g=1

Mfg: (4.3)

We stop this recursion whenMf stabilizes. Finally, the template of the object is initialized

by thresholding Mf . This initial estimate of the template may not be a very accurate

approximation to the shape of the moving object, but it proves to be good enough to

initialize properly our segmentation algorithm.

4.3 Minimization Procedure: Two-Step Iterative Al-

gorithm

In this section we develop the algorithm to segment a two-dimensional (2D) rigid moving

object. Our algorithm is a feasible approximation of the Maximum Likelihood (ML)

estimate of the parameters involved. For easy reference, we rewrite the ML cost function

as derived in chapter 2,

C2 =

Z Z FX
f=1

n
If(x; y)�M(p#f )B(x; y)

h
1�M(q#f )T(x; y)

i
�M(q#f )O(x; y)M(q#f )T(x; y)

o2
H(x; y) dx dy; (4.4)

where fIf ; 1 � f � Fg is the image sequence, B is the unknown texture of the background,

to which we also call background world image, O is the unknown texture of the moving

object, or object world image, T is the unknown template of the moving object, fpf ; 1 �

f � Fg represents the 2D motion of the background, fqf ; 1 � f � Fg represents the

2D motion of the object, and M is the motion operator introduced in section 2.2.

We estimate the position vectors fpf ;qf ; 1 � f � Fg on a frame by frame basis,

as detailed in chapter 3. We introduce the estimates of the position vectors into the
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ML cost function and minimize then with respect to the remaining unknowns, i.e., with

respect to the template T of the moving object, the texture O of the moving object,

and the texture B of the background. To minimize the ML cost function, we propose a

computationally simple two-step iterative algorithm.

Due to the special structure of the ML cost function C2, we can express explicitly

and with no approximations involved the estimate bO of the object world image in terms

of the template T. Doing this, we are left with the minimization of C2 with respect

to the template T and the background world image B, still a nonlinear minimization.

We approximate this minimization by a two-step iterative algorithm: (i) in step one, we

solve for the background B while the template T is kept �xed; and (ii) in step two, we

solve for the template T while the background B is kept �xed. We obtain closed-form

solutions for the minimizers in each of the steps (i) and (ii). The two steps are repeated

iteratively. The value of the ML cost function C2 decreases along the iterative process.

The algorithm proceeds till every pixel has been assigned unambiguously to either the

moving object or to the background. Once the two-step iterative algorithm converges,

i.e, when the template estimate bT stabilizes, if new frames are available, we update only

the textures of the object and the background. The template estimate bT is frozen and,

as new images become available, the object and background world images, bO and bB,
are updated by computing recursively their ML estimates. As it usually happens with

iterative methods, the convergence to the global minimum of the ML cost function C2 is

not guaranteed, being necessary to provide a good initialization for the iterative algorithm.

The initialization was considered in section 4.2. In our experiments, see section 4.4 and

chapter 6, the algorithm converges in a small number of iterations, typically in three to

�ve iterations.

Estimation of the moving object world image

We express the estimate bO of the moving object world image in terms of the object

template T. By minimizing C2 with respect to the intensity value O(x; y), we obtain the
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average of the pixels that correspond to the point (x; y) of the object. The estimate bO of

the moving object world image is then

bO = T
1

F

FX
f=1

M(qf)If : (4.5)

This compact expression averages the observations I registered according to the motion qf

of the object in the region corresponding to the template T of the moving object.

We consider now separately the two steps of the iterative algorithm described above.

Step (i): estimation of the background for �xed template

To �nd the estimate bB of the background world image, given the template T, we register

each term of the sum of the ML cost function C2 in equation (4.4) according to the position

of the camera pf relative to the background. This is a valid operation because C2 is de�ned

as a sum over all the space f(x; y)g. We get

C2 =

Z Z FX
f=1

n
M(pf)If �B

h
1�M(pfq

#
f )T

i
�M(pfq

#
f )OM(pfq

#
f )T(x; y)

o2
M(pf)H dx dy: (4.6)

Minimizing the ML cost function C2 given by expression (4.6) with respect to the intensity

value B(x; y), we get the estimate bB(x; y) as the average of the observed pixels that

correspond to the pixel (x; y) of the background. The background world image estimate bB
is then written as

bB =

PF

f=1

h
1�M(pfq

#
f )T

i
M(pf)IfPF

i=f

h
1�M(pfq

#
f )T

i
M(pf)H

: (4.7)

The estimate bB of the background world image in expression (4.7) is the average of the

observations If registered according to the background motion pi, in the regions f(x; y)g

not occluded by the moving object, i.e., when M(pfq
#
f )T(x; y) = 0. The term M(pf)H

provides the correct averaging normalization in the denominator by accounting only for

the pixels seen in the corresponding image.
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If we compare the moving object world image estimate bO given in equation (4.5) with

the background world image estimate bB in equation (4.7), we see that bO is linear in

the template T, while bB is nonlinear in T. This has implications when estimating the

template T of the moving object, as we see next.

Step (ii): estimation of the template for �xed background

Let the background world imageB be given and replace the object world image estimate bO
given by expression (4.5) in expression (4.4). The ML cost function C2 becomes linearly

related to the object template T. Manipulating C2 as described next, we obtain

C2 =

Z Z
T(x; y)Q(x; y) dx dy + Constant; (4.8)

Q(x; y) = Q1(x; y)�Q2(x; y); (4.9)

Q1(x; y) =
1

F

FX
f=2

f�1X
g=1

[M(qf)If(x; y)�M(qg)Ig(x; y)]
2 ; (4.10)

Q2(x; y) =
FX
f=1

h
M(qf)If(x; y)�M(qfp

#
f )B(x; y)

i2
: (4.11)

We call Q the segmentation matrix. On the �rst reading, the reader may want to skip

the derivation of expressions (4.8) to (4.11) and proceed after the symbol on page 78.

Derivation of expressions (4.8) to (4.11)

Replace the estimate bO of the moving object world image, given by expression (4.5), in

expression (4.4), to obtain

C2 =

Z Z FX
f=1

n
I�M(p#f )B

h
1�M(q#f )T

i

�
1

F

FX
g=1

M(q#f qg)Ig M(q#f )T

)2

H dx dy: (4.12)

Register each term of the sum according to the object position qf . This is valid because C2

is de�ned as an integral over all the space f(x; y)g. The result is

C2 =

Z Z FX
f=1

nh
M(qf)If �M(qfp

#
f )B

i
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+

"
M(qfp

#
f )B�

1

F

FX
g=1

M(qg)Ig

#
T

)2

M(qf )H dx dy: (4.13)

In the remainder of the derivation, the spatial dependence is not important here, and we

simplify the notation by omitting (x; y). We rewrite the expression for C2 in compact

form as

C2 =

Z Z
C dx dy; where C =

FX
f=1

(h
If � Bf

i
+

"
Bf �

1

F

FX
g=1

Ig

#
T

)2

Hf ; (4.14)

If =M(qf)If(x; y); Bf =M(qfp
#
f )B(x; y); and Hf =M(qf)H(x; y): (4.15)

We need in the sequel the following equalities"
FX
g=1

Ig

#2
=

FX
f=1

FX
g=1

IfIg and
FX
f=2

f�1X
g=1

�
I2i + I

2
g

�
= (F � 1)

FX
g=1

I2g : (4.16)

Manipulating C under the assumption that the moving object is completely visible in

the F images (THf = T; 8f), and using the left equality in (4.16), we obtain

C = T

8<:
FX
f=1

�
2IfBf � B

2
f

�
�

1

F

"
FX
g=1

Ig

#29=;+
FX

f=1

h
If � Bf

i2
Hf : (4.17)

The second term of C in expression (4.17) is independent of the template T. To show that

the sum that multiplies T is the segmentation matrix Q as de�ned by expressions (4.9),

(4.10), and (4.11), write Q using the notation introduced in (4.15):

Q =
1

F

FX
f=2

f�1X
g=1

�
I2f + I

2
g � 2IfIg

�
�

FX
f=1

�
I2f + B

2
f � 2IfBf

�
: (4.18)

Manipulating this equation, using the two equalities in (4.16), we obtain

Q =
FX
f=1

�
2IfBf � B

2
f

�
�

1

F

"
FX
g=1

I2g + 2
FX

f=2

f�1X
g=1

IfIg

#
: (4.19)

The following equality concludes the derivation:"
FX
g=1

Ig

#2
=

FX
g=1

I2g + 2
FX

f=2

f�1X
g=1

IfIg: (4.20)
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We estimate the template T by minimizing the ML cost function given by expres-

sion (4.8) over the template T, given the background world image B. It is clear from

expression (4.8), that the minimization of C2 with respect to each spatial location of T

is independent from the minimization over the other locations. The template bT that

minimizes the ML cost function C2 is given by the following test evaluated at each pixel:

Q1(x; y)

bT(x; y) = 0
>

<

bT(x; y) = 1

Q2(x; y): (4.21)

The estimate bT of the template of the moving object in equation (4.21) is obtained

by checking which of two accumulated square di�erences is greater. In the spatial lo-

cations where the accumulated di�erences between each frame M(qf)If and the back-

ground M(qgp
#
g )B are greater than the accumulated di�erences between each pair of

co-registered framesM(qf )If andM(qg)Ig, we estimate bT(x; y) = 1, meaning that these

pixels belong to the moving object. If not, the pixel is assigned to the background.

The reason why we did not replace the background world image estimate bB given

by (4.7) in (4.4) as we did with the object world image estimate bO is that it leads to an

expression for C2 in which the minimization with respect to each di�erent spatial loca-

tion T(x; y) is not independent from the other locations. Solving this binary minimization

problem by a conventional method is extremely time consuming. In contrast, the mini-

mization of C2 over T for �xed B results in a local binary test. This makes our solution

computationally simple.

It may happen that, after processing the F available frames, the test (4.21) remains

inconclusive at a given pixel (x; y) (Q1(x; y) ' Q2(x; y)): in other words, it is not possible

to decide if this pixel belongs to the moving object or to the background. We modify our

algorithm to address this ambiguity by de�ning the modi�ed cost function

C2MOD = C2 + �Area(T) = C2 + �

Z Z
T(x; y) dx dy; (4.22)

where C2 is as in equation (4.8), � is non-negative, and Area(T) is the area of the
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template. Minimizing C2MOD balances the agreement between the observations and the

model (term C2), with minimizing the area of the template. Carrying out the minimiza-

tion, �rst note that the second term in expression (4.22) does not depend on O, neither

on B, so we get bOMOD = bO and bBMOD = bB. By replacing bO in C2MOD, we get a modi�ed

version of equation (4.8),

C2MOD =

Z Z
T(x; y) [Q(x; y) + �] dx dy + Constant; (4.23)

where Q is de�ned in equations (4.9), (4.10), and (4.11). The template estimate is now

given by the following test, that extends test (4.21),

Q(x; y)

bT(x; y) = 0
>

<

bT(x; y) = 1

� � : (4.24)

The parameter � may be chosen by experimentation, by using the Minimum Description

Length (MDL) principle, see reference [12], or made adaptive by a annealing schedule like

in stochastic relaxation.

Once the two-step iterative algorithm converges, i.e, when the template estimate bT sta-

bilizes, if new frames are available, we proceed updating the world images. The template

estimate bT is frozen and, as new images become available, the object and background

world images, bO and bB, are updated by computing recursively the ML estimate. The

outputs of the two-step iterative method are the template estimate bT, and world im-

ages estimates bOi and bBi. We index the world image estimates by i to make it explicit

that these estimates are after the i images processed by the two-step algorithm. These

estimates result from equations (4.5) and (4.7), using the template estimate bT.
Recursive generation of the world images

As new images are available, we update the estimates of the world images. To be com-

putationally e�cient, we rewrite equations (4.5) and (4.7) in recursive form. From (4.5),

we obtain bOf =
f � 1

f
bOf�1 +

1

n
bTM(qf)If : (4.25)
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Before we present the recursive form of equation (4.7) for updating the estimate bBf , we

introduce the background estimation weights Sf that correspond to the denominator in

equation (4.7),

Sf =

fX
g=1

h
1�M(pgq

#
g )bTiM(pg)H: (4.26)

The element Sf (x; y) is the number of times the pixel B(x; y) has been observed in the

�rst f frames. The matrix Sf is written recursively as

Sf = Sf�1 +
h
1�M(pfq

#
f )
bTiM(pf)H: (4.27)

We rewrite recursively the background world image estimate bBf in equation (4.7) by

expressing the sum in the numerator in terms of bBf�1, Sf�1, and If . We get1

bBf =
Sf�1
Sf

bBf�1 +
1

Sf

h
1�M(pfq

#
f )
bTi M(pf)If : (4.28)

4.4 Experiment

We apply the segmentation algorithm to one computer generated image sequence using

real images. The experiment illustrates the convergence of the two-step iterative algo-

rithm.

We synthesized an image sequence according to the Generative Video (GV) [34, 35,

36, 37] model described in chapter 2. Figure 4.2 shows the world images used. The left

frame, from a real video, is the background world image. The moving object template

is the logo of the Instituto Superior T�ecnico (IST) which is transparent between the

letters. Its world image, shown in the right frame, is obtained by clipping with the

IST logo a portion of one of the frames in the sequence. The task of reconstructing

the object template is particularly challenging with this video sequence due to the low

contrast between the object and the background and the complexity of the template. We

synthesized a sequence of 20 images where the background is static and the IST logo

moves arround.

1We assume in (4.28) that Sf (x; y) 6= 0. If Sf (x; y) = 0, the corresponding (x; y) entry of bBf is zero.
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Figure 4.2: GV constructs: background and moving object.

Figure 4.3 shows three frames of the sequence obtained according to the image for-

mation model introduced in chapter 2, expression (2.2), with noise variance �2 = 4 (the

intensity values are in the interval [0; 255]). The object moves from the center (left frame)

down by translational and rotational motion. It is di�cult to recognize the logo in the

two right frames because its texture is confused with the texture of the background.

Figure 4.3: Three frames of the GV synthesized image sequence.

Figure 4.4 illustrates the four iterations it took for the two-step estimation method of

our algorithm to converge. The template estimate is initialized to zero (top left frame).

Each background estimate in the right hand side was obtained using the template estimate

on the left of it. Each template estimate was obtained using the previous background

estimate. The arrows in Figure 4.4 indicate the 
ow of the algorithm. The good template

estimate obtained, see bottom left image, illustrates that our algorithm can estimate

complex templates in low contrast background.
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Figure 4.4: Two-step iterative method: template estimates and background estimates.
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Note that this type of complex templates (objects with transparent regions) is much

easier to describe by using a binary matrix than by using contour based descriptions,

like splines, Fourier descriptors, or snakes. Our algorithm overcomes the di�culty arising

from the higher number of degrees of freedom of the binary template by integrating over

time the small intensity di�erences between the background and the object. The two-step

iterative algorithm performs this integrations in an expedite way.

4.5 Summary

In this chapter, we develop an algorithm for segmenting a two-dimensional (2D) rigid

moving object from an image sequence. Our method recovers the template of the 2D rigid

moving object by processing directly the image intensity values. We model the rigidity of

the moving object over a set of frames and motivate our algorithm by looking for a feasible

approximation to the Maximum Likelihood (ML) estimation of the unknowns involved in

the segmentation problem.

Our methodology introduces the 2D motion estimates into the ML cost function and

uses a two-step iterative algorithm to approximate the minimization of the resultant cost

function. The steps of the iterative algorithm are: (i) estimate the background for �xed

template, (ii) estimate the template for �xed background. We start by describing a

method to initialize the algorithm, i.e, a method to compute a �rst estimate of the object

template. Then, we develop the two-step iterative algorithm. We obtain closed-form solu-

tions for both steps (i) and (ii). The solutions for steps (i) and (ii) result computationally

very simple. The two-step algorithm is computationally e�cient because the convergence

is achieved in a small number of iterations (typically three to �ve iterations).

The chapter ends with an illustrative experiment. We show that the algorithm pro-

posed can recover complex templates in a low contrast scene.
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Chapter 5

Analysis of the Segmentation

Algorithm

5.1 Introduction

In chapter 4 we proposed a method to segment a two-dimensional (2D) rigid moving ob-

ject. Our method approximates the Maximum Likelihood (ML) estimate of the unknowns

involved in the segmentation problem. To minimize the ML cost function, we presented in

chapter 4 a computationally simple two-step iterative algorithm. This chapter is devoted

to the study of the behavior of the two-step algorithm.

The two steps of the iterative algorithm are the following: (i) estimation of the back-

ground texture assuming that the object template is known; (ii) estimation of the object

template assuming that the background texture is known. In step (i), we estimate the

background texture by averaging the appropriate regions of the observed frames. In

step (ii), the estimate of the template of the moving object leads to a binary test evalu-

ated at each pixel. After processing a small number of frames, it may happen that the

background is correctly estimated but some of the template pixels are incorrectly classi-

�ed, i.e., classi�ed as belonging to the object template when they do not belong to the

object template, or classi�ed as not belonging to the object template when they belong

to the object template. In fact, the background estimates are accurate because they are

obtained by averaging the observed frames in step (i) of the algorithm. The background

85
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estimates are robust to errors in the previous estimates of the template because the av-

erage smoothes out the intensity of any pixel that may be taken into account incorrectly.

On the other hand, even if the background is correctly estimated, some of the template

pixels may be incorrectly classi�ed in step (ii) of the algorithm. This is because the bi-

nary test involved in step (ii) of the algorithm may provide incorrect pixel classi�cations

if the di�erence of intensities between the object and the background is very small when

compared to the observation noise.

In this chapter we develop an upper bound for the probability of misclassi�cation

of the pixels of the template by using the Tchebyche� inequality [46]. We illustrate the

behavior predicted by the theoretical analysis through an experiment with simulated data.

The chapter is organized as follows. In section 5.2 we derive expressions for the mean

and variance of the segmentation matrix Q involved in the binary test of step (ii) of the

algorithm introduced in chapter 4. In section 5.3 we develop an upper bound for the

probability of misclassifying the template pixels. Section 5.4 describes one experiment

that con�rms the theoretical analysis. Section 5.5 concludes the chapter.

5.2 Statistics of the Segmentation Matrix

The estimate bT of the template of the moving object is constructed from the test (4.21).

We study the behavior of this test and the convergence of the template estimate bT as

we process additional images in the sequence. For easy reference, we rewrite in compact

form the segmentation matrix Q involved in test (4.21),

Q = Q1 �Q2; (5.1)

Q1 =
1

F

FX
f=2

f�1X
g=1

h
M(qf)If �M(qg)Ig

i2
; (5.2)

Q2 =
FX
f=1

h
M(qf)If �M(qfp

#
f )
bBi2 ; (5.3)

where fIfg is the image sequence and bB is the estimate of the background. The opera-

tor M is the motion operator introduced in chapter 2, section 2.3.
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To develop upper bounds for the probability of misclassi�cation of the pixels of the

template, we need to compute �rst the mean and variance of the segmentation matrix Q

given by expressions (5.1), (5.2), and (5.3). The following statistical analysis is conditioned

on the estimate of the background being equal to the actual background, i.e., conditioned

on bB = B. This approximation is supported from a practical viewpoint because, as

mentioned in the previous section, the background estimate is robust to errors in the

previous estimate of the template.

Mean of Q

We compute successively the means of the matrices Q1 and Q2 given by expressions (5.2)

and (5.3). We start with the mean of Q1. We replace the model for the image se-

quence fIfg given by expression (2.2) in expression (5.2) and compute the expected value

of Q1 with respect to the observation noise.

Replacing the image sequence model (2.2) in expression (5.2) we get

Q1 =
1

N

FX
f=2

f�1X
g=1

�n
M(qfp

#
f )B

h
1�T

i
+OT+M(qf)Wf

o
M(qf )H

�
n
M(qgp

#
g )B

h
1�T

i
+OT+M(qg)Wg

o
M(qg)H

�2

: (5.4)

Manipulating Q1 under the assumption that the moving object is completely visible in

the F images (8f : TM(qf)H = T), we obtain

Q1 =
1

F

FX
f=2

f�1X
g=1

�h
M(qfp

#
f )BM(qf)H�M(qgp

#
g )BM(qg)H

i h
1�T

i
+M(qf)WM(qf)H�M(qg)WM(qg)H

�2

: (5.5)

We now compute the expected value of Q1 in expression (5.5) with respect to the

observation noise sequence fWg. With zero mean white noise,

E
n
Wf

o
= 0; (5.6)

E
n
Wf Wg

o
= �2�fg1: (5.7)
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The expected value of Q1 is, after expanding the square in expression (5.5) and using the

expectations (5.6) and (5.7),

E fQ1g =
h
1�T

i 1
F

NX
f=2

f�1X
g=1

h
M(qfp

#
f )BM(qf )H�M(qgp

#
g )BM(qg)H

i2
+
�2

F

FX
f=2

f�1X
g=1

h
M(qf)H+M(qg)H

i
: (5.8)

We now compute the expected value of the matrix Q2. Replacing the image sequence

model (2.2) in expression (5.3), we get

Q2 =
FX

f=1

n
M(qfp

#
f )B

h
1�T

i
+OT+M(qf )Wf M(qf)H�M(qfp

#
f )
bBo2 : (5.9)

Assuming that the background B equals its estimate bB and that the object is completely

visible in the F frames, i.e., 8f : TM(qf)H = T, we obtain

Q2 =
FX

f=1

nh
O�M(qfp

#
f )B

i
T +M(qfp

#
f )B

h
M(qf)H� 1

i
+M(qf)WM(qf)H

o2
:

(5.10)

We compute the expected value of Q2 conditioned on bB = B, which we denote

by EB fQ2g. Using the expectations (5.6) and (5.7), we obtain

EB fQ2g = T
FX

f=1

h
O�M(qfp

#
f )B

i2
+

FX
f=1

M(qfp
#
f )B

2
h
1�M(qf)H

i
+�2

FX
f=1

M(qf)H:

(5.11)

The expected value of the segmentation matrix Q in expression (5.1) conditioned

on bB = B is now given by

EB fQg = E fQ1g � EB fQ2g : (5.12)

For the regions f(x; y)g that fall inside all the F images, we have

8f : M(qf)H(x; y) = 1: (5.13)
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For these regions, by replacing the results (5.8) and (5.11) in equation (5.12), we get for

the expected value of the segmentation matrix Q,

EB fQg =
h
1�T

i 1

F

FX
f=2

f�1X
g=1

h
M(qfp

#
f )B�M(qgp

#
g )B

i2
�T

FX
f=1

h
O�M(qfp

#
f )B

i2
:� �21 (5.14)

To obtain (5.14), we used (5.13) in expressions (5.8) and (5.11).

The coe�cients that multiply T and [1 � T] in expression (5.14) are non-negative.

Thus, as we process additional images, EB fQ(x; y)g becomes more negative in the spatial

locations where T(x; y) = 1, and more positive where T(x; y) = 0 (the term �21 is

negligible because its magnitude is in general much smaller than the magnitude of the

�rst two terms). After processing a su�ciently large number of frames, the sign of EB fQg

at each pixel (x; y) stabilizes. The estimate of the moving object template is given by the

test (4.21), i.e., we estimate bT(x; y) = 1 if Q(x; y) < 0 and bT(x; y) = 0 if Q(x; y) > 0.

The convergence of the mean value EB fQ(x; y)g to a positive value where T(x; y) = 0,

and a negative value where T(x; y) = 1, by itself, does not guarantee that the probability

of misclassifying the template pixels is low. We must study the evolution of the variance

of the segmentation matrix Q(x; y).

Variance of Q

We now compute the variance of Q conditioned on bB = B denoted by VB fQg. Us-

ing EB fQg given by expression (5.14), and the image sequence model given by expres-

sion (2.2), we compute the expected value VB fQg of the matrix [Q� EB fQg]
2 with

respect to the observation noise,

VB fQg = EB

�h
Q� EB fQg

i2�
: (5.15)

To compute the conditional variance of the segmentation matrix Q given bB = B, we

�rst express the matrix Q � EB fQg in terms of the background intensity levels B, the
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moving object intensity levels O, the template T, and the observation noise W. From

equations (5.5), (5.8), (5.10), (5.11), and using (5.13), we obtain

Q� EB fQg = Q1 � E fQ1g �Q2 + EB fQ2g

=
h
1�T

i 2

F

FX
f=2

f�1X
g=1

h
M(qfp

#
f )B�M(qgp

#
g )B

i h
M(qf)W �M(qg)W

i

�T 2
FX
f=1

h
O�M(qfp

#
f )B

i
M(qf)W

+
1

F

FX
f=2

f�1X
g=1

h
M(qf)W �M(qg)W

i2
�

FX
f=1

M(qf)W
2 + �21: (5.16)

To simplify the notation, we de�ne the matrices P1, as the coe�cient of the term that

multiplies [1 � T], P2, as the coe�cient of the term that multiplies T, and P3, as the

remaining term in expression (5.16),

P1 =
2

F

FX
f=2

f�1X
g=1

h
M(qfp

#
f )B�M(qgp

#
g )B

i h
M(qf)W �M(qg)W

i
; (5.17)

P2 = 2
FX
f=1

h
O�M(qfp

#
f )B

i
M(qf)W; (5.18)

P3 =
1

F

FX
f=2

f�1X
g=1

h
M(qf)W�M(qg)W

i2
�

FX
f=1

M(qf)W
2 + �21; (5.19)

and write the matrix [Q� EB fQg]
2 ash

Q� EB fQg
i2

=
h
1�T

i
P2
1 +TP2

2 +P2
3 +

h
1�T

i
P1P3 �TP2P3: (5.20)

We compute the expected value of the matrices in the right hand side of expres-

sion (5.20) with respect to the observation noise. Using the following expectations that

result from the zero mean and whiteness of the noise and the properties of higher-order

moments of Gaussian random variables,

E
n
WfWgWh

o
= 0; (5.21)

E
n
WfWgWhWi

o
=
�4

3

h
�fg�hi (1 + 2�fh)+�fh�gi (1 + 2�fg)+�fi�gh (1 + 2�fg)

i
1; (5.22)
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and the equalities

NX
i=1

i =
N(N + 1)

2
and

NX
i=1

i2 =
N(N + 1)(2N + 1)

6
; (5.23)

we obtain for the expected values of P2
1, P

2
2, P

2
3, P1P3, and P2P3,

E
�
P2
1

	
=

4�2

F

FX
f=2

f�1X
g=1

h
M(qfp

#
f )B�M(qgp

#
g )B

i2
; (5.24)

E
�
P2
2

	
= 4�2

FX
f=1

h
O�M(qfp

#
f )B

i2
; (5.25)

E
�
P2
3

	
= 2�41; E fP1P3g = 0; and E fP2P3g = 0: (5.26)

Using these results, we compute the expected value of the matrix [Q� EB fQg]
2 given by

expression (5.20). We obtain for the variance VB fQg = E
�
[Q� EB fQg]

2	,
VB fQg =

h
1�T

i 4�2
F

FX
f=2

f�1X
g=1

h
M(qfp

#
f )B�M(qgp

#
g )B

i2
+T 4�2

FX
f=1

h
O�M(qfp

#
f )B

i2
+ 2�41: (5.27)

From expression (5.27), we see that the variance of the segmentation matrix Q in-

creases as we process more frames. This is because when more frames are taken into

account, matrix Q, given by expressions (5.1), (5.2), and (5.3), sums a larger number of

random variables. We now relate the behavior of the mean and variance of the segmen-

tation matrix Q with the estimate of the moving object template.

5.3 Bounds on the Probability of Error

We develop an upper bound for the probability of misclassi�cation of the template pixels.

The estimate of the template of the moving object is given by test (4.21). For easy

reference, we rewrite the test. The estimate bT is

Q1(x; y)

bT(x; y) = 0
>

<

bT(x; y) = 1

Q2(x; y) () Q(x; y)

bT(x; y) = 0
>

<

bT(x; y) = 1

0; (5.28)
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where Q1, Q2, and Q are given by expressions (5.2), (5.3), and (5.1).

We upper bound the probability of misclassi�cation of a pixel as belonging or not to the

moving object template by using the Tchebyche� inequality [46]. We use equations (5.14)

and (5.27) for the mean and variance of the segmentation matrix Q and expression (5.28)

for the classi�cation of the template pixels. We derive upper bounds on the probability

of the two types of error: type-I error { misclassifying a pixel as not belonging to the

template when it actually belongs to the template (probability of a miss); type-II error

{ misclassifying a pixel as belonging to the template when it actually does not belong to

the template (probability of false alarm).

Type-I error

If the pixel (x; y) belongs to the template of the moving object, we have T(x; y) = 1. The

mean EB fQg and the variance VB fQg are given by making T = 1 in expressions (5.14)

and (5.27). We get

EB fQ(x; y)g = �
FX
f=1

h
O(x; y)�M(qfp

#
f )B(x; y)

i2
� �2; (5.29)

VB fQ(x; y)g = 4�2
FX
f=1

h
O(x; y)�M(qfp

#
f )B(x; y)

i2
+ 2�4: (5.30)

The probability that the pixel (x; y) is misclassi�ed as not belonging to the template

(type-I error) is given by

PB

n
T(x; y) = 1 ^ bT(x; y) = 0

o
= PB fQ(x; y) > 0g (5.31)

(see test (5.28)). Using elementary properties of the absolute value, the right hand side

of equality (5.31) is majored as

PB fQ(x; y) > 0g � PB

n���Q(x; y)� EB fQ(x; y)g
��� > �EB fQ(x; y)g

o
: (5.32)

To upper-bound the probability in the right hand side of expression (5.32) in terms of

the mean and variance of Q, we use the Tchebyche� inequality [46], a result of probability
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theory that states that for any random variable x with mean � and variance �2 and for

any � > 0, the probability that x takes values outside the interval [���; �+�] is bounded by

P
n
jx� �j > �

o
�
�2

�2
: (5.33)

By using the Tchebyche� inequality (5.33) we upper-bound the probability in the right

hand side of expression (5.32) as

PB
n���Q(x; y)� EB fQ(x; y)g

��� > �EB fQ(x; y)g
o
�

VB fQ(x; y)gh
�EB fQ(x; y)g

i2 : (5.34)

By replacing expressions (5.29) and (5.30) into the right hand side of expression (5.34),

we obtain the �nal upper-bound for the probability of the type-I error,

PB

n
T(x; y) = 1 ^ bT(x; y) = 0

o
�

4�2PF

f=1

h
O(x; y)�M(qfp

#
f )B(x; y)

i2 (5.35)

(we simpli�ed the expression of the bound (5.35) by neglecting the terms �2 and 2�4 in

expressions (5.29) and (5.30))

The bound on the probability of error given by expression (5.35) is inversely pro-

portional to the square of the di�erence between the background intensity level and the

moving object intensity level. This is in agreement with the intuition that the more the in-

tensity levels of the background are di�erent from the intensity level of the moving object,

the less probable it is to misclassify an object pixel as belonging to the background. As we

process additional images, the value of the error upper-bound given by expression (5.35)

decreases and so the template estimates become more accurate with higher probability.

Type-II error

In a similar way, we �nd an upper bound for the probability of the type-II error. If the

pixel (x; y) does not belong to the template, we have T(x; y) = 0. The mean EB fQg and

variance VB fQg are given by making T = 0 in expressions (5.14) and (5.27). We get

EB fQ(x; y)g =
1

F

FX
f=2

f�1X
g=1

h
M(qfp

#
f )B(x; y)�M(qgp

#
g )B(x; y)

i2
� �2; (5.36)
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VB fQ(x; y)g =
4�2

F

FX
f=2

f�1X
g=1

h
M(qfp

#
f )B(x; y)�M(qgp

#
g )B(x; y)

i2
+ 2�4: (5.37)

The upper-bound to the probability that the pixel (x; y) is misclassi�ed as belonging

to the template (type-II error) is successively given by

PB

n
T(x; y) = 0 ^ bT(x; y) = 1

o
=PB fQ(x; y) < 0g (5.38)

�PB

n���Q(x; y)� EB fQ(x; y)g
��� > EB fQ(x; y)g

o
�

EB fQ(x; y)gh
EB fQ(x; y)g

i2
=

4�2

1
F

P
f

P
g

h
M(qfp

#
f )B(x; y)�M(qgp

#
g )B(x; y)

i2 :
The �rst equality is from test (5.28). The �rst inequality derives from the properties

of the absolute value. The second inequality is from the Tchebyche� inequality (5.33)

and the last equality is from expressions (5.29) and (5.30), after neglecting the terms �2

and 2�4.

The bound on the probability of error given by expression (5.38) is inversely propor-

tional to the square of the di�erence between the background intensity levels registered

according to the moving object positions. If di�erent regions of the background have

similar intensity levels and their relative location is such that they could be interpreted

as belonging to the moving object, then the denominator in the bound (5.38) is small and

the bound is high. When additional images are processed, these di�erences accumulate,

the denominator in (5.38) increases, the value of the bound on the probability of error

decreases, and the template estimates are more accurate with higher probability.

Note that for both pixels belonging to the template, or for pixels corresponding to

the background, the probability of error is bounded by the inverse of the absolute value

of EB fQg at each pixel (x; y). As we process additional images, the absolute value

of EB fQg increases (see expression (5.14)), the probability of error decreases, the sign ofQ

at each pixel (x; y) stabilizes, which in turn, through test (5.28), stabilizes the estimate bT
of the template. This temporal integration of the information in the video sequence is a
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distinguishing feature of our approach. We succeed in segmenting low textured objects

because the moving object template is estimated from the di�erences between the intensity

levels of the object and the background, rather than from the motion of the brightness

pattern (which is impossible to compute in low textured regions). Since our algorithm

accumulates these di�erences across the time, we also succeed in segmenting objects that

move against low contrast background.

5.4 Experiment

We describe one experiment that illustrates the behavior of the algorithm proposed in

chapter 4, whose convergence was studied in sections 5.2 and 5.3.

We illustrate the template estimation step for a sequence of one-dimensional (1D)

frames obtained with the Generative Video (GV) building blocks of Figure 2.1. We syn-

thesized an image sequence by using the model in expression (2.2). The camera position

was chosen constant and the object position was set to increase linearly with time. The

frame sequence obtained is represented in Figure 5.1. Time increases from bottom to top.

From the plot of Figure 5.1 we can see that the background is stationary and the object

moves from the left to the right.

space

time

frame sequence

Figure 5.1: 1D image sequence synthesized with the GV constructs of Figure 2.1. Time
increases from bottom to top.
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The evolutions of matrices Q1 and Q2 (in this experiment, Q1 and Q2 are vectors

because the frames are 1D) are represented by plots in Figure 5.2. The left plot represents

the evolution of Q1, while the right plot represents Q2. Time increases from bottom to

top. At the beginning, when only a few frames have been taken into account, the values

of Q1 and Q2 are small and the test (5.28) is inconclusive. As more observations are

processed, the absolute value of the di�erence between Q1 and Q2 rises and the test

becomes unambiguous, see the evolution of the segmentation matrix Q = Q1�Q2 shown

in the plot of Figure 5.3. When enough frames were processed, Q takes high positive

values for pixels that do not belong to the template of the moving object, and negative

values for pixels belonging to the template, see the shape of Q in the top of Figure 5.3

(the straight line at the bottom represents Q = 0) and the template of the moving object

in Figure 5.2.

space
time

Q1

space
time

Q2

Figure 5.2: Evolution of Q1 and Q2 for the image sequence of Figure 5.1. Time increases
from bottom to top.

On the plot of Figure 5.4 we show a grey level representation of the evolution of the

result of the test (5.28). Time increases from bottom to top. Regions classi�ed as belong-

ing to the object template are light. Regions classi�ed as not belonging to the template

are dark. Middle grey regions correspond to the test (5.28) being inconclusive. Note that,

after processing a number of frames, the regions are either light or dark, meaning that the
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space

time

Q=Q1−Q2

Figure 5.3: Evolution of the segmentation matrix Q for the image sequence of Figure 5.1.
Time increases from bottom to top.

test (5.28) is unambiguous at every spatial location. Figure 5.4 illustrates the convergent

behavior of the template test. It is in agreement with the analysis made in the two pre-

vious sections. The estimates of the template of the moving object in Figure 5.4 con�rm

the statement above about the evolution of the segmentation matrix Q in Figure 5.3, i.e.,

we see that the sequence of estimates of the template converges to the true template,

represented in Figure 2.1.

The top of the plot in Figure 5.4 shows the �nal estimate of the template of the moving

object. It is equal to the actual template, represented in Figure 2.1. In this example,

the template of the moving object is the union of two disjoint intervals. We see that

the segmentation algorithm recovers successfully the template of the moving object even

when it is a disconnected set of pixels.

5.5 Conclusions

This chapter studies the behavior of the binary test involved in the two-step iterative

algorithm proposed in chapter 4. The statistical analysis shows that the probability of
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space

tim
e

test

Figure 5.4: 1D template estimation for the sequence of Figure 5.1. Time increases from
bottom to top. Regions classi�ed as belonging to the object template are light. Regions
classi�ed as not belonging to the template are dark. Middle grey regions correspond to
the test (5.28) being inconclusive.

misclassifying the pixels of the template of the moving object decreases as the number of

frames processed increases. We illustrated this convergent behavior with an experiment

that segments a moving object composed by two disjoint regions.

We develop upper bounds for two probability of errors when classifying pixels as

belonging or not to the template of the moving object: type-I error { misclassifying a

pixel as not belonging to the template when it actually belongs; and type-II error {

misclassifying a pixel as belonging to the template when it actually does not belong. We

start by computing the mean and variance of the segmentation matrix Q involved in the

template estimation test. To develop the upper bounds on the probability of each type

of error, we use the Tchebyche� inequality.

We show that the upper bound on the probability of type-I error is inversely pro-

portional to the square of the di�erence between the background intensity level and the

moving object intensity level. This is in agreement with the intuition that the more the



5.5. CONCLUSIONS 99

intensity levels of the background di�er from the intensity level of the moving object,

the less probable it is to misclassify an object pixel as belonging to the background. As

we process additional images, the value of the error bound decreases and the template

estimates are more accurate.

The bound on the probability of type-II error is inversely proportional to the square of

the di�erence between the background intensity levels registered according to the moving

object positions. This agrees with the intuition that the uncertainty is higher when

di�erent regions of the background have similar intensity levels and their relative location

is such that they could be interpreted as belonging to the moving object. When additional

images are processed, these di�erences accumulate and the accuracy of the template

estimates increases.

We illustrate the convergent behavior of the template test with an experiment with

synthetic data. We use a one-dimensional image sequence that shows a moving object

composed by two disjoint intervals. The time evolution of the segmentation matrix Q is

in agreement with the statistical analysis made in the chapter, i.e., Q has values close

to zero for all pixels, when a few frames are processed, and, as additional frames are

processed, the absolute value of the entries ofQ rises. After processing a number of frames,

the estimate of the template of the moving object is equal to the true template. The

experiment illustrates that our segmentation algorithm recovers successfully templates

that are disconnected sets of pixels.



100 CHAPTER 5. ANALYSIS OF THE SEGMENTATION ALGORITHM



Chapter 6

Real Video Experiments

In this chapter we present two experiments using real life video sequences. The �rst

experiment illustrates the time evolution of the estimate of the moving object template

when segmenting a robot soccer scene. The second experiment constructs the Generative

Video (GV) [34, 35, 36, 37] representation of a real life tra�c video clip.

6.1 Robot Soccer

We used a sequence of 20 images obtained from a robot soccer game, see references [54, 66].

It shows a white robot pursuing the ball. Frames 1; 4; 8, and 16 of the robot soccer video

sequence are in Figure 6.1.

Figure 6.1: Robot soccer image sequence. Frames 1; 4; 8, and 16.

Although it is an easy task for humans to segment correctly the video sequence in

Figure 6.1, even looking at a single frame, this is not the case when motion is the only

cue taken into account. In fact, due to the low texture of the regions of both the �eld and

the robot, the robot template is ambiguous during the �rst frames of the sequence. This

101



102 CHAPTER 6. REAL VIDEO EXPERIMENTS

is because several regions belonging to the �eld can be incorrectly classi�ed as belonging

to the robot, since the motion of the robot during the �rst frames is such that the video

sequence would be the same whether or not those regions move rigidly with the robot.

The same happens to regions of the robot that can be interpreted as being stationary

with respect to the �eld. Only after the robot rotates, it is possible to determine, without

ambiguity, its template.

We applied the proposed segmentation algorithm to the video sequence of Figure 6.1.

The initialization phase, described in section 4.2, took 5 frames. Applying the moving

object template test, in expression (4.21), see section 4.3, the ball template becomes

unambiguous after the 5 frames. Figure 6.2 shows the evolution of the robot template.

Regions where the test is inconclusive are grey, regions classi�ed as being part of the robot

template are white, and regions classi�ed as being part of the background are black. The

robot template is unambiguous after 10 frames. The �nal robot template estimate is

shown on the right side of Figure 6.2.

Figure 6.2: Estimate of robot template after frames 2; 4; 6, and 10.

Figure 6.3 illustrates the evolution of the segmentation matrix Q introduced in sec-

tion 4.3. The curves on the left side plot represent the value of Q(x; y) for representative

pixels (x; y) in the template of the robot. These curves start close to zero and decrease

with the number of frames processed, as predicted by the analysis in chapter 5. The curves

on the right side plot of Figure 6.3 represent the evolution of Q(x; y) for pixels not in

the template of the robot. For these pixels, Q(x; y) increases with the number of frames,

again according to the analysis in chapter 5. Thus, while during the �rst frames the value
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of Q(x; y) is close to zero and the template test is ambiguous (due to the low texture of

the scene), after processing enough images the absolute value of Q(x; y) increases and the

robot template becomes unambiguous.
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Figure 6.3: Evolution of the entries Q(x; y) of the segmentation matrix Q for represen-
tative pixels: left plots are for pixels (x; y) in the robot template; right plots are for
pixels (x; y) not in the robot template.

Figure 6.4 shows the recovered world images for the two moving objects and back-

ground, after processing the entire sequence of 20 frames.

Figure 6.4: Background, robot, and ball world images recovered from the robot soccer
video sequence of Figure 6.1.
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6.2 Road Tra�c

In this experiment we use a road tra�c video clip. The road tra�c video sequence

has 250 frames. Figure 6.5 shows frames 15; 48; 166, and 225. The example given in

chapter 1 to motivate the study of the segmentation of low textured scenes, see Figure 1.1,

section 1.1, also uses frames 76 and 77 from the road tra�c video clip.

Figure 6.5: Tra�c road video sequence. Frames 15; 48; 166, and 225.

In this video sequence, the camera exhibits a pronounced panning motion, while four

di�erent cars enter and leave the scene. The cars and the background have regions of low

texture. The intensity of some of the cars is very similar to the intensity of parts of the

background. The example in chapter 5, section 5.4, illustrating the convergence of the

estimate of the template, see Figures 5.1 through 5.4, is inspired in this type of scenes.

Figures 6.6 and 6.7 show the good results obtained after segmenting the sequence with

our algorithm. Figure 6.7 displays the background world image, while Figure 6.6 shows

the world images of each of the moving cars. The estimates of the templates for the cars

in Figure 6.6 becomes unambiguous after 10, 12, 10, and 14 frames, respectively.

Figure 6.6: Moving objects world images recovered from the tra�c road video sequence.
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Figure 6.7: Background world image recovered from the tra�c road video sequence.
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Part II

Inference of 3D Rigid Structure
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Chapter 7

3D Structure from 2D Video

7.1 Introduction

In Part II of the thesis we study the problem of inferring three-dimensional (3D) rigid

structure from two-dimensional (2D) video by using the analogy with a communication

system, as introduced in chapter 1, section 1.2, and illustrated in Figure 1.2. We address

the recovery of 3D structure through the Maximum Likelihood (ML) estimation of the

unknowns involved in the problem { the 3D shape, the 3D motions, and the texture.

The formulation of the ML estimate from a set of frames leads to the minimization of a

complex cost function. We do not attempt the minimization of the ML cost function with

respect to the entire set of parameters by using generic optimization methods. Rather, we

exploit the speci�c characteristics of the problem to develop a computationally feasible

approximation to the ML solution.

In this chapter we state the problem of inferring 3D structure from video and describe

our approach. The chapter is organized in the following way. In section 7.2 we contrast

our approach with related research work. Section 7.3 formulates the problem by using the

analogy with a classical communication system. In section 7.4 we discuss the ML esti-

mate. We show that the ML estimate of the texture is obtained in terms of the unknown

3D shape and 3D motion. Section 7.5 describes our approach to the minimization of the

ML cost function. We show that the classic structure from motion (SFM) approach is an

approximation to the ML estimate. Section 7.6 summarizes the content of the chapter.
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7.2 Related Work

The automatic generation of a three-dimensional (3D) description of the real world envi-

ronment has received the attention of a large number of researchers. Target applications

for this kind of models are found in several �elds that go well beyond digital video. The

information source for a number of successfull approaches to 3D object modeling has been

the range image, see for example references [22, 42, 50, 52]. This image, obtained from

a range sensor, provides the distance between the sensor and the environment in front of

it, on a uniform discrete grid. Since the range image itself contains explicit information

about the 3D structure of the environment, the above cited works deal with the problem

of how to combine a number of sets of 3D points (each set corresponding to a range image)

into a 3D model. These approaches di�er on the 3D model used, either a surface-based

description [50, 52], or a discretized volumetric model [22, 42].

In this thesis we address the problem of building a 3D model from video data, when

no explicit 3D information is given. The recovery of the 3D structure (3D shape and

3D motion) of rigid objects from a two-dimensional (2D) video sequence has been widely

considered by the computer vision community. Methods that infer 3D shape from a single

frame are based on cues such as shading and defocus. These methods fail to give reliable

3D shape estimates for unconstrained real-world scenes. If no prior knowledge about

the scene is available, the cue to estimating the 3D structure is the 2D motion of the

brightness pattern in the image plane. For this reason, this problem is generally referred

to as structure from motion (SFM). The two major steps in SFM are usually the following:

compute the 2D motion in the image plane; and estimate the 3D shape and the 3D motion

from the computed 2D motion.

Early approaches to SFM processed a single pair of consecutive frames and provided

existence and uniqueness results to the problem of estimating 3D motion and absolute

depth from the 2D motion in the camera plane between two frames, see for example

references [63, 64]. Two-frame based algorithms are highly sensitive to image noise, and,
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when the object is far from the camera, i.e., at a large distance when compared to the

object depth, they fail even at low level image noise.

More recent research has been oriented towards the use of longer image sequences. For

example, references [51, 58] use a Kalman �lter to integrate along time a set of two-frame

depth estimates, and references [17, 55] use nonlinear optimization to solve for the rigid

3D motion and the set of 3D positions of feature points tracked across a set of frames.

Tomasi and Kanade [59, 60, 61] introduced the factorization method, an elegant

method to recover rigid structure from an image sequence. Instead of representing the

3D positions of feature points by their image coordinates and their depths, they adopt Ull-

man's original formulation of the SFM problem, see reference [65]. In references [59, 61],

as in reference [65], the 3D positions of the feature points are expressed in terms of carte-

sian coordinates in a world-centered coordinate system. In the factorization method, the

2D projection of each feature point is tracked over the image sequence. The 3D shape

and motion are then estimated by factorizing a measurement matrix whose entries are

the set of trajectories of the feature point projections. Tomasi and Kanade pioneered the

use of linear subspace constraints in motion analysis. In fact, the key idea underlying the

factorization method is the fact that the rigidity of the scene imposes that the measure-

ment matrix lives in a low dimensional subspace of the universe of matrices. Tomasi and

Kanade have shown that the measurement matrix is a rank 3 matrix in a noiseless situ-

ation. References [59, 60, 61] use the orthographic projection model. The factorization

method was later extended to the scaled-orthography and para-perspective models, see

references [47, 48, 49], and to the multibody scenario, see references [19, 20, 21].

In Part II of the thesis, we use the same type of subspace constraints to solve SFM

in the more general scenario of recovering 3D motion and a parameteric description of

the 3D shape from a sequence of 2D motion parameters. Exploiting further the linear

subspace contraints, we will see that the SFM problem is solved by factorizing a matrix

that is rank 1 in a noiseless situation, rather than a rank 3 matrix as in the original

factorization method.
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The factorization method as developed by Tomasi and Kanade relies on the matching

of a set of features along the image sequence. This task is di�cult when processing noisy

videos. In general, only distinguished points, as brightness corners, are used as \track-

able" feature points. As a consequence, the approach of Tomasi and Kanade does not

provide dense depth estimates. Under our more general scenario, rather than describing

the 3D shape by the set of 3D positions of the feature points, we parameterize the shape

of the object surface and show that this parameterization induces a parametric model for

the 2D motion of the brightness pattern in the image plane. Instead of tracking pointwise

features, we track larger regions where the image motion is described by a single set of

parameters. To recover in an expedite way the 3D motion and 3D shape parameters from

the image motion parameters, we introduce the surface-based factorization, a generaliza-

tion of the original factorization method. Another relevant feature of our method concerns

its computational simplicity. By making an appropriate linear subspace projection, we

�nd the unknown 3D structure by factorizing a matrix that is rank 1 in a noiseless situ-

ation, rather than a rank 3 matrix as in the original factorization method of Tomasi and

Kanade. This allows the use of faster iterative algorithms to compute the matrix that

best approximates the data.

We propose a �nal step that re�nes the estimate of the 3D shape given by the surface-

based factorization method by computing the 3D shape directly from the image intensity

values through Maximum Likelihood (ML) estimation. To overcome the di�culties in

estimating 3D structure through the 2D motion induced onto the image plane, some

researchers have used techniques that infer 3D structure directly from the image intensity

values. Horn and Weldon estimate directly the 3D structure parameters by using the

brightness change constraint between two consecutive frames, see reference [29] . Heel

builds on this work by using a Kalman �lter to update the estimates over time, see

reference [28]. We address the recovery of 3D structure from a video sequence by using the

analogy with the communications system, as presented in chapter 1. The ML estimation

of the unknowns involved leads to the minimization of a cost function expressed in terms
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of image intensities. For this reason, we also address the problem of inferring 3D structure

directly from the image intensity values, as references [28, 29] do. Our approach is distinct

from the approach of reference [28] because we model the rigidity of the scene over the set

of frames, instead of trying to fuse a set of possibly inaccurate estimates obtained from

pairs of consecutive frames.

7.3 Problem Formulation

Our approach to the problem of inferring three-dimensional (3D) structure from a video

sequence is based on the analogy between the image analysis task and a classical com-

munication system, as introduced in chapter 1, section 1.2, and illustrated in Figure 1.2.

The �rst step in formulating the problem according to this analogy is the de�nition of an

observation model, i.e., a model for the images in the sequence.

We consider a rigid object O moving in front of a camera. The object O is described

by its 3D shape S and texture T . The texture T represents the light received by the

camera after re
ecting on the object surface, i.e., the texture T is the object brightness

as perceived by the camera. The texture depends on the object surface photometric

properties, as well as on the environment illumination conditions. We assume that the

texture does not change with time. The 3D shape S is a representation of the surface of

the object. We do not need to specify at this point what type of surface representation

S is. The derivations in this chapter are valid for both parametric or non-parametric

representations of the 3D shape, e.g., a dense depth map.

To represent the 3D motion, we attach a coordinate system to the object and to the

camera. We de�ne the 3D motion of the object by specifying the position of the object

coordinate system (o.c.s.) relative to the camera coordinate system (c.c.s.). The posi-

tion and orientation of the object O at time instant f is represented by a vector mf .

This vector codes a rotation-translation pair that takes values in the group of the rigid

transformations of the space, the special Euclidean group SE(3). The 3D structure ob-
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tained by applying the 3D rigid transformation coded by the vector mf to the object O

is represented by M(mf)O.

The frame If , captured at time f , is modeled as a noisy observation of the projection

of the object

If = P
n
M(mf)O

o
+Wf : (7.1)

For simplicity, the observation noise Wf is zero mean, white, and Gaussian. We assume

that P is the orthogonal projection operator that is known to be a good approximation to

the perspective projection when the relative depth of the scene is small when compared

to the distance to the camera. The factorization algorithms presented in chapters 8 and 9

are derived from the orthogonal projection model. They can be extended to the scaled-

orthography and the para-perspective models in the same way as references [47, 48, 49]

do for the original factorization methods. Note, however, that all derivations in the

current chapter carry over to the general perspective projection model without a single

modi�cation. The idea that motivates the algorithm proposed in chapter 10 is also valid

for the perspective projection and the algorithm itself is easily modi�ed to cope with this

general projection model.

The operator P returns the texture T as a real valued function de�ned over the image

plane. This function is a nonlinear mapping that depends on the object shape S and the

object position mf . The intensity level of the projection of the object at pixel u on the

image plane is

P
n
M(mf)O

o
(u) = T (sf (S;mf ;u)) ; (7.2)

where sf(S;mf ;u) is the nonlinear mapping that lifts the point u on the image If to the

corresponding point on the 3D object surface. This mapping sf(S;mf ;u) is determined

by the object shape S, and the position mf . To simplify the notation, we will usually

write explicitly only the dependence on f , i.e., sf (u).

Figure 7.1 illustrates the lifting mapping sf (u) and the direct mapping uf(s) for

the orthogonal projection of a two-dimensional object. The inverse mapping uf (s) also
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depends on S and mf , but we will, again, usually show only explicitly the dependence

on f . On the left of Figure 7.1, the point s on the surface of the object projects onto uf(s)

on the image plane. On the right, pixel u on the image plane is lifted to sf (u) on the object

surface. We assume that the object does not occlude itself, i.e., we have uf (sf(u)) = u

and sf (uf(s)) = s. The mapping uf (s), seen as a function of the frame index f , for a

particular surface point s, is the trajectory of the projection of that point on the image

plane, i.e., it is the motion induced on the image plane.

?

6u

u

s
sf (u)

uf(s) u

Object surface S

Image plane

Figure 7.1: Mappings uf(s) and sf (u).

The observation model (7.1) is rewritten in terms of the object texture T and the

mappings sf(u), by using the equality (7.2), as

If(u) = T (sf (u)) +Wf(u): (7.3)

Again, the dependence of uf on S and mf is omitted for simplicity.

We consider the problem of recovering the real world constructs from the video se-

quence, i.e., recovering the 3D shape S, the texture T , and the 3Dmotion fmf ; 1 � f � Fg

of the object O given the video sequence fIf ; 1 � f � Fg of F frames.

7.4 Maximum Likelihood Estimation

Given the observation model, we recover the 3D shape, the texture, and the 3D mo-

tion of the object O from the video sequence fIf ; 1 � f � Fg by estimating the corre-
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sponding unknowns: the 3D shape S; the texture T ; and the set of 3D positions of the

object fmf ; 1 � f � Fg with respect to the camera.

We formulate the Maximum Likelihood (ML) solution. Assuming that the noise se-

quence fWfg is zero mean, spatially and temporally white, and Gaussian, the ML esti-

mate minimizes the sum over all the frames of the integral over the image plane of the

squared errors between the observations and the model1,

C3 (S; T ; fmfg) =
FX

f=1

Z
[If(u)� T (sf(u))]

2 du; (7.4)

n bS; bT ; f bmfg
o
= arg min

S;T ;fmfg
C3 (S; T ; fmfg) : (7.5)

In expression (7.4), we make explicit the dependence of the ML cost function C3 on

the object texture T . Note that C3 depends upon the object shape S and the object

positions fmfg through the mappings fsf (u)g.

We address the minimization of the ML cost function C3 (S; T ; fmfg) by �rst solv-

ing for the texture estimate bT in terms of the 3D object shape S and the object posi-

tions fmfg.

We rewrite the ML cost function C3 given by (7.4) by changing the integration variable

from the image plane coordinate u to the object surface coordinate s. We obtain

C3 (S; T ; fmfg) =

FX
f=1

Z
[If(uf (s))� T (s)]

2 Jf(s) ds; (7.6)

where uf (s) is the mapping introduced above that projects the point s on the object

surface onto the image plane at instant f , see Figure 7.1. The function Jf(s) is the

Jacobian of the mapping uf (s), Jf(s) = jruf (s)j. Expression (7.6) shows that the ML cost

function C3 is quadratic in each intensity value T (s) of the object texture.

The ML estimate bT (s) is the function T (s) that minimizesC3 given by expression (7.6).

We show below that the ML estimate bT (s) of the texture T (s) is written in terms of the

1We use a continuous spatial dependence for commodity. The variables u and s are continuous while f

is discrete.
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unknown 3D shape and 3D motion, through the mappings fuf(s)g, as

bT (s) = PF

f=1 If(uf (s))Jf(s)PF

f=1 Jf(s)
: (7.7)

Expression (7.7) states that the estimate of the texture of the object at the surface

point s is a weighted average of the measures of the intensity level corresponding to that

surface point. At frame If , a given region around s on the object surface projects to a

region around uf(s). The size of this projected region changes with time because of the

object motion. The more parallel to the image plane the tangent to the object surface at

point s is, the larger the size of the projected region is. Expression (7.7) shows that the

larger the Jacobian Jf(s) is, i.e., the larger the magni�cation of the region around s is at

frame If , the larger is the weight given to that frame when estimating the texture T (s).

On �rst reading, the reader may want to skip the derivation of expression (7.7) and

proceed after the symbol on page 118.

Derivation of expression (7.7)

To prove that the ML estimate bT (s) of the texture T (s) is given by expression (7.7), we

show that it leads to the minimum of the cost function C3, given by expression (7.6), over

all texture functions T (s).

Consider the candidate T (s) = bT (s) + U(s). The functional C3 for the texture func-

tion T (s) is

C3(T ) =
FX

f=1

Z h
If(uf(s))� bT (s)� U(s)i2 Jf(s) ds

=
FX

f=1

Z h
If(uf(s))� bT (s)i2 Jf(s) ds+ FX

f=1

Z
U2(s)Jf(s) ds

�2
FX
f=1

Z h
If (uf(s))� bT (s)iU(s)Jf (s) ds: (7.8)

The �rst term of the expression above is C3(bT ). The third term is 0, as a result of

replacing bT (s) by expression (7.7). We now argue that the middle term is nonnegative.
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If this is the case, then

C3(T ) = C3(bT ) + FX
f=1

Z
U2(s)Jf(s) ds � C3(bT ); (7.9)

which concludes the proof.

The inequality in expression (7.9) follows because we can always choose the texture

coordinates s in such a way that the determinants Jf(s) = jruf(s)j are positive. For

example, make the texture coordinate s equal to the image plane coordinate u in the �rst

frame I1. The mapping u1(s) is the identity mapping u1(s) = s and we have a positive

Jacobian J1(s) = 1. Now, draw an oriented closed contour on the surface S, in the neigh-

borhood of s, and containing s in its interior. This contour, which we call Cs is projected

in image I1 in an oriented closed planar contour Cu1 . It is easy to see geometrically that

in image If the same contour Cs projects to a contour Cuf that has, in general, di�erent

shape but the same orientation of the contour Cu1 (recall that we are assuming that the

object does not occlude itself). For this reason, the Jacobian Jf (s) of the function that

maps from s to uf(s) for 2 � f � F has the same signal as the Jacobian J1(s) of the

function that maps from s to u1(s), so we get Jf (s) > 0 for 1 � f � F .

7.5 Structure from Motion: Approximate Maximum

Likelihood Estimate

By inserting the texture estimate bT given by expression (7.7) in expression (7.6), we

express theMaximum Likelihood (ML) cost function C3 in terms of the mappings fuf (s)g.

After manipulations described below, we get

C3 (S; fmfg) =
FX

f=2

f�1X
g=1

Z h
If(uf(s))� Ig(ug(s))

i2 Jf(s)Jg(s)PF

h=1 Jh(s)
ds: (7.10)

The ML cost function C3 in expression (7.10) is a weighted sum of the squared di�erences

between all pairs of frames. At each surface point s, the frame pair fIf ; Igg is weighted
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by
Jf (s)Jg(s)
PF
h=1 Jh(s)

. The larger this weight is, i.e., the larger the magni�cation of a region

around s is in frames If and Ig, the more the square di�erence between If and Ig a�ects C3.

Expression (7.10) makes clear why the problem we are addressing is referred to as

structure from motion (SFM): having eliminated the dependence on the texture, we are

left with a cost function that depends on the structure (3D shape S and 3D motion fmfg)

only through the motion induced on the image plane, i.e., through the mappings fuf (s)g.

Recall the comment on section 7.3 that uf (S;mf ; s) depends on the shape S and the

motion mf .

On �rst reading, the reader may want to skip the derivation of expression (7.10) and

proceed after the symbol on page 120.

Derivation of expression (7.10)

We show that the ML cost function is expressed in terms of the mappings fuf (s)g as in

expression (7.10).

Replace the texture estimate bT (s), given by expression (7.7), into the ML cost function,

given by expression (7.6),

C3 =
FX
f=1

Z "
If(uf (s))�

PF

g=1 Ig(ug(s))Jg(s)PF

g=1 Jg(s)

#2
Jf(s) ds: (7.11)

Interchanging the sum and the integral in expression (7.11), we get, after simple algebraic

manipulations,

C3 =

Z FX
f=1

"PF

g=1 [If(uf (s))� Ig(ug(s))]Jg(s)PF

h=1 Jh(s)

#2
Jf(s) ds: (7.12)

Expressing the square above in terms of a sum of products, we get

C3=

Z PF

f=1

PF

g=1

PF

h=1 [If(uf (s))� Ig(ug(s))] [If(uf (s))� Ih(uh(s))] Jf(s)Jg(s)Jh(s)hPF

h=1 Jh(s)
i2 ds:

(7.13)

Carrying out the products and cancelling the symmetric terms of the sum, we get

C3 =

Z PF

f=1

PF

g=1

PF

h=1

�
I2f(uf (s))� If(uf(s))Ig(ug(s))

�
Jf(s)Jg(s)Jh(s)hPF

h=1 Jh(s)
i2 ds: (7.14)
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In the integrand, we can cancel the factor
PF

h=1 Jh(s) in the numerator with one of the

factors in the denominator, obtaining

C3 =

Z PF

f=1

PF

g=1

�
I2f(uf (s))� If(uf (s))Ig(ug(s))

�
Jf(s)Jg(s)PF

h=1 Jh(s)
ds: (7.15)

By using the equality

FX
f=1

FX
g=1

�
I2f � IfIg

�
JfJg =

FX
f=2

f�1X
g=1

[If � Ig]
2 JfJg; (7.16)

which is obtained by carrying out the square in the right hand side and rearranging the

terms of the sum, we get

C3 =

Z PF

f=2

Pf�1
g=1 [If(uf (s))� Ig(ug(s))]

2 Jf(s)Jg(s)PF

h=1 Jh(s)
ds; (7.17)

and conclude the derivation. Note that by interchanging the integral and the sum in

expression (7.17), we get the ML cost function C3 as in expression (7.10).

The SFM strategy can be understood as an approximation to the minimization of

the functional (7.10) in two steps. The �rst step estimates the image motion, i.e., the

mappings uf(s). The second step estimates the shape S and the 3D motion fmfg from

the image motion.

Our approach to the minimization of the ML cost function is the following. We

compute the 3D motion by inferring SFM. Then we introduce the 3D motion estimates

into the ML cost function and minimize it with respect to the unknown 3D shape. The

rationale behind this approach is that the 3D motion can be inferred from the image

motion computed at a sparse set of points or regions. The 3D shape is recovered from

SFM based on a set of depths of points or regions for which the image motion was

estimated. To re�ne the estimate of the 3D shape we infer the 3D shape directly from the

image intensity values by introducing the 3D motion estimates into the ML cost function

and minimizing it with respect to the unknown 3D shape.
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Rigid structure from motion: surface-based rank 1 factorization

Chapters 8 and 9 show how to recover 3D rigid SFM. We start by estimating the image

motion, i.e., the mappings uf (s). This step is accomplished by minimizing an approxima-

tion to the ML cost function, as described in chapter 3. Then we estimate the 3D structure

from the image motion measurements by solving the 3D shape S and the 3D motion mf

from the estimates of the image motion uf (s).

We represent the 3D shape of the scene by a parametric description of the object

surface. This representation induces a parametric model for the motion of the brightness

pattern in the image plane. To recover simultaneously the parameters describing the

3D shape and the parameters describing the 3D motion from the parameters that describe

the image motion, we develop an e�cient method. The rigidity of the scene and the

orthogonal projection model impose a speci�c bilinear relation between the 3D structure

parameters and the parameters describing the image motion. This relation enables the use

of a fast factorization algorithm to solve simultaneously for the high number of unknown

parameters describing the 3D structure. We refer to this approach as the surface-based

rank 1 factorization method.

Maximum Likelihood estimate: continuation method

In chapter 10 we infer the 3D shape directly from the image intensity values, through

ML estimation. We introduce the 3D motion estimates into the ML cost function and

minimize it with respect to the unknown 3D shape.

To accomplish the minimization of the ML cost function, we use a computationally

simple multiresolution approach { we develop a continuation-type method that works by

re�ning the 3D shape estimate as more images are taken into account. Each step of the

continuation method is solved by a Gauss-Newton method that requires no more than

two or three iterations. The derivatives involved in the Gauss-Newton method are easily

obtained in terms of the image gradients.



122 CHAPTER 7. 3D STRUCTURE FROM 2D VIDEO

7.6 Summary

This chapter states the problem of recovering three-dimensional (3D) rigid structure from

an image sequence. We review several approaches in the literature focusing on the refer-

ences that are more closely related to our approach.

We describe the problem of inferring 3D rigid structure from an image sequence

through an analogy with a classical communications system. We present the observa-

tion model and formulate the Maximum Likelihood (ML) estimate.

We minimize the ML cost function by �rst expressing the minimizer for the object

texture in terms of the unknowns 3D shape and 3D motion. After replacing the tex-

ture estimate, we obtain a cost function that depends on the 3D structure through the

2D motion induced on the image plane.

The chapter ends with an outline of our approach to the problem of minimizing the

ML cost function: �rst, we infer structure from motion by using the surface-based rank 1

factorization method described in chapters 8 and 9; then, we insert the 3D motion esti-

mates into the ML cost function and minimize it with respect to the 3D shape by using

the multiresolution continuation-type method described in chapter 10.



Chapter 8

Rank 1 Factorization

8.1 Introduction

In chapter 7 we showed that the Maximum Likelihood (ML) estimate of the three-

-dimensional (3D) structure from a two-dimensional (2D) video sequence leads to a cost

function that depends on the 3D structure only through the 2D motion induced on the

image plane. In this chapter we show how to recover the 3D rigid structure from the

2D motion by factorizing a matrix that is rank 1 in a noiseless situation.

The shape of the object is represented by the 3D positions of a set of feature points.

As the object moves, the projection in the image plane of each feature point describes

a di�erent trajectory. The 2D motion induced on the image plane is then described by

the set of trajectories of the feature point projections. We estimate each trajectory by

computing the 2D translation of a small square around each feature point projection

between successive frames. This step corresponds to the minimization of a simpli�ed

version of the ML cost function, as seen in chapter 3. We then recover the 3D shape and

3D motion of the object from the trajectories of the feature point projections by using an

expedite method that exploits linear subspace contraints imposed by the rigidity of the

scene.

Tomasi and Kanade pioneered the use of linear subspace constraints in motion anal-

ysis. They introduced the factorization method, see references [59, 60, 61], an elegant

method to recover rigid structure from a set of trajectories of feature point projections.

123



124 CHAPTER 8. RANK 1 FACTORIZATION

In the factorization method the 3D shape and 3D motion are estimated by factorizing a

measurement matrix whose entries are the set of trajectories of the feature point projec-

tions. The key idea underlying the factorization method is the fact that the rigidity of

the scene imposes that the measurement matrix lives in a low dimensional subspace of

the universe of matrices. Tomasi and Kanade have shown that the measurement matrix

is a rank 3 matrix in a noiseless situation.

Exploiting further the linear subspace contraints, we solve the structure from mo-

tion (SFM) problem by factorizing a matrix that is rank 1 in a noiseless situation, rather

than a rank 3 matrix as in the original factorization method. In our formulation, the

unknowns are the 3D motion and the relative depths of the set of features, not their

3D positions as considered by Tomasi and Kanade in references [59, 61]. The coordinates

of the features along the camera plane are given by their image positions in the �rst frame.

The knowledge of the coordinates along the camera plane enables us to solve the SFM

problem by factorizing a rank 1 matrix instead of a rank 3 matrix as in references [59, 61].

This simpli�es the decomposition and normalization stages involved in the factorization

approach.

Tomasi and Kanade [59, 61] use Singular Value Decomposition (SVD) to factorize the

measurement matrix. We avoid the computation of the SVD by using a fast iterative

method to compute the rank 1 matrix that best matches the data. Reference [44] intro-

duced a recursive formulation for the original rank 3 factorization that also does not use

SVD. The method in reference [44] stores and updates a matrix that becomes very large

as the number of features increases. In our implementation, it is not necessary to store

or compute any other matrix than the matrix to be factorized.

The chapter is organized as follows. In section 8.2 we formulate the SFM problem

and review the original factorization method of Tomasi and Kanade [59, 60, 61]. Sec-

tion 8.3 shows how to recover SFM by factorizing a rank 1 matrix. We detail the steps

involved: decomposition and normalization. Section 8.4 deals with the situation for which

the normalization procedure involved in the factorization approach fails. We derive the
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analytical solution for this case and discuss its physical interpretation. The algorithm to

compute the best rank 1 approximation is described in section 8.5. Section 8.6 describes

one experiment that illustrates our approach and compares the computational cost of

the rank 1 factorization with the cost of the original factorization method of Tomasi and

Kanade [59, 60, 61]. Section 8.7 concludes the chapter.

8.2 Factorization Approach

We consider the same scenario of references [59, 61]. Figure 8.1 illustrates the scenario.

The object coordinate system (o.c.s.) has axes labeled by x, y, and z. The shape of

the object is described by the 3D position of a set of N feature points. The three-

dimensional (3D) position of feature n is expressed in terms of the o.c.s. by (xn; yn; zn).

The camera coordinate system (c.c.s.) has axes labeled by u, v, and w. The plane de�ned

by the axes u and v is the camera plane.

The 3D motion of the object is de�ned by specifying the position of the o.c.s. fx; y; zg

relative to the c.c.s. fu; v; wg, i.e., by specifying a rotation-translation pair that takes

values in the group of the rigid transformations of the space, the special Euclidean group

SE(3). The unconstrained 3D motion of a rigid body can be described in terms of a time

varying point translation and a rotation. We express the object position at time instant f

in terms of (tf ;�f) where the vector tf =
�
tuf ; tvf ; twf

�T
contains the coordinates of

the origin of the object coordinate system with respect to the camera coordinate system

(translational component of the 3D motion), and�f is the rotation matrix that represents

the orientation of the object coordinate system relative to the camera coordinate system

(rotational component of the 3D motion). The matrix �f is determined by the Euler

angles, the angles �f , �f , and  f of three successive rotations, with respect to, respectively,

the axes y, z, and x. The 3D rotation matrix� is expressed in terms of the Euler angles �,
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Figure 8.1: Factorization scenario: object and camera coordinate systems

�, and  as, see reference [10],

� =

24 cos � cos� sin� � sin � cos �
sin � sin � cos � sin� cos cos� cos sin � sin� cos + cos � sin 
sin � cos + cos � sin� sin � cos� sin cos � cos � sin � sin� sin 

35 :
(8.1)

At instant f , the point on the object with 3D coordinates (x; y; z) in the o.c.s. has the

following coordinates in the c.c.s.,24 uf
vf
wf

35 = �f

24 x
y
z

35 + tf =

24 ixf iyf izf
jxf jyf jzf
kxf kyf kzf

3524 x
y
z

35 +

24 tuf
tvf
twf

35 ; (8.2)

where ixf , iyf , izf , jxf , jyf , jzf , kxf , kyf , and kzf are the entries of the rotation matrix�f
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in expression (8.1) and tuf , tvf , and twf are the entries of the translation vector tf .

We now make explicit the mapping uf(s) that projects the point s in the object surface

to the point uf(s) in the image plane, as introduced in the previous chapter and illustrated

in Figure 7.1 . We choose the texture coordinate vector s to coincide with the coordinates

of the plane de�ned by the axes x and y of the o.c.s., i.e., we choose s = [x; y]T . According

to expression (8.2), the mapping uf (s) is then

uf (s) = uf

��
x
y

��
=

�
ixf iyf izf
jxf jyf jzf

�24 x
y

z(x; y)

35 +

�
tuf
tvf

�
; (8.3)

where z(x; y) is the coordinate along the axis z of the o.c.s. of the point with coor-

dinates s = [x; y]T in the object surface. As mentioned in chapter 7, the projection

mapping uf (s) depends on the 3D motion of the object { the parameters ixf , iyf , izf , jxf ,

jyf , jzf , tuf , and tvf in expression (8.3) { and the 3D shape of the object { the unknown

relative depth z(x; y) in expression (8.3). Expression (8.3) shows that the orthogonal

projection is insensitive to the translation component twf of the object motion. This

re
ects the well known fact that, under orthography, the absolute depth (distance from

the camera to the object) cannot be estimated.

In this chapter we describe the 3D shape of the object by the 3D position of a set of

feature points. As the object moves, the projections of the features describe trajectories

in the image plane, according to expression (8.3). We track a set of N feature points along

the image sequence of F frames. To estimate the trajectories of the features, we compute

the 2D translation of a small square R around each feature point projection between

successive frames, as detailed in chapter 3, section 3.4. We select the feature points

by using a \trackability" criterion that imposes both a well conditioned 2D translation

estimation and a low expected variance of the estimation error. The dependence of these

characteristics on the image brightness pattern was studied in chapter 3, section 3.4.

The feature selection criterion selects the N features that satisfy the following conditions:

(i) the condition number k(�R), given by expression (3.36), is below a threshold, typically

set to 10; and, (ii) the N selected features have the lowest error variance �2p, given by
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expression (3.43), by making the scale factor �2t = 1 among the feature candidates that

satisfy (i).

The projection of feature n in frame f , denoted by (ufn; vfn), is expressed in terms of

the o.c.s. coordinates (xn; yn; zn) and the 3D motion parameters as�
ufn = ixfxn + iyfyn + izfzn + tuf
vfn = jxfxn + jyfyn + jzfzn + tvf

; (8.4)

where ixf ; iyf ; izf ; jxf ; jyf , and jzf are entries of the 3D rotation matrix �f in expres-

sion (8.1) and tuf and tvf are the components of the object translation along the camera

plane. We choose the object coordinate system and the camera coordinate system so that

they coincide in the �rst frame; so, we have

u1n = xn and v1n = yn: (8.5)

The coordinates of the feature points on the camera plane fxn; yn; 1 � n � Ng are

given by expression (8.5). We formulate the SFM problem as solving the overconstrained

system of equations (8.4) with respect to the following set of unknowns: the 3D positions

of the object for 2 � f � F ; and the relative depths fzn; 1 � n � Ng.

By choosing the origin of the object coordinate system to coincide with the centroid of

the set of feature points (
P

n xn =
P

n yn =
P

n zn = 0), the Least Squares (LS) estimate

of the translation is the centroid of the feature point projections,

btuf = 1

N

NX
n=1

ufn and btvf = 1

N

NX
n=1

vfn: (8.6)

We now replace the translation estimates in the system of equations (8.4), and de�ne

the parameters

~ufn = ufn �
1

N

NX
n=1

ufn and ~vfn = vfn �
1

N

NX
n=1

vfn: (8.7)

We collect the parameters f~ufn; ~vfng,
n
ixf ; iyf ; izf ; jxf ; jyf ; jzf

o
, and fxn; yn; zng in ma-
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trices R, M, and S as follows

R =

26666666664

~u21 ~u22 � � � ~u2N
~v21 ~v22 � � � ~v2N
~u31 ~u32 � � � ~u3N
~v31 ~v32 � � � ~v3N
...

...
. . .

...
~uF1 ~uF2 � � � ~uFN
~vF1 ~vF2 � � � ~vFN

37777777775
; M =

26666666664

ix2 iy2 iz2
jx2 jy2 jz2
ix3 iy3 iz3
jx3 jy3 jz3
...

...
...

ixF iyF izF
jxF jyF jzF

37777777775
; (8.8)

ST =

24 x1 x2 � � � xN
y1 y2 � � � yN
z1 z2 � � � zN

35 : (8.9)

With the de�nitions above, we rewrite the equation system (8.4) in matrix format as

R =MST : (8.10)

Matrix R is a 2(F � 1)�N rank de�cient matrix. In a noiseless situation, R is rank 3,

re
ecting the high redundancy in the data, due to the 3D rigidicity of the object. The

relation expressed in matrix format as in expression (8.10) was introduced by Tomasi and

Kanade in the original formulation of the factorization, see references [59, 61]. In our

formulation, the rows corresponding to frame 1 are not included in R and M, and we use

the fact that the �rst two rows of ST are known from the feature projections in frame 1.

The factorization approach, see references [59, 61], �nds a suboptimal solution to the

problem of computingM and S from R. This problem is formulated as the minimization

min
M;S



R�MST



F
; (8.11)

where the solution space is constrained by the orthonormality of the rows of the matrixM,

see expressions (8.1) and (8.8). The operator k:kF denotes the Frobenius norm [14]. In

references [59, 61], the nonlinear minimization above was solved in two stages. The �rst

stage, decomposition stage, solves R = MST in the least square sense by computing the

Singular Value Decomposition (SVD) of the matrix R and selecting the 3 largest singular

values. From

R ' U�VT ; (8.12)
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where U is 2(F � 1)� 3, � is diagonal 3� 3, and VT is 3�N , the solution is

M = U�
1

2A (8.13)

ST = A�1�
1

2VT (8.14)

whereA is a non-singular 3�3 matrix. The second stage, normalization stage, computesA

by approximating the constraints imposed by the structure of the matrix M.

Our formulation takes advantage of the fact that the �rst two rows fxn; yng of S
T are

known. These are known from the position of the features in the �rst frame. The problem

is now reduced to, given R, compute M and fzng. By singling out the �rst view as the

reference with respect to which the relative depth is de�ned, we can use the common

approach to the inference of 3D structure from 2D video, i.e., we describe the unknown

shape by the distances along the third dimension for each pixel of the image plane. This

formulation seems to be in opposition to the idea behind the original factorization method

as formulated by Tomasi and Kanade [59, 60, 61]. In their �rst paper, entitled \Shape and

Motion without Depth" [60], the factorization method is motivated by emphasizing that

when the object is far from the camera the depth can not be computed, and the 3D shape

must be represented in terms of the set of coordinates fxn; yn; zng. In the following section

we show that if the unknown shape is represented by the entities we really don't know,

i.e, by the relative depths fzng, the solution to the problem is greatly simpli�ed.

8.3 Rank 1 Factorization

The problem of estimating the matrixM and the vector fzng from the matrixR, although

nonlinear, has a speci�c structure: it is a bilinear constrained Least Squares (LS) problem.

The bilinear relation comes from expression (8.10), where the motion unknowns and the

shape unknowns appear multiplied by each other, and the constraints are imposed by

the orthonormality of the rows of the matrix M, see expression (8.8). We perform in

sequence the decomposition stage that solves the unconstrained bilinear problem, and the

normalization stage.
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Decomposition stage

Because the �rst two rows of the matrix ST are known, we show that the unconstrained

bilinear problem R =MST is solved by the factorization of a rank 1 matrix, rather than

a rank 3 matrix like in references [59, 61].

De�ne M = [M0;m3] and S = [S0; z]. The matrices M0 and S0 contain the �rst two

columns of the matrices M and S, respectively, the vector m3 is the third column of M,

and the vector z is the third column of S. We decompose the relative depth vector z

into the component that belongs to the space spanned by the columns of S0 and the

component orthogonal to this space as

z = S0b+ a; with aTS0 =
�
0 0

�
. (8.15)

We rewrite the matrix R by inserting expression (8.15) in expression (8.10), obtaining

R =M0S
T
0 +m3b

TST0 +m3a
T : (8.16)

The decomposition stage solves the matrix equation (8.16) with respect to the un-

knowns M0, m3, b, and a, ignoring the constraints imposed by the structure of the

matrix M. We formulate this problem as the unconstrained minimization

min
M0;m3;b;a



R�M0S
T
0 �m3b

TST0 �m3a
T



F
: (8.17)

Since we know the matrix S0, we eliminate the dependence of the expression (8.17)

on M0 by solving the linear LS for M0 in terms of the other variables. We get

cM0 = RS0
�
ST0 S0

��1
�m3b

T ; (8.18)

where we used the Moore-Penrose pseudoinverse, see reference [14], and the orthogonal-

ity between the vector a and the columns of the matrix S0, see expression (8.15). By

replacing cM0 given by expression (8.18) in expression (8.17), we get

min
m3;a




eR�m3a
T




F
; (8.19)
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where eR = R
h
I� S0

�
ST0 S0

��1
ST0

i
: (8.20)

We see that the decomposition stage does not determine the vector b. This is because

the component of the vector z that lives in the space spanned by the columns of S0 does

not a�ect the space spanned by the columns of the entire matrix S and the decomposition

stage restricts only this latter space.

The solution for the vectors m3 and a is given by the rank 1 matrix that best approx-

imates eR. In a noiseless situation, eR is rank 1, since we would get

eR =m3a
T (8.21)

by replacingR, given by expression (8.16), in expression (8.20). By computing the largest

singular value of eR and the associated singular vectors, we get

eR ' u�vT

bm3 = �u

âT =
�

�
vT (8.22)

where � is a normalizing scalar di�erent from zero.

To compute u, �, and v we could use Singular Value Decomposition (SVD), but the

rank de�ciency of eR enables the use of less expensive algorithms, as detailed in section 8.4.

This makes our decomposition stage simpler than the one in the original factorization

method of Tomasi and Kanade [59, 61]. In fact, the matrix eR in expression (8.20) is equal

to the matrix R multiplied by the orthogonal projector onto the orthogonal complement

of the space spanned by the columns of S0. This projection reduces the rank of the

problem from 3 (matrix R) to 1 (matrix eR).

Normalization stage

In this stage, we compute the scalar � and the vector b by imposing the constraints

that come from the structure of the matrix M. The normalization stage is also simpler
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than the one in Tomasi and Kanade [59, 61] because the number of unknowns is 3 (�

and b = [b1; b2]
T ) as opposed to the 9 entries of a generic 3� 3 normalization matrix.

By replacing the estimate bm3, given by expression (8.22), in expression (8.18), we get

for the estimate cM,

cM =
h cM0 bm3

i
= N

�
I2�2 02�1
��bT �

�
; (8.23)

where

N =
h
RS0

�
ST0 S0

��1
u
i
: (8.24)

The constraints imposed by the structure of the matrix M are the unit norm of each

row, and the orthogonality between the consecutive rows 2j � 1 and 2j, see expres-

sions (8.8) and (8.1). In terms of N, �, and b, the constraints are then

nTi

�
I2�2 ��b
��bT �2(1 + bTb)

�
ni = 1; 1 � i � 2(F � 1); (8.25)

nT2j�1

�
I2�2 ��b
��bT �2(1 + bTb)

�
n2j = 0; 1 � j � F � 1; (8.26)

where nTi denotes the row i of the matrix N.

We compute the normalization parameters � and b in an analogous way to the one of

the original factorization method of Tomasi and Kanade [59, 61]. To compute their nor-

malization matrixA, they solve �rst a linear LS problem that determines the intermediate

matrix B = AAT . Then the normalization matrix A is computed from the estimate bB
of the matrix B. We also compute the normalization parameters � and b from the linear

LS solution of the system of equations (8.25,8.26).

To compute the linear LS solution of the system of equations (8.25,8.26), we de�ne the

intermediate parameters �1, �2, and �3 as the unknown entries of the matrix that appears

in expressions (8.25) and (8.26),

�1 = ��b1; �2 = ��b2; �3 = �2(1 + b21 + b22): (8.27)

The left hand side of equations (8.25) and (8.26) depends linearly on the parameters �1,
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�2, and �3. Carrying out the matrix product, we get

nTi

24 I2�2
�1
�2

�1 �2 �3

35nj =
(ni1nj3 + ni3nj1)�1 + (ni2nj3 + ni3nj2)�2 + ni3nj3�3 + ni1nj1 + ni2nj2; (8.28)

where nij denotes the element (i; j) of matrix N.

The system of equations (8.25,8.26) is written in terms of the parameters �1, �2, and �3

as the over-constrained linear system

�

24 �1
�2
�3

35 = � (8.29)

where the 3(F � 1)� 3 matrix � and the 3(F � 1) � 1 vector � collect functions of the

entries of the matrix N. According to the expression (8.28), we get

� =

266666666666664

2n11n13 2n12n13 n
2
13

2n21n23 2n22n23 n
2
23

...
...

...

2n2F�2;1n2F�2;3 2n2F�2;2n2F�2;3 n
2
2F�2;3

n11n23 + n13n21 n12n23 + n13n22 n13n23

n31n43 + n33n41 n32n43 + n33n42 n33n43
...

...
...

n2F�3;1n2F�2;3 + n2F�3;3n2F�2;1 n2F�3;2n2F�2;3 + n2F�3;3n2F�2;2 n2F�3;3n2F�2;3

377777777777775
;

(8.30)

� =

266666666666664

1� n211 � n212
1� n221 � n222

...
1� n22F�2;1 � n22F�2;2

n11n21 � n12n22
n31n41 � n32n42

...
n2F�3;1n2F�2;1 � n2F�3;2n2F�2;2

377777777777775
: (8.31)

We compute the parameters �1, �2, and �3 as the LS solution of the over-constrained

linear system (8.29).
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To complete the normalization stage, we compute the estimates of the scalar � and

the vector b = [b1; b2]
T from the parameters �1, �2, and �3 by inverting the relations in

expression (8.27). We obtain

jb�j =q
�3 � �21 � �22;

bb1 = �1=b�; bb2 = �2=b�: (8.32)

There is an ambiguity in the sign of �, since both the positive and negative solutions of

the square root are valid solutions in expression (8.32). This ambiguity is inherent to the

orthographic projection model. In fact, the trajectories of the feature points are equally

explained by two di�erent 3D rigid structures that are as follows. Consider an object with

relative depth z = �z (mirror re
ection) and whose motion is such that the third column

of the rotation matrix ism3 = �m3. In this scenario, according to (8.15), we have b = �b

and a = �a. It is clear that this scenario corresponds to a change on the sign of �.

Expressions (8.22) and (8.32) explain why the change on the sign of � implies the change

on the signs of m3, a, and b. Now see from equation system (8.4) that the trajectories

of the feature points for this second scenario are the same as for the original scenario.

This is because all the entities on the right hand side of the equations (8.4) are the same

for the two scenarios, except for izf = �izf , jzf = �izf , and zn = �zn, whose product

cancels the minus signs. The reader may wonder if it is possible, given M, to de�ne a

di�erent 3D motion such that the third column of the rotation matrix is m3 = �m3 and

the �rst two columns of the rotation matrix are m1 = m1 and m2 = m2. In fact, it is

always possible to �nd such a motion by de�ning the Euler angles �f = ��f , �f = �f ,

and  f = � f ; see from expressions (8.1) and (8.8) that the �rst two columns of M

remain the same and the sign of the third column becomes the opposite.

8.4 Normalization Failure

If the values of the intermediate parameters �1, �2, and �3 that come from the Least

Squares (LS) solution of the system (8.29) are such that

�3 < �21 + �22; (8.33)
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the scalar � and the vector b = [b1; b2]
T can not be recovered by expression (8.32). This

situation corresponds to what is called a normalization failure in the original factorization

method of Tomasi and Kanade [59, 61]. In references [59, 61], the normalization stage

computes the normalization matrix A by solving �rst a LS problem that determines the

intermediate matrix B = AAT . Then the normalization matrix A is computed from

the estimate bB of the matrix B. The normalization failure situation is when there is no

matrix bA such that bAbAT = bB, i.e., matrix bB is not nonnegative de�nite.

The normalization procedure described in section 8.3 is an expedite way to compute

the normalization parameters � and b = [b1; b2]
T that best match the restrictions imposed

by the structure of M. However, in the special cases where the linear LS solution for the

intermediate parameters �1, �2, and �3 do not correspond to valid values for � and b that

procedure does not provide estimates for the normalization parameters.

In this section, we study the estimation of the normalization parameters � and b

directly from the constraints imposed by the structure of the matrixM, rather than using

any intermediate parameters. We will see that whenever the normalization procedure

described above fails, the direct estimation of the normalization parameters � and b

leads to the estimate b� = 0.

To derive the LS estimate of the normalization parameters � and b = [b1; b2]
T directly

from the constraints imposed by the structure of the matrix M, i.e., directly from the

system of equations (8.25,8.26), we make explicit the LS cost function involved in the

linear system of expression (8.29),

CN =

0@�
24 �1
�2
�3

35� �

1AT 0@�
24 �1
�2
�3

35� �

1A : (8.34)

The direct minimization of the cost function CN in expression (8.34) with respect to

the normalization parameters � and b = [b1; b2]
T requires the partial derivatives of CN

with respect to �, b1, and b2 to be zero. These derivatives are expressed in terms of the
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partial derivatives of CN with respect to the intermediate parameters �1, �2, and �3 as

@CN

@b1
=

@CN

@�1

@�1
@b1

+
@CN

@�3

@�3
@b1

= �
@CN

@�1
� + 2

@CN

@�3
b1�

2; (8.35)

@CN

@b2
=

@CN

@�2

@�2
@b2

+
@CN

@�3

@�3
@b2

= �
@CN

@�2
� + 2

@CN

@�3
b2�

2; (8.36)

@CN

@�
=

@CN

@�3

@�3
@�

= 2
@CN

@�3
�(1 + b21 + b22): (8.37)

The normalization procedure of section 8.3 solves

@CN

@b1
=
@CN

@b2
=
@CN

@�
= 0 (8.38)

by equating to zero the partial derivatives

@CN

@�1
=
@CN

@�2
=
@CN

@�3
= 0 (8.39)

as it comes from the LS solution of the linear system (8.29). If the values of the pa-

rameters �1, �2, and �3 that satisfy (8.39) correspond, through the relations (8.27), to

valid values of the normalization parameters �, b1, and b2, these values of �, b1, and b2

are the ones that minimize the cost function CN in expression (8.34). If the values of

the parameters �1, �2, and �3 that satisfy (8.39) do not correspond to valid values of the

normalization parameters, the minimizers b�, bb1, and bb2 of the cost function CN are such

that at least one of the partial derivatives @CN
@�1

, @CN
@�2

, and @CN
@�3

is di�erent from zero and

the partial derivatives @CN
@b1

, @CN
@b2

, and @CN
@�

are all zero.

If the partial derivative @CN
@�3

is di�erent from zero, the estimate b� must be zero so that

the partial derivative @CN
@�

in expression (8.37) is zero. The quantities bb1 and bb2 can take

any value because @CN
@b1

= 0 and @CN
@b1

= 0 from expressions (8.35) and (8.36). If @CN
@�3

= 0

and @CN
@�1

6= 0, b� must be zero to make the partial derivative @CN
@b1

in expression (8.35) to

equal zero and again bb2 and bb1 can take any value because @CN
@b2

= 0 and @CN
@�

= 0 from

expressions (8.36) and (8.37). If @CN
@�3

= 0 and @CN
@�2

6= 0, we conclude in an analogous way

that b� must be zero and bb1 and bb2 can take any value. In this way, we conclude that,

whenever the normalization procedure of section 8.3 fails, the direct estimation of the
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normalization parameters � and b = [b1; b2]
T leads to b� = 0 and does not restrict the

vector bb.
When the estimate of the normalization parameter � is b� = 0, this is an indication

that the method of performing the sequence of stages decomposition-normalization does

not work. This is because the parameter � was introduced in the factorization (8.22) as

a normalizing scalar di�erent from zero. In fact, when the estimate b� is zero, it is an

indication that the matrix eR in expressions (8.20,8.21,8.22) is not well approximated by

a rank 1 matrix. This situation may arise due to two di�erent reasons. First, the scene

may contain dramatic perspective e�ects that lead to a matrix eR of rank higher than 1

even in a noiseless situation. Second, the 3D shape of the object or its 3D motion can be

such that the matrix eR is 0 in a noiseless situation. The �rst situation can be solved only

by taking into account in the analysis the perspective projection. The second situation

occurs with the following degenerate cases: when the 3D motion is such that the third

column of the matrixM is m3 = 0; or when the 3D shape is planar, i.e., the 3D shape is

such that

8n : zn = 
xxn + 
yyn: (8.40)

This is equivalent to say that the vector a in expression (8.15) is a = 0 and the relative

depth vector z is z = S0b. For any of these degenerate cases, we get

R =M0S
T
0 +m3b

TST0 (8.41)

in expression (8.16), and eR = 0 in expressions (8.20,8.21). In these degenerate cases there

is not enough information in the feature trajectories to recover the 3D structure. In spite

of this, the images in the sequence can still be aligned by computing cM0 according to

expression (8.18) for any choice of m3 and b, for example, by making

cM0 = RS0
�
ST0 S0

��1
: (8.42)

In reference [47], the author uses a numerical technique to compute the normalization

matrix A involved in the original rank 3 factorization method, when the normalization
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procedure of Tomasi and Kanade [59, 61] fails. The numerical technique in reference [47]

estimates the normalization matrix A directly from the constraints imposed by the struc-

ture of the matrix M, rather than using the intermediate matrix B = AAT . The author

concludes by experimentation that whenever the normalization procedure fails, the nu-

merical method used to estimate directly the normalization matrix converges to a singular

matrix A. In reference [47] this is considered to be a degenerate case where the measure-

ment matrix R can be approximated by a matrix of rank less than 3. In our case, we were

able to derive analytically that whenever the normalization procedure fails, the direct es-

timation of the normalization parameters � and b = [b1; b2]
T leads to b� = 0. The simple

analytical derivation above explains the experimental evidence reported in reference [47].

8.5 Rank 1 Approximation: Iterative Algorithm

This section describes how we compute the rank 1 approximation of a given matrix eR.

The problem is written as

min
u;v




eR� uvT




F
; (8.43)

which comes from expression (8.22) by including the scaling factor � into the vector v.

The solution to the problem (8.43) is known to be given by the Singular Value Decompo-

sition (SVD) of the matrix eR after selecting the largest singular value, see reference [27].

The rank de�ciency of the matrix eR enables the use of a less expensive iterative

technique to compute the decomposition. It is based on the fact that only the right

singular vector v that corresponds to the largest singular value has to be computed.

Since the vector v is the eigenvector of the matrix eRT eR that corresponds to the largest

eigenvalue, we start with a random choice v0 and iterate,

vi+1 =
vTi vi

vTi
eRT eRvi eRT eRvi (8.44)

until convergence, see reference [27]. In each iteration, the component of vi along the

vector v is more magni�ed than the components along the other eigenvectors of eRT eR.

The fraction in expression (8.44) is a normalizing factor. The left singular vector u is
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then computed by solving (8.43) with v given by the �nal value of the iterative process

above,

u =
eRv
vTv

: (8.45)

The speed of convergence of the iterative processes in expression (8.44) depends on

the ratio of the largest eigenvector of the matrix eRT eR by the second largest one. The

higher that ratio, the faster is the convergence. When eR is well approximated by a rank 1

matrix, as it is in our case, the iterative process in expression (8.44) converges in a few

iterations. We stopped the iterations when the 1-norm of the di�erence between the

vectors vi and vi+1 is below a threshold.

This iterative procedure can be generalized to compute the best rank r approximation

of a given matrix, for r > 1 . This was done in reference [44] where the authors propose a

recursive formulation to the original rank 3 factorization of Tomasi and Kanade [59, 61].

Their method stores and updates the N �N matrix RTR. Then, they use this matrix to

compute, iteratively, the best rank 3 approximation of the matrixR. When the number N

of features is large, the matrix RTR becomes very large. In our implementation of the

decomposition stage, instead of computing the matrix eRT eR, we split the computation of

each iteration in expression (8.44) by �rst computing eRvi,
~vi = eRvi; vi+1 =

vTi vi
~vTi ~vi

eRT ~vi: (8.46)

This way, we avoid the need to store or compute any other matrix than the matrix to be

factorized, eR.

This approach easily extends to the rank 3 factorization of a matrix R. In this case,

the matrix V that collects the three right singular vectors that correspond to the three

largest singular values of R is computed by iterating

eVi = RVi; Vi+1 = RT eVi

�eVT
i
eVi

��1 �
VT

i Vi

�
(8.47)

until convergence. Then the matrix U that collects the three left singular vectors is

given by

U = RV
�
VTV

��1
(8.48)
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where V is the �nal value of the iterative process (8.47).

In the comparative tests described in the following section, we use this iterative method

to perform the decomposition step within the original rank 3 factorization method. We

show that the computational cost of the iterative approach is much lower than the cost

of performing SVD as suggested originally by Tomasi and Kanade [59, 61].

8.6 Experiments

We describe one experiment that uses synthetic data to illustrate the properties of the

rank 1 matrix eR. Then we compare the computational cost of our approach with the

one of the original factorization method. Experiments with real life video sequences are

described in chapter 11.

Rank 1 factorization

We generated a set of 10 feature points randomly located inside a cube. The three-

dimensional (3D) rotational motion was simulated by synthesizing a smooth time evo-

lution for the Euler angles that specify the orientation of the object coordinate system

relative to the camera coordinate system. We used the perspective projection model to

project the features onto the image plane. The distance of the camera to the centroid

of the set of feature points was set to a value high enough (approximately 10 times the

maximum relative depth) such that orthographic projection can be considered to be a

valid approximation. Figure 8.2 shows the feature trajectories on the image plane ob-

tained for a set of 50 frames, after adding noise. For each trajectory, the initial position is

marked with \o" and the �nal position is marked with \*". The trajectories in Figure 8.2

are a representation of the columns of the matrix R. The trajectory for feature n shows

the nth column of R, i.e., it is the evolution of the image point (R2f�1;n;R2f;n) across

the frame index f , see expression (8.8). The challenge in recovering Structure from Mo-

tion (SFM) comes from the fact that the 3D shape and the 3D motion are observed in a

coupled way through the 2D motion on the image plane (the trajectories in Figure 8.2).
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Figure 8.2: Feature trajectories on image plane.

From the data in matrix R, we computed matrix eR given by expression (8.20). The

left side plot of Figure 8.3 represents the columns of eR in the same way as Figure 8.2

plots R, i.e., it shows the evolution of
�eR2f�1;n; eR2f;n

�
across the frame index f , for each

feature n. We see that all trajectories on the left side plot of Figure 8.3 have equal shape,

unlike the ones in Figure 8.2. This is because we have eliminated the dependence of the

trajectories on the x and y coordinates of the features, by making the subspace projection

of expression (8.20). Each trajectory on the left side plot of Figure 8.3 is a scaled version

of a �xed trajectory that does not depend on the object shape. This �xed trajectory is

determined uniquely by the 3D motion of the object; it corresponds to the third column

of the matrix M, the vector m3, see expression (8.21). The vector m3 is represented on

the right side plot of Figure 8.3 in the same way as the columns of the matrices R and eR.

Compare the left side plot with the right side plot of Figure 8.3 to con�rm the similarity of

the shape of the trajectories. The scaling factor for each trajectory in matrix ~R depends on

the relative depth z of the corresponding feature point, see expressions (8.21) and (8.15).

Note from the plots in Figure 8.3 that some trajectories in the matrix eR are symmetric
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to the trajectory of the vector m3, with respect to the origin of the image coordinates.

These trajectories correspond to features for which the scaling factor that comes from

their relative depth is negative.
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Figure 8.3: Left plot: trajectories from the columns of matrix eR. Right plot: trajectory
from the third column of matrix M.

This experiment illustrates that the subspace projection of expression (8.20) decou-

ples the in
uence on the feature trajectories of the 3D motion from the in
uence of the

3D shape. In contrast to the trajectories of R in Figure 8.2, for eR in Figure 8.3, the

3D motion in
uences only the 2D shape of the trajectories, and the 3D shape in
uences

only the magnitude of the trajectories.

Figure 8.4 plots the 10 larger singular values of the matrices R, marked with \o",

and eR, marked with \*". While the 3 larger singular values of the matrix R contain the

most of the energy, the matrix eR is well described by only its largest singular value. The

plots in Figure 8.4 con�rm the analysis of sections 8.2 and 8.3 and the comment in the

previous paragraphs.

Computational cost

To compare the computational cost of the rank 1 factorization algorithm with the one of

the original factorization method, we ran the experiment described for a �xed number of
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Figure 8.4: Singular values of matrices R and eR.

F = 50 frames and a number of N feature points varying from 10 to 100; and for a �xed

number of N = 50 feature points and a number of F frames varying from 10 to 100. We

computed the average number of MatLab c
1 
oating point operations (FLOPS) over 1000

tests for each experiment.

For each experiment, we estimate the 3D shape and 3D motion by using three methods:

i) the original factorization method of Tomasi and Kanade [59, 61] that computes the

Singular Value Decomposition (SVD) of the measurement matrix R; ii) the same method

but computing the factorization of the rank 3 matrix R by using the iterative procedure

described in section 8.5, see expression (8.47); and iii) our formulation of the factorization

as a rank 1 problem. The reason why we include method ii) in the experiment is because it

is the fastest way available to compute the rank 3 factorization, making fair the comparison

with the method iii). It is worth mentioning that the method ii) is not the recursive

formulation presented in reference [44]. The method in reference [44] is well suited for a

�xed small number of feature points and an increasing number of frames. On the other

hand, with a large number of feature points, the recursive method in [44] becomes useless

because it uses a matrix that becomes prohibitively large. As discussed in section 8.5, the

1MatLab is a registered trademark of MathWorks.
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storage space and computational power required by the method of reference [44] are then

much higher than the ones required by methods ii) and iii) above.

Figures 8.5 and 8.6 plot the average number of FLOPS as a function of the number

of frames and the number of feature points, for each of the three methods. The number

of FLOPS are marked with dotted lines for method i), dashdotted lines for method ii),

and solid lines for method iii). The left plots show the three curves, while the right plots

show only the curves for methods ii) and iii) using a di�erent vertical scale, for better

visualization.
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Figure 8.5: MatLab FLOPS count as a function of the number of frames.

From the left side plots, we see that the number of FLOPS is much larger for the

original factorization method than for the iterative approaches. This is due to the high

computational cost of the SVD. From the right side plots, we see that the number of

FLOPS increases approximately linearly with both the number of frames and the number

of feature points, for both iterative methods ii) and iii). The increasing rate is lower for

the factorization of the rank 1 matrix eR than the rank 3 matrix R, by a factor of approxi-

mately 2. This is because both the decomposition and normalization stages in method iii)

are simpler than the ones in method ii). In all the experiments, the performance of the

three methods in terms of the accuracy of the estimates of the 3D structure is the same.

When the video sequence contains perspective distortions, the orthographic projection
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Figure 8.6: MatLab FLOPS count as a function of the number of feature points.

model is not a good approximation to the real perspective projection. In this case, the

rank of the measurement matrix R is larger than 3, even in a noiseless situation, due to

the di�erent structure of the feature trajectories, and the rank of the matrix eR is larger

than 1. In this case, we may expect that the observed trajectories are better approximated

by the rank 3 factorization of R than by the rank 1 factorization of eR because there is

no reason to believe that the �rst two rows of ST are singular vectors of R, i.e., there

is no reason to believe that the subspace projection (8.20) is the best way to reduce

the rank of the matrix. In spite of this, the experiments we conducted lead to similar

performances in terms of the accuracy of the estimates of the 3D structure for both the

rank 1 factorization of eR and the rank 3 factorization of R. This behavior is because

the better approximation capability of the rank 3 factorization is not based on a more

appropriate observation model, but rather on blindly enlarging the number of degrees of

freedom of the orthographic projection model. Thus, although the trajectories are better

approximated by the rank 3 factorization of R than the rank 1 factorization of eR, the

estimates of the 3D structure are not more accurate.
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8.7 Summary

In this chapter we develop an e�cient method to recover three-dimensional (3D) rigid

structure from a set of trajectories of projections of feature points.

We exploit linear subspace contraints to derive a solution for the structure from mo-

tion (SFM) problem that is based on the factorization of a matrix eR that is rank 1 in a

noiseless situation, rather than a rank 3 matrix R as in the original factorization method

of Tomasi and Kanade [59, 61]. The rank 1 matrix eR is obtained from the measurement

matrix R by making an adequate subspace projection.

Our algorithm is computationally simple because we use a fast iterative method to

compute the rank 1 matrix that best matches the data, avoiding the need to compute the

Singular Value Decomposition (SVD) of the measurement matrix.

The chapter ends with experimental results that illustrate the properties of the rank 1

matrix eR and compare the computational cost of our approach with the cost of the

original factorization method of Tomasi and Kanade [59, 61]. We conclude that the

rank 1 factorization requires a number of 
oating point operations (FLOPS) dramatically

smaller than the one required by the original factorization method. The computational

gain factor is approximately 20 when processing 50 frames and 50 feature points, and

even larger when processing a larger number of features and/or a large number of frames.

The use of an iterative algorithm, rather than the SVD, in the rank 3 factorization also

proves to be slower than the rank 1 factorization by a factor of approximately 2.
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Chapter 9

Surface-Based Factorization

9.1 Introduction

Feature tracking may be unreliable when processing noisy video sequences. To overcome

this di�culty, the factorization approach described in this chapter extends the feature-

based factorization method described in chapter 8 in the following sense. Instead of

tracking point-wise features, we track larger regions where the image motion is described

by a single set of parameters. We show how to recover three-dimensional (3D) structure

(3D motion and a parametric description of the 3D shape) from the set of parameters

describing the image motion by using a factorization approach.

In this chapter we represent the 3D shape by a parametric description of the object

surface. To emphasize that the description is surface-based, we call our approach the

surface-based factorization method. The parametric description of the 3D shape induces

a parameterization for the two-dimensional (2D) motion of the brightness pattern on the

image plane. The 2D motion parameters are estimated by using the method described

in chapter 3. In this chapter we show how to recover the parameters describing the

3D shape and the 3D motion from the parameters describing the 2D motion on the image

plane. This is done by factorizing a surface-based measurement matrix whose entries

are the parameters describing the image motion. To compute suitable factors of this

measurement matrix, we use the rank 1 factorization procedure introduced in chapter 8.

The surface-based factorization method includes the feature-based factorization

149
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method as a special case. In fact, the feature-based approach describes the 3D shape

by a sparse set of small regions with relative depth constant in each region. This descrip-

tion corresponds to parameterizing the 3D shape with one parameter per region within

the surface-based factorization approach. These parameters code the relative depth of

the corresponding region (called feature in this case).

In this chapter we also show how to include con�dence weights for the parameters de-

scribing the 2D motion in the image plane (or for the feature trajectories). The accuracy

of the estimates of the 2D motion parameters depends on the brightness pattern of the

region considered, as well as on its size, as studied in chapter 3. By taking into account

the con�dence weights, we weight di�erently the 2D motion parameter estimates corre-

sponding to di�erent regions. For example, we weight more the trajectory of a \sharp"

feature than the trajectory of a \smooth" feature. Reference [47] proposes an iterative

method to solve a more general problem, where the weights are time-variant. As reported

in reference [47] the iterative method may fail to converge. We show that when the

weights are time-invariant, the problem is rewritten as the non-weighted factorization of

a modi�ed matrix. Then, any method can be used to factorize this matrix. We call this

extension the weighted factorization method.

The chapter is organized as follows. In section 9.2 we introduce our approach by using

an illustrative example. In section 9.3 we describe the surface-based factorization method

with full generality. In section 9.4, we show how to accommodate con�dence weights for

the feature trajectories, or for the parameters describing the image motion. Section 9.5

describes two experiments that illustrate the rank 1 surface-based factorization and the

weighted factorization. Section 9.6 summarizes the content of the chapter.

9.2 Example

The surface-based factorization method uses a parametric description of the surface S of

the rigid object in terms of a parameter vector a, S(a). We exploit the constraints induced
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on the two-dimensional (2D) motion in the image plane by the projection operator, the

rigidity of the object, and the parameterization of the surface shape of the object. The

constraints induced on the image motion enable us to parameterize the image motion map-

ping uf (s) (this mapping was introduced in chapter 7) in terms of a parameter vector df

as u(df ; s). The parameter vector df is directly related to the three-dimensional (3D)

shape parameter vector a and the 3D positionmf , as will be shown below. Our approach

follows these two stages. First, we estimate the parameters fdfg by using the numerical

technique for image motion estimation described in chapter 3. Then, we solve the inverse

problem of going from the sequence of image motion parameters to the 3D structure, i.e.,

we determine the 3D shape parameter vector a and the sequence of 3D positions fmfg,

given the estimates
nbdfo of the image motion parameter vectors fdfg.

Before addressing the general case, we illustrate our approach with a simple example:

a parabolic patch moving in a 2D world where the images are 1D orthogonal projec-

tions. This scenario, although simpler than the 3D world problem, re
ects the very basic

properties and di�culties of the structure from motion (SFM) paradigm. Note that the

2D scenario, illustrated in Figure 9.1, corresponds to the real 3D world, if we consider

only one epipolar plane and assume that the motion occurs on that plane. The images

are single scan-lines. The 2D world was also the scenario used by Tomasi and Kanade to

introduce the factorization method in reference [60].

Figure 9.1 shows a parabolic patch S that moves with respect to a �xed camera. We

attach a coordinate system to the object S given by the axes labeled by x and z. The

2D object shape S(a) is described in terms of the parameter vector a = [a0; a1; a2]
T , in

the object coordinate system, by the parabola

z(x) = z(a; x) = a0 + a1x+ a2x
2: (9.1)

To capture the motion of the object, we attach a di�erent coordinate system to the

camera given by the axes u and w, see Figure 9.1. The u axis is the camera \plane". We

de�ne the 2D motion of the object by specifying the position of the object coordinate
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Figure 9.1: 2D world: object and camera coordinate systems.

system relative to the camera coordinate system. The unconstrained motion of a rigid

body can be described in terms of a time varying point translation and a rotation. Hence,

the object position at time instant f is expressed in terms of
�
tuf ; twf ; �f

�
where, see

Figure 9.1,
�
tuf ; twf

�
are chosen to be the coordinates of the origin of the object coordinate

system with respect to the camera coordinate system (translational component of the

2D motion), and �f is the orientation of the object coordinate system relative to the

camera coordinate system (rotational component of the motion).

At instant f , the point on the object with 2D coordinates (x; z) in the object coordinate

system has the following coordinates in the camera coordinate system, see Figure 9.1,�
uf
wf

�
= �f

�
x
z

�
+ tf =

�
ixf izf
kxf kzf

� �
x
z

�
+

�
tuf
twf

�
; (9.2)

where �f is the rotation matrix and tf is the translation vector. The elements of the

rotation matrix �f are ixf = cos �f , izf = � sin �f , kxf = sin �f , and kzf = cos �f ,

where �f is the angle indicated in Figure 9.1.

From expression (9.2), we see that the point (x; z) projects at time f on the image
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coordinate uf given by

uf = ixfx+ izfz + tuf : (9.3)

Expression (9.3) shows that the orthogonal projection is insensitive to the translation

component twf of the object motion. This re
ects the well known fact that, under orthog-

raphy, the absolute depth (distance from the camera to the object) cannot be estimated.

Only the set of positions
�
mf =

�
tuf ; �f

	
; 1 � f � F

	
can be estimated from the image

sequence.

We now show for this example how the mapping uf (s), introduced in chapter 7 and

illustrated in Figure 7.1, is described parametrically. In the 2D world of this example,

the mapping uf (s) is written as uf(s) because it maps a scalar s to a scalar u. Choose

the coordinate s, labeling the argument of the texture function T , and representing in a

unique way the generic point on the object surface (object contour in this case), to be

the object coordinate x. We refer to s as the texture coordinate. A point with texture

coordinate s on the object surface projects at time f , according to expression (9.3), to

the image coordinate uf(s) given by

uf(s) = ixfx(s) + izfz(s) + tuf

= ixfs+ izf
�
a0 + a1s+ a2s

2
�
+ tuf ; (9.4)

where x(s) and z(s) are the coordinates of the point s in the object coordinate system. The

equality x(s) = s comes from the choice of the texture coordinate s, and the expression

for z(s) comes from the parabolic shape (9.1).

By de�ning the coe�cients of the powers of s in expression (9.4) as8<:
df0 = izfa0 + tuf
df1 = ixf + izfa1
df2 = izfa2;

(9.5)

we have the following parametric description for the image motion uf(s) in terms of the

parameter vector df = [df0; df1; df2]
T ,

uf(s) = u(df ; s) = df0 + df1s+ df2s
2: (9.6)
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The parameter vector df = [df0; df1; df2]
T describes the motion of the brightness pattern

in the image plane, i.e., it describes the mapping uf (s) introduced in chapter 7, see

Figure 7.1.

With the parabolic patch, the steps of our approach to recover the 2D structure, i.e.,

the shape parameters fa0; a1; a2g and the set of positions
�
tuf ; �f ; 1 � f � F

	
are then

summarized as:

(i) Given the image sequence of F frames, estimate the set of image motion parame-

ters fdf0; df1; df2; 1 � f � Fg. This leads to 3F estimates
nbdf0; bdf1; bdf2; 1 � f � F

o
.

(ii) Invert the relation (9.5), solving for the shape parameters fa0; a1; a2g and the 2F ob-

ject positions
�
tuf ; �f ; 1 � f � F

	
, given the set of 3F estimates

nbdf0; bdf1; bdf2o.
The step (i) above is solved by using the numerical technique described in chap-

ter 3 to �t parametric models to the motion of the brightness patterns in the image

plane. The step (ii) above leads in general to a nonlinear problem. Section 9.3 details

our approach to this problem. First, we obtain a closed-form solution for the estimate

of the 3D translation. Then, due to the structure of the orthogonal projection opera-

tor, and the shape parameterization, we can express the dependence of df = d(a;mf )

for 1 � f � F on the vectors a and mf in a bilinear matrix format as R = MST ,

where the matrix R collects the image motion parameters fdf ; 1 � f � Fg, M depends

on the positions fmf ; 1 � f � Fg, and S contains the shape parameter a. The problem

of estimating a and fmf ; 1 � f � Fg becomes how to �nd suitable factors M and ST for

the factorization of the matrix R. We will see that the rank 1 factorization procedure

introduced in chapter 8 solves this problem.

Our general methodology can be used for any parametric shape description. The

situations we are interested in are characterized by no prior knowledge about the object

shape. For this kind of situations, a general shape model must be characterized by a local

parameterization. The local shape parameterization induces a local parameterization for

the motion in the image plane. In the following section we detail our approach for a



9.3. SURFACE-BASED FACTORIZATION 155

generic shape model locally parameterized: the piecewise polynomial functions.

9.3 Surface-Based Factorization

We consider a rigid body moving in front of the camera. The scenario was introduced in

chapter 8 and it is illustrated in Figure 8.1. We attach coordinate systems to the object

and to the camera. The object coordinate system (o.c.s.) has axes labeled by x; y, and z.

The camera coordinate system (c.c.s.) has axes labeled by u; v, and w. We consider that

the o.c.s. coincides with the c.c.s. on the �rst frame. The image plane is de�ned by

the axes u and v. The images are modeled as orthographic projections of the object tex-

ture. Our algorithm is easily extended to the scaled-orthography and the paraperspective

projections by proceeding as references [47, 48, 49] propose for the original factorization

method of Tomasi and Kanade [59, 60, 61].

3D shape

The three-dimensional (3D) shape of the rigid object is a parametric description of the

object surface. We consider objects whose shape is given by a piecewise polynomial

surface with N patches. The 3D shape is described in terms of N sets of parameters

fan00; a
n
10; a

n
01; a

n
11; a

n
20; a

n
02; : : :g, for 1 � n � N , where

z = an00 + an10(x� xn0 ) + an01(y � yn0 )

+ an11(x� xn0 )(y � yn0 ) + an20(x� xn0 )
2 + an02(y � yn0 )

2

+ : : : (9.7)

describes the shape of the patch n in the o.c.s. With respect to the representation of the

polynomial patches, the parameters xn0 and yn0 can have any value, for example they can

be made zero. We allow the speci�cation of general parameters xn0 ; y
n
0 because the shape

of a small patch n with support region f(x; y)g located far from the the point (xn0 ; y
n
0 )

has a high sensivity with respect to the shape parameters. To minimize this sensivity, we

choose for (xn0 ; y
n
0 ) the centroid of the support region of patch n. With this choice, we
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improve the accuracy of the 3D structure recovery algorithm. As we will see below, by

making (xn0 ; y
n
0 ) to be the centroid of the support region of patch n, we also improve the

numerical stability of the algorithm that estimates the two-dimensional (2D) motion in

the image plane.

Expression (9.7) describes the 3D shape with full generality in a local way { it is the

Taylor series expansion of the relative depth z(x; y) around the point (x; y) = (xn0 ; y
n
0 ), for

appropriate values of the set of shape parameters fan00; a
n
10; a

n
01; a

n
11; a

n
20; a

n
02; : : :g. We can

recover the simpler feature-based shape description from the general 3D shape described

by expression (9.7) by making zero all the shape parameters, except for an00 that codes the

relative depth of feature n, z = an00. Expression (9.7) models also a special case of practical

interest: the piecewise planar shapes. In this case, the planar patch n is described by

the parameters fan00; a
n
10; a

n
01g. This set of parameters codes the orientation of the planar

patch, besides its position.

Since the following derivations deal with a single surface patch, we will omit the

super-index n in the shape parameters. To further simplify the notation, we de�ne the

vectors a1 = [a10; a01]
T , s = [x; y]T , s0 = [x0; y0]

T , a2 = [a11; a20; a02; : : :]
T , and p(s�s0) =

[(x� x0)(y � y0); (x� x0)
2; (y � y0)

2; : : :]T , and rewrite the shape of patch k as

z = a00 + aT1 (s� s0) + aT2 p(s� s0): (9.8)

The vectors a2 and p(s� s0) are P � 1 where P depends on the degree of the polynomial

surface patch.

3D motion

As detailed in chapter 8, we de�ne the 3D motion of the object by specifying the position

of the o.c.s. relative to the c.c.s. in terms of
�
tuf ; tvf ; twf ;�f

�
where

�
tuf ; tvf ; twf

�
are the

coordinates of the origin of the o.c.s. with respect to the c.c.s. (3D translation), and the

matrix �f is the rotation matrix that determines the orientation of the o.c.s. relative to

the c.c.s. (3D rotation). A point with coordinates [x; y; z]T in the o.c.s. has the following
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coordinates in the c.c.s., at frame f ,24 uf
vf
wf

35 = �f

24 x
y
z

35 +

24 tuf
tvf
twf

35 ; (9.9)

where the 3D rotation matrix �f is expressed in terms of the Euler angles as in expres-

sion (8.1).

Under orthography, the point with coordinates [x; y; z]T in the o.c.s. projects in frame f

onto the image point [uf ; vf ]
T given by�

uf
vf

�
=Mf

24 x
y
z

35 + tf ; (9.10)

where the matrixMf collects the �rst and second rows of the 3D rotation matrix �f and

the vector tf contains the two components of the 3D translation that can be recovered

from the image sequence, tf = [tuf ; tvf ]
T .

We now show that the 2D motion induced in the image plane by the body-camera

3D motion is described in terms of a set of parameters. For example, for planar surface

patches the 2D motion in the image plane is given by the a�ne motion model studied

in chapter 3. We relate the parameters of the 2D motion model to the 3D shape and

3D motion parameters.

Image motion

Consider a generic point in the object surface with coordinates s = [x; y]T and z given by

expression (9.8). We denote by uf (s) = [uf(s); vf(s)]
T the trajectory of the projection of

the point s in the image plane. Since we have chosen the coordinate systems to coincide

on the �rst frame, we have u1(s) = s. At frame f , the point s projects according to

expression (9.10), to the image point

uf(s) = Nfs+ nfz + tf ; (9.11)

where we have decomposed the matrix Mf as Mf = [Nf ;nf ] where the 2� 2 matrix Nf

collects the �rst and second columns of the matrix Mf and the vector nf is the third

column of Mf .
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By inserting expression (9.8) into expression (9.11), we express the image displacement

between frame 1 and frame f in terms of the 3D shape and 3D motion parameters. After

simple manipulations, we obtain

uf (s) = Nfs0 + nfa00 + tf +
�
Nf + nfa

T
1

�
(s� s0) + nfa

T
2 p(s� s0): (9.12)

Denoting the 2� 1 vector corresponding to the term independent of s, the 2� 2 matrix

that multiplies (s� s0), and the 2� P matrix that multiplies p(s� s0) by8<:
df = Nfs0 + nfa00 + tf
Df = Nf + nfa

T
1

Ef = nfa
T
2 ;

(9.13)

we rewrite expression (9.12) as

uf (s) = df +Df(s� s0) +Efp(s� s0): (9.14)

Expression (9.14) shows that the image coordinates at frame f , uf , of the points

belonging to the object surface are parametric mappings of their image coordinates in

frame 1, u1 = s. The 2D motion of the brightness pattern in the image plane is then

described parametrically by expression (9.14). Expression (9.13) relates the parameters of

the 2D motion model for each surface patch, df , Df , and Ef ,to the 3D motion parameters,

Nf , nf , and tf , and the 3D shape parameters corresponding to that patch, a00, a1, and a2.

For the special case of piecewise planar surfaces, the 3D shape of each patch is described

by a00 and a1 and the 2D motion in the image plane is given by uf (s) = df +Df(s� s0),

i.e., it is the a�ne motion model studied in chapter 3. As we saw in section 3.5, the choice

for s0 = [x0; y0]
T as the centroid of the support region of the surface patch improves the

numerical stability of the image motion estimation algorithm.

Except for particular 3D motions, the 2D motion in the image plane corresponding to

di�erent surface patches is described by di�erent model parameterizations. The problem

of estimating the support regions of the surface patches leads to the segmentation of the

image motion �eld. Segmentation from motion has been widely addressed in the past. In

section 3.1 we overviewed the existing methods. In our experiments, we used two methods
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that lead to similar results. The �rst method simply slides a rectangular window across

the image and detects abrupt changes in the motion parameters. The second method uses

a quad-tree decomposition. We start by estimating the motion parameters considering

the entire image as the support region. The region is recursively decomposed into smaller

regions and the motion of each sub-region is estimated. Then we associate regions with

similar motion. Another possible way to use our surface-based factorization method is to

select a priori the support regions of the surface patches. This is the approach followed by

the feature-based methods, where the features are selected a priori, based on the spatial

variability of the brightness pattern, rather than on any 2D motion cue.

3D structure from 2D motion

The problem of inferring 3D rigid structure from the image motion is formulated as esti-

mating the 3D motion parameters fNf ;nf ; tf ; 2 � f � Fg and the 3D shape parameters

fan00; a
n
1 ; a

n
2 ; 1 � n � Ng from the image motion parameters fdnf ;D

n
f ;E

n
f ; 2 � f � F; 1 �

n � Ng by inverting the overconstrained set of equations of expression (9.13) for all the

frames and all the surface patches. The super-index n above denotes the surface patch.

We start by estimating the translation vector tf . By choosing the o.c.s. in such a

way that
P

n a
n
00 = 0, and the image origin in such a way that

P
n s

n
0 = [0; 0]T , we

obtain the Least Squares (LS) estimate for the translation vector tf as the mean of the

vectors fdnf ; 1 � n � Ng,

btf = 1

N

NX
n=1

dnf : (9.15)

To eliminate the dependence of the image motion parameters on the translation, we

replace the translation estimates into expression (9.13) and de�ne a new set of parame-

ters fednfg related to fdnfg by ednf = dnf �
1

N

NX
m=1

dmf : (9.16)

De�ning the 2� (P + 3) matrix Rf and the 3� (P + 3) matrix ST as

Rf =
h edf Df Ef

i
and ST =

�
s0 I2�2 02�P
a00 aT1 aT2

�
; (9.17)
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we rewrite the equation system (9.13) in matrix format as

Rn
f =MfS

T
n ; (9.18)

where the 2� 3 matrixMf contains the two �rst rows of the 3D rotation matrix �f , and

the index n in Rn
f and STn denotes the surface patch number. Expression (9.18) relates

the image motion parameters at frame f and patch n, in matrix Rn
f , to the 3D rotation

at frame f , in matrix Mf , and the 3D shape parameters for the patch n, in matrix STn .

Surface-based factorization

There are N(F�1) matrix equations like expression (9.18): one for each surface patch 1 �

n � N and each frame 2 � f � F . To make explicit the entire set of equations that arise

from considering every patch and every frame, we de�ne the 2(F � 1)�N(P +3) matrix

R of image motion parameters, the 2(F � 1) � 3 matrix M of 3D rotation parameters,

and the 3�N(P + 3) matrix ST of 3D shape parameters as

R =

26664
R1
2 R2

2 � � � RN
2

R1
3 R2

3 � � � RN
3

...
...

. . .
...

R1
F R2

F � � � RN
F

37775 ; M =

26664
M2

M3
...

MF

37775 ; ST =
�
ST1 ST2 � � � STN

�
;

(9.19)

and write the relation between the image motion parameters and the 3D structure pa-

rameters as

R =MST : (9.20)

Expression (9.20) is an extension of the expression (8.10) introduced in chapter 8 and

�rst derived by Tomasi and Kanade in references [59, 60, 61]. Expression (9.20), un-

like (8.10), accommodates regions whose shape is parameterized rather than described

by a single point. In fact, the measurement matrix involved in the feature-based ap-

proach described in chapter 8 is composed by the columns of the matrix R in expres-

sions (9.19) and (9.20) that contain the parameters fednf ; 1 � n � N; 2 � f � Fg,
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see expressions (9.19) and (9.17). For this reason, we call the matrix R in expres-

sions (9.19) and (9.20) the surface-based measurement matrix. The shape matrix in-

volved in the feature-based factorization is composed by the columns of the matrix ST

in expressions (9.19) and (9.20) that contain the parameters fsn0 ; a
n
00; 1 � n � Ng, see

expressions (9.19) and (9.17). The motion matrix M in expressions (9.19) and (9.20) is

the same matrix that appears in the feature-based factorization.

Expression (9.20) shows that the surface-based measurement matrix R of the image

motion parameters is rank de�cient. In a noiseless situation, the surface-based measure-

ment matrix R is rank 3 re
ecting the high redundancy in the image motion parameters,

due to the rigidity of the object. Thus, the surface-based measurement matrix R has

the same rank of the measurement matrix involved in the feature-based factorization of

chapter 8. The problem of estimating the 3D shape and 3D motion parameters amounts

to �nding suitable factors of the surface-based measurement matrix R. The 3D shape

matrix S and the 3D motion matrix M are then the solution of

min
M;S



R�MST



F
; (9.21)

where the rows of the matrices M and ST are restricted to have the special structure

of expression (9.19) { the rows of M are restricted to have: i) unit norm, and ii) row i

orthogonal to row i+ 1; and the �rst two rows of ST are given by expression (9.17).

To factorize the surface-based measurement matrix R, i.e., to solve the minimiza-

tion (9.21), we use the rank 1 factorization method described in chapter 8, section 8.3.

Note that the 3Dmotion matrixM is the same matrix involved in the feature-based factor-

ization of chapter 8, and the �rst two rows of the 3D shape matrix ST in expression (9.21)

are known from expressions (9.19) and (9.17), as required by our rank 1 factorization

algorithm.

For the special case of piecewise planar shapes, the submatrices Rn
f and STn in ex-

pressions (9.17) and (9.18) are simpli�ed { they have only the �rst 3 columns. In this

case, the surface-based measurement matrix R is 2(F �1)�3N and the shape matrix ST
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is 3� 3N .

9.4 Weighted Factorization

The accuracy of the estimates of the two-dimensional (2D) motion parameters depends

on the spatial variability of the brightness intensity pattern and on the size of the image

region considered, as studied in chapter 3. The factorization method proposed in the

previous section, as well as the feature-based factorization of chapter 8 and the original

method of Tomasi and Kanade [59, 60, 61], weights equally the contribution of each

region, or feature, to the �nal three-dimensional (3D) shape and 3D motion estimates.

A more robust estimate weights more heavily a trajectory corresponding to a \sharp"

feature than a trajectory corresponding to a feature with a more smooth texture. In

this section, we introduce such a model and show that it leads to the factorization of a

modi�ed measurement matrix. The computation of the weighted estimates is then done

by using the rank 1 factorization method introduced in section 8.3, i.e., without additional

computational cost.

We consider the model in expressions (9.13). Each 2D motion parameter of the surface

patch n, in vector dnf and matrices Dn
f and En

f , is observed with additive Gaussian white

noise. The noise variance for each of the two components of the vector dnf is denoted

by (�nd )
2, the noise variance for the two entries of the �rst column of the matrix Dn

f is

denoted by (�nD1)
2, the noise variance for the two entries of the second column of the

matrix Dn
f is denoted by (�nD2)

2, the noise variance for the two entries of the column i of

the matrix En
f is denoted by (�nEi)

2. We impose the variance of the two components of

each column to be the same so that the weighted problem can still be solved by the rank 1

factorization method, except now of a modi�ed measurement matrix, as it will become

clear below.

The variances (�nd )
2, (�nDi)

2, and (�nEi)
2 of the errors of the 2D motion parameters

are estimated from the spatial gradient of the image brightness pattern as detailed in
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chapter 3. For the feature-based case, the 2D motion is described by the trajectories of

the features, i.e., by the parameters fdnf ; 1 � n � N; 2 � f � Fg, thus the error variances

are f(�nd )
2; 1 � n � Ng. These variances are computed as described in section 3.4, i.e.,

by evaluating expression (3.44) with �t = 1. For the piecewise planar shapes scenario, the

2D motion is described by the set of a�ne mappings with parameters fdnf ;D
n
f ; 1 � n �

N; 2 � f � Fg , thus the error variances are f(�nd )
2; (�nD1)

2; (�nD2)
2; 1 � n � Ng. Each of

these variances is computed as described in section 3.5, i.e., by evaluating expression (3.60)

where the set P is the corresponding subset of the parameters of the a�ne motion model

and �t = 1.

We follow the same strategy of the previous section: �rst, estimate the translation,

then replace the translation estimates and solve for the 3D rotation and 3D shape.

By choosing the origin of the o.c.s. in such a way that
P

n s
n
0=(�

n
d )

2 = [0; 0]T andP
n a

n
00=(�

n
d )

2 = 0, we get the estimate

btf =
PN

n=1

dnf

(�n
d
)2PN

n=1
1

(�n
d
)2

(9.22)

for the translation along the camera plane. Expression (9.22) generalizes expression (9.15).

Replacing the translation estimates in equation system (9.13), and de�ning the set of

parameters fednfg related to fdnfg by

ednf = dnf �

PN

m=1

dmf
(�m
d
)2PN

m=1
1

(�m
d
)2

; (9.23)

and the matrices R, M, and S as in expressions (9.17) and (9.19), we obtain, as before,

R =MST : (9.24)

To take into account the di�erent variances of the errors of the entries of the measure-

ment matrix R, we de�ne the 2(F � 1)�N(P + 3) weight matrix W as

W =

266664
1
�1
d

1
�1D1

1
�1D2

1
�1E1

� � � 1
�1EP

� � � � � � 1
�N
d

1
�ND1

1
�ND2

1
�NE1

� � � 1
�NEP

1
�1
d

1
�1D1

1
�1D2

1
�1E1

� � � 1
�1EP

� � � � � � 1
�N
d

1
�ND1

1
�ND2

1
�NE1

� � � 1
�NEP

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1
�1
d

1
�1D1

1
�1D2

1
�1E1

� � � 1
�1EP

� � � � � � 1
�N
d

1
�ND1

1
�ND2

1
�NE1

� � � 1
�NEP

377775 (9.25)
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where entry (i; j) of the weight matrixW represents the weight to be given to entry (i; j)

of matrix R. We formulate the weighted factorization in terms of the Maximum Likeli-

hood (ML) estimation. The ML estimate generalizes (9.21) as

min
M;S



�R�MST
�
�W




F

(9.26)

where the matrices M and S are constrained to have the special structure of the motion

and shape matrices in the surface-based factorization of the previous section. The sym-

bol � denotes the elementwise product of two matrices, also known as Hadamard matrix

product, see reference [15].

Due to the structure of W, we rewrite the minimization in expression (9.26) as the

factorization of a modi�ed matrix Rw,

min
M;Sw



Rw �MSTw



F
; (9.27)

where the matrices Rw and Sw are related to the matrices R and S and the entries of the

weight matrix W by

Rw = R diag
�
fw1i; 1 � i � N(P + 3)g

�
; (9.28)

Sw = diag
�
fw1i; 1 � i � N(P + 3)g

�
S; (9.29)

where diag (fw1i; 1 � i � N(P + 3)g) denotes a N(P + 3) � N(P + 3) diagonal matrix

whose entry (i; i) is equal to the entry (1; i) of the weight matrix W.

The factorization in expression (9.27) is similar to the one studied in chapter 8, sec-

tion 8.3. Note that the modi�ed measurement matrix Rw and the �rst two rows of the

matrix STw are known from expressions (9.28) and (9.29) and the motion matrixM is the

same matrix involved in the rank 1 factorization method of section 8.3. We minimize (9.27)

by using the rank 1 factorization procedure described in section 8.3 to compute the factor

matrices cM and cSw. To compute the estimate bS of the shape matrix from the matrix cSw
we invert expression (9.29), i.e., we compute

bS = diag
�n
w�11i ; 1 � i � N(P + 3)

o� cSw: (9.30)
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Reference [47] also considers the reliability weights in estimating the matricesM and S

within the original feature-based factorization method of Tomasi and Kanade [59, 60, 61].

In reference [47], the author allows the weight matrix W to have a general structure,

i.e., one can give each feature a weight that varies along time. The solution is found

by an iterative process that, as reported in reference [47], may fail to converge. In our

formulation, this is not the case because we restrict the weight matrix W to have the

structure of expression (9.25). For a general matrix W, it is not possible to write the

minimization (9.26) in the form of a factorization such as in expression (9.27). In fact, the

unconstrained bilinear problem min
M;S



�R�MST
�
�W




F
has a single global minimum,

up to a scale factor, when W has the rows all equal or the columns all equal. It can be

shown that this is not true for a generic matrix W. In this case, the existence of local

minima makes nontrivial the using of iterative numerical techniques.

9.5 Experiments

In this section we describe two experiments that illustrate the methods proposed in this

chapter. The �rst experiment illustrates the surface-based factorization method by re-

covering piecewise linear rigid structure in a two-dimensional (2D) world. The sec-

ond experiment illustrates the weighted factorization method by comparing the three-

dimensional (3D) shape and 3D motion estimated from a synthetic set of feature trajec-

tories with the non-weighted estimates.

Surface-based factorization

In Figure 9.2 we show a computer generated 1D image sequence. Time increases from

top to bottom. The object shape is shown on Figure 9.3 (superimposed with the �nal

estimate). It is piecewise linear with 4 line patches. The object texture is a smooth

function de�ned over the object contour. The time evolution of the translational and

rotational components of the motion are shown respectively in the left and right plots of

Figure 9.4, also superimposed with their �nal estimates. We obtained the image sequence
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in Figure 9.2 by projecting the object texture on the image plane and by adding noise.

space

tim
e

Figure 9.2: 1D image sequence.

axis x

ax
is

 z

’−−’real shape, ’−’estimated shape

Figure 9.3: 2D shape estimate superimposed with the true 2D shape.

The approach of references [59, 60, 61], as well as the method described in section 4.3,

is based on the tracking of feature points. These feature points are selected by using

spatial information, in order to make possible their tracking. In general, feature points

correspond to brightness corners in 2D images. For 1D images, the feature points would

correspond to discontinuities in the brightness pattern. For the sequence represented in



9.5. EXPERIMENTS 167

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

time

tr
an

sl
at

io
n

’−−’ real value, ’−’ estimated value

0 10 20 30 40 50 60 70 80
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

time

ro
ta

tio
n

’−−’ real value, ’−’ estimated value

Figure 9.4: 2D motion estimates superimposed with the true values. Left plot: translation
along the camera \plane". Right plot: rotation angle.

Figure 9.2, it is very di�cult to select feature points that can be easily tracked because of

the smoothness of the brightness pattern. For this reason, the feature-based approaches

can not be used to resolve this type of scene, i.e., to infer structure from the motion of

smooth textures.

For the linear patch n of the 2D shape, the 1D motion in the image plane is a�ne

with parameters dnf0 and d
n
f1. The 1D motion in the image plane is given by the �rst two

terms of expression (9.6) derived for the parabolic patch, i.e., it is described by fdnf0; d
n
f1g

as uf(s) = dnf0 + dnf1s. Figure 9.5 shows the estimates for the four a�ne parameters

of the sequence of Figure 9.2. We superimpose the a�ne parameter estimates with the

actual values of the parameters. The graphic on the left shows the evolution of the

parameters bd1f0, bd2f0, bd3f0, and bd4f0, as functions of the frame index f . The graphic on the

right shows the parameters bd1f1, bd2f1, bd3f1, and bd4f1. We can see that the variance of the

a�ne parameter estimates is di�erent from one patch to another. This is because the

spatial brightness variations and the patch sizes are not the same for the four patches:

the smaller the variation of the brightness patch and the smaller the size of a patch are,

the higher the variances of the corresponding 
ow parameter estimates are.

Figures 9.3 and 9.4 show the result of applying our surface-based factorization tech-
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Figure 9.5: Sequence of 1D image motion parameters.

nique to the a�ne parameters of Figure 9.5. The estimate of the translation along the

camera \plane" was obtained by using the 2D version of expression (9.15). The translation

estimate is shown on the left plot of Figure 9.4 superimposed with the true translation

value. The 2D rotation and the 2D shape were estimated by factorizing the 2D version

of the surface-based measurement matrix. The rotation estimate is on the right plot of

Figure 9.4 superimposed to the true value of the rotation angle. The 2D shape estimate

is represented in Figure 9.3 superimposed to the true 2D shape. The good agreement

between the estimates of the 2D structure and the actual 2D structure, see Figures 9.3

and 9.4, illustrate the good performance of the surface-based factorizzation method.

Weighted factorization

To illustrate the e�ect of taking into account the 2D motion estimation errors when

recovering 3D structure from 2D motion, we synthesized two subsets of trajectories, rep-

resented in Figure 9.6, each with a di�erent level of observation noise, and applied both

the non-weighted factorization and the weighted factorization methods.

We generated two subsets of, respectively, 10 and 11 feature points with coordinates x

and y randomly located inside a square. To facilitate the visualization of the experimental
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Figure 9.6: Feature trajectories with two levels of observation noise.

results, the depth z was generated with a sinusoidal shape applied to the ordered set of 21

features. The coordinate z is represented in both plots of Figure 9.7 with small circles. The

dots on the plots of Figure 9.7 represent estimates of the relative depth. The 3D rotational

motion was simulated by synthesizing a smooth time evolution for the Euler angles that

specify the orientation of the object coordinate system relative to the camera coordinate

system. The time evolution of the 6 entries of the 3D rotation matrix that are involved in

the orthogonal projection is represented in both plots of Figure 9.9 with thick lines. The

3D translation is also smooth. The two components of the translation along the camera

plane are represented in the plots of Figure 9.8 with thick lines. The thin lines in the

plots of Figures 9.9 and 9.8 represent estimates of the 3D motion.

We used the perspective projection model to project the features onto the image

plane. The lens focal length parameter was set to a value high enough such that the

orthographic projection can be considered a valid approximation. Figure 9.6 shows the

feature trajectories on the image plane, after adding noise. For each trajectory, the

initial position is marked with \o" and the �nal position is marked with \*". The noise

variance is �21 = 1 for the �rst subset of 10 features and �22 = 5 for the second subset
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Figure 9.7: Estimates of the relative depth, marked with points, superimposed with the
true value of the coordinate z of each feature, marked with small circles. Left plot:
estimates obtained with the non-weighted factorization method. Right plot: estimates
obtained with the weighted factorization method.

of 11 features. As expected, the trajectories corresponding to the features of the �rst

subset have a smooth evolution, while the trajectories corresponding to the features of

the second subset have a more noisy shape, see Figure 9.6.

We applied both the non-weighted feature-based factorization of chapter 8 and the

weighted factorization method of section 9.4 to the feature trajectories of Figure 9.6. The

estimates of the 3D shape and 3D motion are shown in the plots of Figures 9.7, 9.8, and 9.9,

superimposed to the true values. In Figures 9.7, 9.8, and 9.9, the left plots represent the

non-weighted estimates, and the right plots represent the weighted factorization results.

We see that the 3D motion estimates obtained through the weighted factorization method

are more accurate than the ones obtained without taking into account the di�erent noise

levels. This is particularly evident for the translation estimates { compare the left and

right plots of Figure 9.8. The di�erence is smaller for the estimates of the entries of

the 3D rotation matrix, see Figure 9.9, but these small di�erences originate much larger

di�erences in the feature projections because the projections are obtained by multiplying

the 3D rotation matrix by the 3D position of the features. The 3D shape estimates

represented by the relative depths in the left and right plots of Figure 9.7 show a very
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Figure 9.8: Estimates of the translation along the camera plane, marked with thin lines,
superimposed to the true translation, marked with thick lines. Left plot: estimates ob-
tained with the non-weighted factorization method. Right plot: estimates obtained with
the weighted factorization method.

good agreement with the real 3D shape, both for the non-weighted factorization and the

weighted factorization methods. Thus we conclude that, while giving di�erent credit for

di�erent trajectories improves the 3D motion estimates, the 3D shape estimate is almost

independent of the weights given to the trajectories.

To interpret this behavior, we think of the estimation of the 3D shape as a �ltering

of the observations across time, and of the estimation of the 3D motion as a �ltering of

the observations across space. Since the weights given to the observations in the weighted

factorization method are di�erent from feature to feature, i.e., less weight is given to the

more noisy trajectories, the �ltering across space is improved and the weighted estimate

of the 3D motion is much more accurate than the non-weighted estimate. In contrast, the

weights are constant across time, thus �ltering across time is insensitive to the di�erent

weights, and the weighted estimate of the 3D shape is similar to the non-weighted estimate.

The �ltering analogies in the previous paragraph explain the experimental results in

a coarse way. By examining in detail the estimates of the relative depth in both plots of

Figure 9.7, we see that the weighted estimate of the 3D shape is slightly more accurate

than the non-weighted estimate { compare the very accurate weighted estimates of the
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Figure 9.9: Estimates of the 6 entries of the 3D rotation matrix that are involved in the or-
thogonal projection, marked with thin lines, superimposed to the true values, marked with
thick lines. Left plot: estimates obtained with the non-weighted factorization method.
Right plot: estimates obtained with the weighted factorization method.

relative depths of the �rst 10 features (the subset of features observed with lower noise

level) in the right plot of Figure 9.7 with the non-weighted estimates in the left plot of

Figure 9.7. The accuracy of the weighted estimate of the relative depth of a given feature

re
ects the level of the observation noise for the trajectory of the projection of that

feature { note that the weighted estimates of the relative depths of the subset of features

observed with higher level of noise (the last 11 features in the right plot of Figure 9.7)

are less accurate than the estimates of the relative depths of the �rst subset (the �rst

10 features in the right plot of Figure 9.7).

9.6 Summary

In this chapter we extended the feature-based factorization method introduced in chap-

ter 8. Instead of tracking pointwise features, we track regions where the image motion is

described by a single set of parameters. We show how to recover three-dimensional (3D)

structure (3D motion and a parametric description of the 3D shape) from the set of pa-

rameters describing the two-dimensional (2D) motion of the brightness pattern in the
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image plane by using the surface-based factorization approach.

In the chapter we also show how to include con�dence weights for the parameters

describing the 2D motion in the image plane (or for the feature trajectories). We show that

the problem is rewritten as the non-weighted factorization of a modi�ed matrix. This way

we are able to solve the weighted estimation problem without additional computational

cost. We call this extension the weighted factorization method.

The experimental results reported in section 9.5 illustrate the good behavior of the

algorithms proposed. The �rst experiment uses an image sequence for which feature track-

ing is not possible to illustrate the good performance of the surface-based factorization.

The second experiment emphasizes the improvement on the accuracy of the estimates of

the 3D motion, when the weighted factorization method is used rather than the original

non-weighted method.
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Chapter 10

Direct Inference of 3D Rigid Shape

10.1 Introduction

In chapter 7 we formulated the problem of inferring three-dimensional (3D) structure

(3D motion and 3D shape) from a video sequence by using Maximum Likelihood (ML).

We showed that the ML cost function depends on the 3D structure through the two-

dimensional (2D) motion of the brightness pattern in the image plane. Motivated by this

dependence, chapters 8 and 9 dealt with the recovery of 3D structure from the 2D motion

induced in the image plane. We used linear subspace constraints to develop e�cient

factorization methods to recover 3D rigid structure from the 2D motion computed for

a set of frames. The factorization approach is well suited to the analysis of scenes that

either have texture that makes easy the tracking of feature points or have 3D shape that

can be well approximated with polyhedral surfaces.

In this chapter we develop an algorithm that recovers 3D structure directly from the

image intensity values. Our algorithm is an approximation to the ML estimation of the

unknowns involved in the problem of inferring 3D rigid structure from video. We compute

the 3D motion by using the factorization method of chapters 8 and 9. In fact, experiments

with real videos show that the 3D rigid motion can be computed with accuracy from

the 2D motion computed across a set of frames for a small number of distinguished

points or regions. After estimating the 3D motion, we are left with the minimization

of the ML cost function with respect to the 3D shape. We propose a computationally

175
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simple multiresolution continuation-type method to solve this non-linear minimization.

Our algorithm starts by estimating coarse approximations to the 3D shape. Then, it

re�nes the estimate as more images are being taken into account. The computational

simplicity of our algorithm comes from the fact that each re�nement stage, although

non-linear, is solved by a Gauss-Newton method that requires no more than two or three

iterations. The derivatives involved in the Gauss-Newton iterates are computed from

the image gradients in a way similar to the simple common procedure for estimating the

2D motion of the brightness pattern in the image plane.

Our approach provides an e�cient way to cope with the ill-posedness of estimating

the motion in the image plane. In fact, the local brightness change constraint leads to a

single restriction, which is insu�cient to determine the two components of the local image

motion (the so called aperture problem discussed in detail in chapter 3). Our method of

estimating directly the 3D shape overcomes the aperture problem because we are left with

the local depth as a single unknown, after computing the 3D motion in the �rst step.

Reference [29] also estimates directly the 3D structure parameters by using the bright-

ness change constraint between two consecutive frames. A distinguishing feature of our

work is the formulation of the estimate from a set of images, rather than a single pair.

This lead to accurate estimates for the 3D structure, due to the 3D rigidity of the scene.

Reference [28] builds on the work in reference [29] by using a Kalman �lter to update the

estimates over time. Our approach is distinct from the approach of [28] because we model

the rigidity of the scene over a set of frames, instead of trying to fuse a set of possibly

inaccurate estimates obtained from pairs of consecutive frames.

Throughout this chapter we assume orthogonal projection to model the image forma-

tion. Orthogonal projections have been used as a good approximation to the perspective

projection when the object is far from the camera. With this type of scenes, two-frame

based methods fail to estimate the absolute depth. Although formulated assuming or-

thogonal projections, which leads to estimates of the relative depth, our method can be

easily extended to cope with perspective projections, which then leads to estimates of the
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absolute depth.

This chapter is organized as follows. To motivate the minimization procedure, we

�rst introduce a modi�ed image sequence, obtained from the original sequence and the

3D motion. Section 10.2 introduces this modi�ed image sequence for known motion. In

section 10.3, we describe the multiresolution continuation method used to minimize the

ML cost function. Illustrative experimental results are in section 10.4. Experiments with

real video sequences are described in chapter 11.

10.2 Image Sequence for Known Motion

In chapter 7, we introduced the Maximum Likelihood (ML) cost function C3 involved in

the recovery of three-dimensional (3D) rigid structure from video. The cost function C3

depends on the following unknowns: texture, 3D shape, and 3D motion. In chapter 7,

we �rst maximized it with respect to the unknown texture. After replacing the texture

estimate, the ML cost function C3 is given by expression (7.10), which is written again

here for easy reference,

C3 (S; fmfg) =
FX

f=2

f�1X
g=1

Z h
If(uf(s))� Ig(ug(s))

i2 Jf(s)Jg(s)PF

h=1 Jh(s)
ds: (10.1)

The ML cost function C3 in expression (10.1) depends on the 3D shape S and 3D mo-

tion fmfg only through the two-dimensional (2D) motion induced in the image plane,

i.e., through the mappings fuf (s)g. Recall the comment on section 7.2 that uf(S;mf ; s)

depends on the shape S and the motion mf .

Chapters 8 and 9 address the minimization of the functional (10.1) by using the com-

mon approach of dividing the overall problem into two steps. The �rst step estimates the

motion in the image plane uf (s) by minimizing an approximation of (10.1) (in general,

only two frames are taken into account). The second step estimates the shape S and

the motion mf from fmfg. Since the motion in the image plane can not be reliably

computed in the entire image, these methods cannot provide a reliable dense shape es-

timate. The approach described in this chapter combines the good performance of the
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factorization method in estimating the 3D motion with the robustness of minimizing the

ML cost function with respect to the object shape. We recover the 3D motion mf as

described in chapters 8 and 9. Then, we insert the 3D motion estimates into the ML cost

function (10.1), and minimize it with respect to the unknown shape S.

We start by making explicit the relation between the mapping uf (s) that describes

the 2D motion in the image plane and the 3D shape S and the 3D motion mf .

Choose the coordinate s of the generic point in the object surface to coincide with the

coordinates [x; y]T of the object coordinate system. Also, choose the object coordinate

system so that it coincides with the camera coordinate system in the �rst frame. Under

orthography, a point with coordinate s in the object surface is projected on coordinate u =

[x; y]T = s in the �rst frame, so that u1(s) = s. At instant f , that point is projected,

according to expressions (9.10,9.11), onto the image coordinate

uf(s) = uf

��
x
y

��
=

�
ixf iyf izf
jxf jyf jzf

�24 x
y
z

35 +

�
tuf
tvf

�

=
�
Nf nf

� � s
z

�
+ tf

= Nfs+ nfz + tf : (10.2)

Expression (10.2) makes explicit the relation between the mapping uf (s) that describes

the 2D motion in the image plane and the 3D motion, represented by fNf ;nfg, and the

3D shape, represented by the unknown relative depth z.

The 3D shape and the 3D motion are observed in a coupled way through the 2D motion

on the image plane as expression (10.2) shows. When the 3D motion is known, the

problem of inferring the 3D shape from the image sequence is simpli�ed. In fact, the

local brightness change constraint leads to a single restriction, which is insu�cient to

determine the two components of the local image motion (the so called aperture problem

studied in detail in chapter 3). Our method of estimating directly the 3D shape overcomes

the aperture problem because we are left with the local depth as a single unknown,

after computing the 3D motion in the �rst step. To better illustrate why the problem
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becomes much simpler when the 3D motion is known, we introduce a modi�ed image

sequence feIf ; 1 � f � Fg, obtained from the original sequence fIf ; 1 � f � Fg and the

3D motion. We show that the 2D motion of the brightness pattern on image sequence eIf
depends on the 3D shape in a very particular way. This motivates the algorithm we use

to minimize the ML cost function in expression (10.1).

Consider the imageeIf related to image If by the following a�ne mapping that depends

only on the 3D position at instant f ,

eIf(s) = If(Nfs+ tf): (10.3)

From this de�nition it follows that a point s, which projects to coordinate uf (s) in im-

age If , is mapped to coordinate

euf(s) = N�1
f [uf (s)� tf ] (10.4)

in image eIf . Replacing uf (s) by expression (10.2), we obtain for the 2D motion of the

brightness pattern of the modi�ed sequence feIfg,
euf (s) = s+N�1

f nfz: (10.5)

Expression (10.5) shows that the trajectory of a point s in image sequence feIfg de-

pends on the relative depth of that point in a very particular way. In fact, the trajectory

has the same shape for every point. The shape of the trajectories is given by the evolution

of the 2� 1 vector N�1
f nf across the frame index f . Thus, the shape of the trajectories

depends uniquely on the rotational component of the 3D motion. The relative depth z

a�ects only the magnitude of the trajectory. A point with relative depth z = 0 is station-

ary in image sequence feIfg, since we get euf (s) = s for arbitrary 3D motion of the object,

by making z = 0 in expression (10.5). Clearly, this is not the case in the original image

sequence fIfg, as shown by expression (10.2).



180 CHAPTER 10. DIRECT INFERENCE OF 3D RIGID SHAPE

10.3 Minimization Procedure: Continuation Method

By minimizing the Maximum Likelihood (ML) cost function in expression (10.1) with

respect to the relative depth z of each point s, we are in fact estimating the magnitude of

the trajectory of the point to where the point s maps in image sequence feIfg. The shape
of the trajectory is known, since it depends only on the three-dimensional (3D) motion.

Our algorithm is based on this characteristic of the ML cost function. We use a

multiresolution continuation-type method to estimate the relative depth of each point.

The algorithm re�nes the estimate of the relative depth as more frames are being taken

into account. When just a few frames are taken into account, the magnitude of the

trajectories in the image sequence feIfg can be only roughly estimated because the length

of the trajectories is short and their shape may be quite simple. When enough frames

are considered, the trajectories on image sequence feIfg are long enough, their magnitude

is unambiguous, and the relative depth estimates are accurate. Our algorithm does not

compute the image sequence feIfg, it rather uses the corresponding intensity values of the
original sequence fIfg.

The advantage of the continuation-type method is that it provides a computationally

simple way to estimate the relative depth because each stage of the algorithm updates the

estimate by using a Gauss-Newton method, i.e., by solving a linear problem. We consider

the relative depth z to be constant in a regionR. We estimate z by minimizing the energy

resultant from neglecting the weighting factor
Jf (s)Jg(s)
PF
h=1 Jh(s)

in the ML cost function (10.1).

We de�ne e(z; s) as the integrand of the ML cost function (10.1) after neglecting the

weighting factor
Jf (s)Jg(s)
PF
h=1 Jh(s)

,

e(z; s) = If(Nfs+ nfz + tf)� Ig(Ngs+ ngz + tg): (10.6)

The estimate ẑ of the relative depth z for the region R is then

ẑ = argmin
z
E(z); (10.7)
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where E(z) is the energy function

E(z) =
FX
f=2

f�1X
g=1

Z
R

e2(z; s) ds: (10.8)

We compute the estimate ẑ by re�ning a previous estimate z0, as

ẑ = z0 + b�z; with b�z = argmin
�z

E(z0 + �z): (10.9)

The Gauss-Newton method neglects the second and higher order terms of the Taylor series

expansion of e(z0 + �z; s) for �xed s,

e(z0 + �z; s) ' e(z0; s) + e0(z0; s)�z; (10.10)

where e0(z0; s) is the partial derivative of e(z; s) with respect to z, evaluated at z = z0.

By making this approximation, we get the following expression for the increment b�z
that minimizes (10.9),

b�z = �

PF

f=2

Pf�1
g=1

R
R
e(z0; s)e

0(z0; s) dsPF

f=2

Pf�1
g=1

R
R
[e0(z0; s)]

2 ds
; (10.11)

The derivative e0(z; s) is computed from the spatial gradient of the images in a way

similar to the simple common procedure for estimating the two-dimensional (2D) motion

of the brightness pattern in the image plane. By di�erentiating e(z; s), given by expres-

sion (10.6), with respect to z, we express e0(z; s) in terms of the components of the spatial

gradient of images If and Ig as

e0(z; s) = Ifx(Nfs + nfz + tf)izf + If y(Nfs + nfz + tf)jzf

�Igx(Ngs + ngz + tg)izg � Igy(Ngs + ngz + tg)jzg; (10.12)

where Ifx and If y denote the components of the spatial gradient of image If , and iz, and jz

are the entries of the rotation matrix introduced in chapter 8, section 8.2, expression( 8.1).

At the beginning, we start with the initial guess z0 = 0 for any region R. We use

square regions where z is estimated as being constant. The size of the regions determines

the resolution of the depth estimate. We use large regions when processing the �rst frames

and decrease the size of the regions as the continuation method takes more frames into

account.
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10.4 Experiment

We describe one experiment that illustrates our approach. This experiment uses a syn-

thetic sequence for which we compare the estimates obtained with the ground truth. In

chapter 11 we use the multiresolution continuation algorithm to recover 3D shape from

a real life video clip. In this section, we consider that the world is two-dimensional (2D)

and that the images are one-dimensional (1D) orthogonal projections of the world. This

scenario was introduced in chapter 9 and illustrated in Figure 9.1. It re
ects all the basic

properties and di�culties of the problem of recovering rigid structure from video and cor-

responds to the real three-dimensional (3D) world if we consider only one epipolar plane

and assume that the motion occurs on that plane.

From expression (9.2), we see that the point (x; z) projects at time f on the image

coordinate uf given by

uf = ixfx + izfz + tuf (10.13)

Expression (10.13) shows that the orthogonal projection is insensitive to the translation

component twf of the object motion.
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Figure 10.1: True motion. Left: rotational motion; right: translational motion.

Using the constructs represented in Figures 10.1 and 10.2, we generated the image se-

quence of Figure 10.3. The time evolution of the translational and rotational components
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of the motion are shown respectively on the left and right plots of Figure 10.1. The object

shape is shown on the plot of Figure 10.2. The object texture is an intensity function

de�ned over the object contour.
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Figure 10.2: True shape.

10 20 30 40 50 60 70 80 90 100
25

20

15

10

5

space

ti
m

e

Figure 10.3: Sequence of 25 1D images: each horizontal slice is one image.

In Figures 10.3 and 10.4 we show the computer generated sequence of 25 1D images.

Time increases from top to bottom. We obtained the image sequence in Figure 10.3 by

projecting the object texture on the image plane according to expression (10.13) and by
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adding noise. The surface plotted in Figure 10.4 represents the brightness intensity value

as a function of the pixel index and the time instant.
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Figure 10.4: Sequence of 25 1D images: evolution of the brightness intensity value.

In Figure 10.5 we represent the modi�ed image sequence, computed from the original

sequence in Figures 10.3, as described in section 10.2 for the 3D scenario, see expres-

sion (10.3). The motion of the brightness pattern in Figure 10.5 is simpler than the

motion in Figure 10.3. In fact, the horizontal positions of the brightness patterns in Fig-

ure 10.5 have a time evolution that is equal for the entire image (see, from Figure 10.5

and the plot of Figure 10.2, that the shape of the trajectories of the brightness patterns

is related to the rotational component of the motion). Only the amplitude of the time

evolution of the horizontal positions of the brightness patterns in Figure 10.5 is di�erent

from one object region to another object region. The amplitude for a given region is pro-

portional to the relative depth of that region. Note that the brightness pattern is almost
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Figure 10.5: Image sequence for known motion.

stationary for regions with relative depth close to zero (see the regions around pixels 55

and 95 on the plot of Figure 10.2 and on Figure 10.5). This agrees with the discussion in

section 10.2. In Figure 10.6 we represent the evolution of the brightness intensity value

of the modi�ed image sequence as a function of the pixel index and the time instant. The

above mentioned di�erences between the time evolution of the brightness pattern of the

modi�ed image sequence and the one of the original sequence are also evident by com-

paring the surface represented in Figure 10.6 with the brightness surface for the original

image sequence, represented in Figure 10.4.

We estimated the relative depth of the object by using themultiresolution continuation-

type method introduced in section 10.3. The evolution of the relative depth estimate is

represented in the plots of Figure 10.7 for several time instants. The size of the estima-

tion region R was 10 pixels when processing the �rst 5 frames, 5 pixels when processing

frames 6 to 10, and 3 pixels when processing frames 11 to 25. The top left plot was

obtained with the �rst three frames and shows a very coarse estimate of the shape. The

bottom right plot was obtained after all 25 frames of the image sequence have been

processed. In this plot we made a linear interpolation between the central points of con-

secutive estimation regions. This plot superimposes the true and the estimated depths
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Figure 10.6: Image sequence for known motion: evolution of the brightness intensity
value.

showing a very good agreement between them. The intermediate plots show progressively

better estimates of the depth shape.

10.5 Summary

In this chapter we develop an algorithm that recovers three-dimensional (3D) rigid shape

directly from the image intensity values of a two-dimensional (2D) video sequence.

The problem was formulated as the Maximum Likelihood (ML) estimation of the un-

known texture, 3D shape, and 3D motion. After replacing for the ML estimate of the

texture, we estimate the 3D motion by using the factorization methods of chapters 7

and 8. In this chapter we develop a multiresolution continuation-type algorithm to mini-

mize the ML cost function with respect to the object 3D shape. The algorithm starts by

estimating coarse approximations to the 3D shape. Then, it re�nes the estimate as more
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images are being taken into account.

Our approach is computationally simple because each stage of the continuation-type

algorithm is solved by using a Gauss-Newton method that requires no more than two or

three iterations. The derivatives involved in the Gauss-Newton iterates are computed

from the image gradients in a way similar to the simple common procedure for estimating

the 2D motion of the brightness pattern in the image plane.

The experimental results described in section 10.4 illustrate that the algorithm suc-

ceeds in recovering dense estimates of the rigid shape.
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Figure 10.7: Continuation method: evolution of the shape estimate for the image sequence
represented in Figure 10.3. Left to right, top to bottom, after processing N frames
where N is successively: 3; 4; 5; 6; 8; 10; 15; 20; 25. The bottom right plot superimposes the
true shape (dashed line) and its estimate (solid line).



Chapter 11

Real Video Experiments

In this chapter we describe three experiments that recover three-dimensional (3D) struc-

ture from real life video sequences. The �rst two experiments, in sections 11.1 and 11.2,

demonstrate the performance of the surface-based rank 1 factorization method described

in chapters 8 and 9. In the last experiment, described in section 11.3, we use the mul-

tiresolution continuation-type method developed in chapter 10.

11.1 Box

In this experiment, we used a hand held taped video sequence of 30 frames showing a box

over a carpet. Figure 11.1 shows three consecutive frames of the box video sequence. The

3D shape of the scene is well described in terms of four planar patches. One corresponds

to the 
oor, and the other three correspond to the three visible faces of the box. The

camera motion was approximately a rotation around the box.

Figure 11.1: Three consecutive frames of the box video sequence.

189
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We processed the box video sequence by using the surface-based rank 1 factorization

method. We start by estimating the parameters describing the 2D motion of the brightness

pattern in the image plane. As derived in chapter 9, for planar patches, the 2D motion
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Figure 11.2: Estimates of the image motion parameters in the 2 � 2 matrix Dn
f and the

2� 1 vector dnf . From left to right, top to bottom, D11;D12;D21;D22;d1, and d2.

in the image plane is described by the a�ne motion model. To segment the regions

corresponding to di�erent planar patches, we used the method outlined in chapter 3, i.e.,

we slided a 20 � 20 window across the image and detected abrupt changes in the a�ne
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motion parameters. We estimated the a�ne motion parameters as detailed in chapter 3.

The plots in Figure 11.2 represent the time evolution of the a�ne motion parameters.

The 6 a�ne motion parameters are the entries of the 2�2 matrixDn
f and the 2�1 vector d

n
f

introduced in chapter 9, section 9.3, see expression (9.14). The top four plots of Figure 11.2

represent the entries of Dn
f as a function of f for each of the four planar patches. The

bottom two plots represent dnf . We used four di�erent line types to identify each of the

planar patches. The solid line corresponds to patch 1 (the left side vertical face of the

box in the frames of Figure 11.1). The dotted line corresponds to patch 2 (the right side

vertical face of the box). The dash-dotted line corresponds to patch 3 (the top of the

box). The dashed line corresponds to patch 4 (the 
oor). We see the evolution of the

set of a�ne parameters is distinct for each surface patch, in particular see the evolution

of D11;D12, and d1.

From the a�ne motion parameters of Figure 11.2, we have recovered the 3D structure

of the scene by using the surface-based rank 1 factorization method described in chapters 8

and 9. For the box video sequence, the shape matrix S contains four submatrices, one for

each planar patch,

ST =
�
ST1 ST2 ST3 ST4

�
: (11.1)

Each submatrix in expression (11.1) is a matrix that contains the 3D shape parameters

of the corresponding surface patch. The general structure of matrix Sn was speci�ed

in chapter 9, section 9.3, see expression (9.17). In this experiment, expression (9.17) is

particularized to planar surface patches, leading to the 3� 3 matrix

STn =

24 xn0 1 0
yn0 0 1
an00 an10 an01

35 ; (11.2)

where (xn0 ; y
n
0 ) are the coordinates of the centroid of the support region of patch n and

fan00; a
n
10; a

n
01g are the parameters describing the 3D shape of the patch by z = an00+a

n
10(x�

xn0 ) + an01(y � yn0 ).

We computed the parameters describing the 3D structure, i.e, the 3D motion parame-

ters
�
tuf ; tvf ; �f ; �f ;  f ; 1 � f � 30

	
and the 3D shape parameters fan00; a

n
10; a

n
01; 1 � n � 4g
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Figure 11.3: Six perspective views of the 3D shape and texture reconstructed from the
box video sequence of Figure 11.1.
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from the image motion parameters in
�
Dn

f ;d
n
f ; 1 � f � 30; 1 � n � 4

	
by using the surface-

based rank 1 factorization method.

After computing the 3D structure parameters, we recover the texture of each surface

patch by averaging the video frames co-registered according to the recovered 3D structure.

Figure 11.3 shows six perspective views of the reconstructed 3D shape with the scene

texture mapped on it. The spatial limits of the planar patches were determined the

following way. Each edge that links two visible patches was computed from the intersection

of the planes corresponding to the patches. Each edge that is not in the intersection of

two visible patches was computed by �tting a line to the boundary that separates two

regions with di�erent 2D motion parameters. We see that the angles between the planar

patches are correctly recovered.

Video compression example

Model-based video representations enable very low bit rate compression. Basically, instead

of representing a video sequence in terms of frames and pixels, 3D model-based approaches

use the recovered 3D structure. A video sequence is then represented by the 3D shape

and texture of the object, and its 3D motion. Within the surface-based representation,

the 3D motion and 3D shape are coded with a few parameters and the texture is coded

as a set of ordinary images, one for each planar patch. We use the box video sequence to

illustrate this video compression scheme.

The video analysis task consists in recovering the object shape, object motion, and

object texture from the given video. The steps of the analysis task for the box video

sequence were detailed above. Figure 11.4 shows frontal views of the four elemental

texture constructs of the surface-based representation of the box video sequence. On the

left, the planar patch corresponding to the carpet is not complete. This is because the

region of the carpet that is occluded by the box can not be recovered from the video

sequence. The other three images in Figure 11.4 are the three faces of the box.

The video synthesis task consists in generating a video sequence from the recovered
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Figure 11.4: The four planar patches that constitute the elemental texture constructs.
From the left to the right, the carpet (
oor level), and the three visible faces of the box:
top of the box, the right side of the box, and the left side of the box.

3D motion, 3D shape, and texture of the object. The synthesis task is much simpler

than the analysis because it involves only an appropriate warping of the recovered object

texture. The frame If is synthesized by projecting the object texture according to the

model introduced in chapter 7,

If = P
n
M(mf)O

o
= T (sf (u)) : (11.3)

The projection of the texture is straight forward because it involves only the warping of

the texture image according to the mapping sf (u), the inverse of uf(s). The operations

that must be carried out to synthesize the region corresponding to surface patch n at

time instant f are: from the 3D shape parameters fan00; a
n
10; a

n
01g and the 3D motion

parameters
�
tuf ; tvf ; �f ; �f ;  f

	
, compute the parameters Dn

f ;d
n
f describing the a�ne

mapping uf(s), see chapter 9, section 9.3, expressions (9.13) and (9.14); then, project the

texture of the patch k according to the inverse a�ne mapping sf (u),

sf (u) = s(Dn
f
# ; dnf

# ;u) = Dn
f
# u + dnf

# ; (11.4)
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where Dn
f
# =

�
Dn

f

��1
and dnf

# = �
�
Dn

f

��1
dnf + sn0 : (11.5)

The original sequence has 50� 320� 240 = 3840000 bytes. The representation based

on the 3D model needs
P

n Tn +
P

n Sn + 50 �M =
P

n Tn + 2248 bytes, where Tn is

the storage size of the texture of patch n, Sn is the storage size of the shape of patch n,

and M is the storage size of each camera position. Since the temporal redundancy was

eliminated, the compression ratio chosen for the spatial conversion governs the overall

video compression ratio. To compress the texture of each surface patch in Figure 11.4, we

used the JPEG standard with two di�erent compression ratios. The storage sizes T1, T2,

T3, and T4 of the texture patches were, in bytes, from left to right in Figure 11.4, 2606,

655, 662, and 502, for the higher compression ratio and 6178, 1407, 1406, and 865, for

the lower compression ratio. These storage sizes lead to the average spatial compression

ratios of 31:1 and 14:1.

The �rst frame of the original box video sequence is on the left side of Figure 11.5.

The center and right images show the �rst frame of the synthesized sequence for the two

di�erent JPEG spatial compression ratios. In the center image, the �rst frame obtained

with the higher spatial compression ratio, leading to the overall video compression ratio

of 575:1. The right image corresponds to the lower spatial compression ratio and an

overall video compression ratio of 317:1. In both cases, the compression ratio due to the

elimination of the temporal redundancy is approximately 20.

Figure 11.5: Video compression. Left: frame 1 of the box video sequence, Center: frame 1
of the synthesized sequence for a compression ratio of 575:1, Center: frame 1 of the
synthesized sequence coded for a compression ratio of 317:1.
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From the compressed frames in Figure 11.5 we see that the overall quality is good but

there are small artifacts in the boundaries of the surface patches.

11.2 Pedestal

In this experiment, we used a video showing a pedestal. Figure 11.6 shows two frames

from a sequence of 25 images. The shape of the part of the pedestal that is captured in

the video is piecewise planar with nine planar patches.

Figure 11.6: Two frames from the pedestal video sequence.

After hand-segmenting the region corresponding to the pedestal, we applied the surface-

based rank 1 factorization method. First, we computed the nine sets of parameters of the

2D a�ne motion models that describe the motion of the brightness pattern in the image

plane. Then, we used the surface-based factorization procedure described in chapter 9

to recover the 3D shape and 3D motion parameters of the pedestal from the 2D motion

parameters estimates.

We derived from the estimated 3D shape parameters the relative depth of the pedestal

shown on the left image of Figure 11.7. In this image the brightness level of a pixel codes

the relative depth of that pixel, the brighter the pixel, the closer it is to the camera in

reference frame 1.

We extracted the texture of the pedestal from the video sequence by proceeding as

detailed in the previous section. Then, we reconstructed the 3D shape and superimposed

the texture. Two perspective views of the reconstructed 3D shape are shown on the center
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and rightmost images of Figure 11.7. The nine planar patches of the pedestal are clearly

seen as well as the angles between them. These two images represent two di�erent views

and are obtained by rotating the 3D model. Other views are generated in a similar way.
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Figure 11.7: Relative depth and reconstructed 3D shape and texture for the pedestal
video sequence of Figure 11.6.

11.3 Clown

This experiment illustrates the performance of themultiresolution continuation-type method

developed in chapter 10. We used a sequence of 10 frames from a real life video sequence

showing a toy clown. Figure 11.8 shows frames 1 and 5 of the clown video sequence. Each

frame has 384� 288 pixels.
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Figure 11.8: Clown video sequence. Frames 1 and 5.

Superimposed on frame 1, we marked with white squares 20 feature points used in
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the rank 1 factorization method. The feature points were selected by using the intensity

gradient criteria developed in chapter 3.

We tracked the feature points by matching the intensity pattern of each feature along

the sequence, as described in chapter 3. Using the rank 1 factorization method described

in chapter 8, we recovered the 3D motion from the feature trajectories.

The 3D shape estimate provided by the feature-based factorization method, i.e., the

3D shape described by the estimated 3D positions of the feature points is not a good

approximation of the true 3D shape because the set of features in very sparse.

To recover a dense representation of the 3D shape, we estimated the relative depth

of the 3D object by using the multiresolution continuation-type method described in

chapter 10.

The evolution of the estimate of the relative depth is illustrated by Figure 11.9. The

grey level images in this �gure code the relative depth estimates. The brighter a pixel

is, the closer to the camera it is in the �rst frame. The size of the estimation region R

was 30 � 30 pixels when processing the �rst 3 frames, 20 � 20 pixels when processing

frames 4 to 6, and 10 � 10 pixels when processing frames 7 to 10. The left image was

obtained with the �rst three frames and shows a very coarse estimate of the shape. The

right image was obtained after all 10 frames of the image sequence have been processed.

50 100 150 200 250 300 350

50

100

150

200

250

50 100 150 200 250 300 350

50

100

150

200

250

50 100 150 200 250 300 350

50

100

150

200

250

Figure 11.9: Relative depth recovered from the clown video sequence of Figure 11.8 after
processing 3, 6, and 10 frames.



Chapter 12

Conclusion

This chapter concludes the thesis. We summarize the content of the thesis, emphasize the

major original contributions, and point out future research directions.

12.1 Thesis Summary

The thesis addresses two problems within motion analysis: the segmentation of a two-

dimensional (2D) rigid moving object, Part I, chapters 2 through 6; and the inference of

three-dimensional (3D) rigid structure from a monocular video sequence, Part II, chap-

ters 7 through 11. The following paragraphs summarize the contents of each chapter of

the thesis.

Part I

In chapter 2 we stated the 2D motion segmentation problem. The 2D shape of the mov-

ing object was described by a discretized binary template. Each pixel of each frame in

the video sequence was modeled as a noisy version either of the moving object intensity

level (object texture), if that pixel belongs to the template of the moving object, or of

the background intensity level (background texture), if otherwise. This model accounts

explicitly for the occlusion of the background by the moving object over a set of frames.

By modeling occlusion, we are able to obtain an accurate estimate of the moving object

template, even when processing low texture / low contrast video sequences. The seg-
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mentation problem was formulated as the Maximum Likelihood (ML) estimation of all

the unknowns from the video sequence: the motions of the object, the motions of the

camera, the binary template of the object, the texture of the object, and the texture of

the background.

We minimized the ML cost function by �rst decoupling the estimation of the motions

from the estimation of the remaining parameters. The motions were estimated on a frame

by frame basis. In chapter 3 we dealt with the estimation of the motion of the brightness

pattern in the image plane. We determined the estimation error variance of the motion

parameters in terms of the spatial variability of the brightness pattern and the size of the

region of analysis. In Part II, we used these expressions to weight the contribution of each

image region to the estimation of 3D rigid structure from 2D motion.

In chapter 4 we detailed our two-step iterative algorithm that segments the 2D rigid

moving object. We �rst estimated the texture of the moving object. Then, we inserted

this texture estimate into the ML cost function, being left with a function of the texture of

the background and of the template of the moving object. We described an algorithm to

minimize this cost function iteratively in two steps: (i) estimate the background texture

with known template; and (ii) estimate the object template with known background. The

background estimate in step (i) was obtained in closed-form. The template estimate in

step (ii) lead to a simple binary test evaluated at each pixel. The template estimation

test integrates over time the (possibly small) intensity di�erences between the background

and the moving object. We illustrated the good quality of the template estimates by seg-

menting a di�cult sequence when a complex shaped object moves against a low contrast

background.

In chapter 5 we analyzed statistically the binary test involved in the two-step iterative

algorithm. We derived upper bounds for the probability of misclassifying the template

pixels, and showed that these upper bounds decrease with the number of frames processed.

We illustrated the convergent behavior of the test by segmenting a 1D object whose

template is the union of two disjoint segments.



12.1. THESIS SUMMARY 201

Chapter 6 tests our segmentation algorithm with two real video sequences. The �rst

records a live tra�c scene. The background moves, due to camera panning motion, and

a number of moving cars enter and leave the scene. The cars have regions with very

low texture, and the contrast of the cars with respect to the background is low in several

regions. Our algorithm segments accurately the moving cars, and reconstructs successfully

a complete view of the background. The second sequence is a robot soccer video clip. It

shows a square shaped robot following a ball. The robot and the ball move against a static

background, the �eld of the game, which has stripes that have intensity level perceptually

similar to the robot's intensity level (zero contrast). This experiment illustrates the time

evolution of the template estimate when the contrast between the moving object and the

background is very low. Again, the algorithm successfully segments both the ball and the

robot.

Part II

In chapter 7 we stated the problem of inferring 3D structure from an image sequence. We

modeled the video frames as the orthogonal projection of the texture of the object on the

image plane plus noise. Inferring 3D structure was formulated as the joint ML estimation

of the 3D shape of the object, of its 3D motion, and of its texture. We reduce the

dimensionality of the problem by minimizing �rst the ML cost function with respect to

the object texture. This leads to an ML cost function that depends only on the 3D shape

and 3D motion through the 2D motion induced in the image plane. This shows that the

usual structure from motion (SFM) approach is an approximation to the ML solution.

Chapters 8 and 9 dealt with recovering structure from motion. In chapter 8 we devel-

oped a rank 1 factorization algorithm. A set of features is tracked across a set of frames.

The 3D shape is represented by the set of 3D positions of the feature points. The shape

of the trajectory of the projection of each feature point depends both on the depth of the

point and the 3D motion of the object. The challenge in recovering 3D structure from

2D motion is to analyze this coupled dependence. Our rank 1 factorization method de-
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couples the in
uence of the 3D shape from the in
uence of the 3D motion on the feature

trajectories. In fact, by using an appropriate linear subspace projection, we obtained a

new set of trajectories whose shape depends only on the 3D motion (the depth of each

feature point determines the magnitude of the corresponding trajectory). The subspace

projection enabled us to recover the 3D shape and the 3D motion from the set of feature

trajectories by a simple factorization of a matrix that is rank 1 in a noiseless situation.

This matrix was factored by computing the singular vector corresponding to the largest

singular value, avoiding the use of the Singular Value Decomposition (SVD) as suggested

by Tomasi and Kanade for their original factorization method [59, 61]. This lead to a

very fast algorithm to recover 3D structure from 2D motion, even when using a large

number of features and large number of frames. We showed that the computational cost

of our rank 1 factorization is signi�cantly lower than the original factorization algorithm

in [59, 61]. For the example tested, the computational cost is reduced by a factor of

approximately 20.

We noted that when the goal is the recovery of a dense representation of the 3D shape,

the feature-based approach may not solve the problem satisfactorily because it may require

tracking an excessive number of features to obtain a dense description of the 3D shape.

This leads to a di�cult correspondence problem since only distinguished points, as bright-

ness corners, can be accurately tracked. To overcome this limitation, we introduced in

chapter 9 a new methodology: the surface-based factorization. First, we represented the

3D shape by a parametric description of the object surface. Then, we showed how to

recover the parameters that describe the 3D shape and the 3D motion from the param-

eters describing the 2D motion in the image plane. We accomplished this by factorizing

a surface-based measurement matrix that collects the set of 2D motion parameters. To

factorize this matrix in an e�cient way, we used the methodology of the rank 1 factoriza-

tion developed in chapter 8. In chapter 9 we also showed how to make the factorization

methods more robust by weighting di�erently the 2D motion parameters according to the

accuracy of their estimates. The weights are computed from the variances of the estimates
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of the 2D motion parameters. These variances were evaluated as detailed in chapter 3.

We extend the rank 1 factoorization method to the weighted factorization method. The

weighted factorization recovers the 3D structure using the con�dence weights without

paying an additional computational cost. This was achieved by rewriting the problem

with weights as the factorization of a modi�ed measurement matrix and factorizing this

matrix with the rank 1 factorization method. Chapter 9 includes one experiment that

demonstrated the good performance of the surface-based factorization method when re-

covering rigid structure from an image sequence with a challenging smooth texture for

which it is not possible to track pointwise features. A second experiment illustrated the

improvement the quality of the reconstruction of the 3D structure, when the estimation

weights are taken into account. The weighted estimates of the 3D structure are more

accurate than the non-weighted ones because the 2D motion estimates corresponding to

regions with higher spatial variability are given higher credit than the ones corresponding

to regions with low texture.

In chapters 8 and 9 we approximated the ML estimation of the 3D structure by

recovered the 3D shape and the 3D motion from the 2D motion of the brightness pattern

in the image plane. The quality of the estimate of the 3D shape obtained this way is

limited by the possibility of estimating the 2D motion over the entire image. For example,

with image sequences with textures that exhibit a predominant spatial orientation, it

is very di�cult to compute the 2D motion of the brightness pattern (this problem was

studied in detail in chapter 3). For these sequences, the 3D shape reconstruction obtained

through the structure from motion approach may be much rougher than the corresponding

ML estimate. In chapter 10 we proposed a method to estimate the 3D shape directly

from the image intensity values by minimizing the ML cost function, after introducing

the estimates of the 3D motions. To minimize the ML cost function, we developed a

multiresolution scheme { a continuation-type algorithm { that works by estimating coarse

approximations to the 3D shape at the beginning, and re�ning the estimate as more

images are being taken into account. Each stage of the continuation algorithm uses a
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very simple Gauss-Newton method to update the estimate of the 3D shape. We presented

one experiment that illustrated the good convergence of our method when recovering a

dense estimate of the 3D shape.

Chapter 11 describes three experiments with real video sequences. The �rst two

experiments use the surface-based rank 1 factorization method developed in chapters 8

and 9 to recover 3D structure from video sequences. The box experiment uses a video

sequence obtained by rotating a camera around a box with rectangular faces that stands

over a carpet. Our algorithm recovered the 3D shape of the scene as a piecewise planar

surface with patches corresponding to the faces of the box and the 
oor. Once the

3D structure is available, we can recreate new views of the scene, possibly not present

in the original sequence. The chapter includes two such views synthesized by specifying

di�erent viewing positions for the camera. The correctness of the angles between the

planar patches in the recovered surface demonstrate the good performance of our method

to recover 3D rigid structure from motion. We used the box video sequence to illustrate

how the 3D model-based video representation achieves very high compression rates. We

presented reasonably good quality frames obtained from the box sequence compressed at

ratios 317:1 and 575:1. Chapter 11 includes a second experiment that also demonstrates

the performance of the surface-based factorization method in recovering piecewise planar

shapes. The last experiment uses a video clip that shows a clown toy as an example of a

scene whose 3D shape is not well described by a sparse set of features. We �rst recovered

the 3D motion by using the feature-based rank 1 factorization method. Then, we used

the multiresolution continuation-type algorithm developed in chapter 10 to recover the

3D shape directly from the image intensity values. The depth map that is recovered

shows this algorithm is able to provide a dense representation of general 3D rigid shapes.
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12.2 Major Contributions

In this section we summarize our major contributions. The thesis presented an original

Maximum Likelihood (ML) formulation to the problem of inferring rigid structure from a

set of images. In the context of this formulation, we developed e�cient algorithms to seg-

ment a two-dimensional (2D) rigid moving object, and to recover three-dimensional (3D)

rigid structure from video. We detail these accomplishments next.

Inference of 3D rigid structure

Our major contributions to the recovering 3D rigid structure from 2D videos are the

surface-based factorization framework with its associated rank 1 factorization and weighted

factorization algorithms, and the multiresolution continuation-type method that re�nes

the 3D shape estimate directly from the image intensity values. They are summarized as

follows:

� Surface-based factorization. We introduce the surface-based factorization method

that represents the surfaces to be reconstructed by parametric models, and recovers,

by a suitable factorization procedure, the 3D structure by an inversion from a parsi-

monious set of 2D motion parameters. These describe the motions of the brightness

pattern in the image plane induced by the three dimensional motions of the rigid

object. Our approach overcomes the known di�culty of tracking pointwise features

as required in the original factorization method of Tomasi and Kanade [59, 61].

� Rank 1 factorization. We exploit the constraints of the 3D structure recovery

from 2D motions to derive a fast rank 1 factorization algorithm. This algorithm

avoids the factorization of a rank 3 matrix as in [59, 61].

� Weighted factorization. We developed the weighted factorization method that

weights di�erently motion estimates of di�erent error quality. The weighted factor-

ization has the same computational cost of the non-weighted rank 1 factorization.
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� Direct inference of 3D rigid shape. We develop a new algorithm that recovers

3D rigid shape directly from the image intensity values throughMaximum Likelihood

estimation. The direct inference method progressively re�nes the estimates of the

3D shape in a coarse-to-�ne multiresolution continuation-type manner. Each step of

this continuation procedure is solved by a Gauss-Newton method that, in practice,

requires no more than two or three iterations.

Segmentation of 2D moving object

We model explicitly the occlusion of the background by the moving object. By considering

the occlusion, we can segment accurately even low texture / low contrast video sequences.

We present a computationally simple algorithm that computes the ML estimate of the

template of the moving object. We summarize this accomplishment brie
y.

� Explicit modeling of occlusion. The model considers explicitly the occlusion of

the background by the moving object.

� Motion segmentation in low texture / low contrast. Our new algorithm

resolves the di�culties that arise when processing low texture and/or low contrast

videos. The robustness of the algorithm is due to two important characteristics: it

uses a set of frames, rather than a single pair; and it processes directly the image

intensity values, through ML estimation, rather than relying on the computation of

the image motion �eld as an intermediate step. The algorithm is iterative alternating

between estimating the background intensity levels and the moving object template.

Both steps have closed-form solution and are computationally very simple.

12.3 Future Directions

We highlight a few alternative directions to explore our solution to the problem of rigid

structure recovery from monocular videos. We group them into three categories: direct
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extensions to our work; new directions that lead to new research problems; and applica-

tions.

Direct extensions of our work

Our formulation of the Maximum Likelihood (ML) may be explored in a number of ways

to recover rigid structure from video, including the following ones.

Segmentation of 2D moving object { parameterized contour model. We de-

scribed by a discretized binary template the two-dimensional (2D) shape of the moving

object. This description is highly 
exible and enables the accurate detection of non-

smooth and complex shapes. Its drawback is that to estimate the binary template requires

that the background (including occluded regions in some frames) be completely seen in

the video sequence. If the sequence is not long enough or the motion of the object is such

that some portion of the background remains occluded, the algorithm does not recover

the object template. In this case, it is computationally very expensive to minimize the

ML cost function as given by expressions (4.8-4.11) in chapter 4, section 4.3, by using

generic optimization methods. The number of unknowns that describe the template is

prohibitively high. One way to overcome this problem is to parameterize the 2D shape of

the object by a small number of parameters. A contour-based description of the object

boundary by Fourier Descriptors [33] or Splines [24] for example �ts this need. A possible

strategy is to replace the background estimate given by expression (4.7) in the ML cost

function, equations (4.8-4.11), and to minimize the resulting functional with respect to

the parameters that describe the contour of the moving object.

Direct inference of 3D rigid structure { parameterized surface model. We

recover the three-dimensional (3D) shape directly from the image intensity values by es-

timating a dense depth map. Possible extensions include the investigation of di�erent

3D shape models. Parametric models enable more compact and robust shape representa-

tion. The ML estimate can be computed by using the same strategy we used { introduce

the estimate of the 3D motion into the ML cost function of expression (7.10), then min-
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imize it with respect to the 3D shape. Estimation of the 3D structure directly from the

image intensity values, through ML estimation, provides a robust way of dealing with

such issues as segmentation, for piecewise shape models, and model complexity, by using

classic tools such as Bayesian inference or information-theoretic criteria [12].

Surface-based rank 1 factorization extensions. In the thesis, we model the video

frames as orthogonal projections of the object texture. The surface-based rank 1 factor-

ization method can be extended to more general models like the scaled-orthography and

the para-perspective models that approximate better the perspective projection when the

orthographic model is not valid, see references [47, 48, 49] for the extension of the orig-

inal factorization method of Tomasi and Kanade [59, 60, 61]. Another extension of our

methodology would be dealing with multiple moving objects, see references [19, 20, 21]

for a feature-based factorization method for the multibody scenario.

New research directions

Inferring automatically general 3D structure from 2D video is an active area of research.

The work described in the thesis inspires two new directions that may be explored in the

future.

Subspace constraints for image motion estimation. In the thesis we use linear

subspace constraints for e�cient motion analysis, i.e., to recover the 3D strucure from

the 2D motion in the image plane in an expedite way. The same type of constraints

can be used to improve the accuracy of the 2D motion estimates. The estimation of the

2D motion of the brightness pattern in the image plane is a key step in recovering the

3D structure. The texture of the brightness pattern, the size of the 2D displacements,

and noise, may conspire to make the task of tracking features or regions very di�cult.

One reason for this di�culty is that the 2D motion for each region is estimated in a

local way, i.e., independently of the other regions. But the parameters describing the

2D motion of the di�erent regions are not unrelated, due to the constraints imposed by

the rigidity of the scene. To improve the accuracy of the estimation of the 2D motion,
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recent research work makes use of linear subspace methods. References [68, 69] use linear

subspace constraints to estimate the 2D motion parameters that best align a set of planes.

We show in the thesis that the space of the matrices eR that collect 2D motion parameters

is highly restricted { matrix eR is rank 1 in a noiseless situation (expression (8.21)). The

use of this severe constraint in estimating the 2D motion of the brightness pattern in a

global way should be investigated.

Subspace constraints for motion analysis. Recently, subspace constraints have been

used in several tasks within motion analysis, including the handling of scenes with self-

oclusion, see reference [43], and the recovery of 3D deformable shape from a set of cameras,

see reference [56]. The impact of the rank 1 constraint on these tasks should be investi-

gated.

Recovery of complete 3D models. The majority of current 3D modeling methods

work in a kind of open loop fashion { the problem has been stated as \given a set of images

that show roughly the same portion of the scene, estimate the underlying 3D structure".

In general, due to the occlusion and the limited �eld of view, the entire 3D scene we

want to recover is not completely seen in that set of images. The 3D models obtained are

thus very incomplete. An important research direction is to seek expedite ways to close

the loop, i.e., to enable the assimiliation of larger sets of images. This framework would

enable the automatic recovery of complete 3D scenes that are only partially observed in

each image of the video sequence. Obviously, when the scene contains strong perspective

distortions, the perspective projection must be taken into account. The expedite recovery

of 3D structure for this kind of scenes, with the associated problems, like camera self-

calibration and model selection, must be further investigated.

Applications

We highlight below some potential applications of the algorithms developed in the thesis.

Virtualized reality Current methods to generate virtual scenarios are expensive. Either

3D models are generated in a manual way which requires a human to specify the details
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of the 3D shape and texture, or auxiliary equipment like a laser range �nder need to be

used to capture the 3D reality. Our work can be used to generate automatically virtual

reality scenes. The 3D models obtained from the real life video data can be used to

build synthetic image sequences. The synthesis is achieved by specifying the sequence

of viewing positions along time. The viewing positions are arbitrary { they are speci�ed

by the user, either in an interactive way, or by an automatic procedure. More complex

scenes can be obtained by merging real objects with virtual entities.

E�cient representations for video. Multiple global motion models and long-term

prediction proved to reduce video compression ratios, see references [53, 67]. The use

of 3D models further reduces the amount of data needed to code a video sequence, see

for example references [26, 42]. When there is no prior knowledge about the scene, a

video representation scheme based in the 3D models recovered through surface-based

factorization can be used. Instead of representing a video sequence in terms of frames

and pixels, we can use the recovered 3D structure. A video sequence is then represented

by the 3D shape and texture of the object, and its 3D motion. Since the 3D motion and

3D shape are coded with a few parameters, the number of bytes necessary to code the

entire sequence is governed by the size of the object texture representation. The texture

is coded as a set of ordinary images, one for each planar patch. By using this model-based

representation, we reduce dramatically the storage space because we code only once the

brightness values, as opposed to the redundancy of coding the brightness values at each

of the frames of the original sequence.

Other applications of 3D model-based video representations include content-based ad-

dressing. Current systems that provide content-based access work by �rst segmenting the

video in a sequence of shots and then labeling each shot with a distinctive indexing fea-

ture. The most common features used are image-based features, such as color histograms

or image moments. By using 3D models we improve both the temporal segmentation

and the indexing. The temporal segmentation can account for the 3D content of the

scene. Indexing by 3D features, directly related to the 3D shape, enable queries by object
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similarity. See reference [42] for illustrative examples of the use of 3D models in video

processing.
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Appendix A

Moments of Functions of Random

Variables

Consider a random vector v and a vector function f(v). In this appendix we present

expressions for the �rst-order approximation of the mean and covariance of the random

vector f(v) in terms of the mean and covariance of v and the partial derivatives of f(�).

These results are known from estimation theory, see for example reference [46].

A.1 First-order approximation of the mean

We denote by v the mean value of the random vector v,

v = E fvg : (A.1)

The �rst-order approximation of the moments of the random vector f(v) is obtained

by neglecting the second and higher order terms of the Taylor series expansion of f(�)

expanded around the mean value v of v, i.e.,

f(v) ' f(v) +rvf(v) (v � v); (A.2)

where rvf(v) denotes the gradient of f(�) evaluated at v = v.

The mean value of f(v) is then approximated by

E ff(v)g = E ff(v)g+ E frvf(v) (v � v)g : (A.3)
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The quantities f(v) and rvf(v) in expression (A.3) are deterministic. By using expres-

sion (A.1), we get E fv� vg = 0, thus, expression (A.3) leads to

E ff(v)g = f(v): (A.4)

The �rst-order approximation of the mean value of the random vector f(v) is then the

value of the vector function f(�) evaluated at the mean value v of v.

A.2 First-order approximation of the covariance

The covariance matrix �v of the random vector v is de�ned as

�v = E
�
(v � v)(v � v)T

	
: (A.5)

Analogously, the covariance matrix �f of f(v) is given by

�f = E

��
f(v)� E ff(v)g

��
f(v)� E ff(v)g

�T�
: (A.6)

The �rst-order approximation of the covariance matrix �f is obtained by using the trun-

cated Taylor series approximation for f(�) as given by expression (A.2). By inserting

expression (A.2) into expression (A.6) and using expression (A.4) for E ff(v)g, we obtain

�f = E
�
rvf(v) (v � v) (v � v)T rvf(v)

T
	
: (A.7)

Since rvf(v) is deterministic, and using the de�nition (A.5), we obtain the following

expression that relates the covariance matrix of f(v) with the covariance matrix of v and

the gradient of the vector function f(�),

�f = rvf(v)�v rvf(v)
T : (A.8)

To make explicit the contribution of each of the components of the random vector v

to the covariance matrix of f(v), we rewrite expression (A.8) in terms of a sum of cross

terms. The �rst-order approximation of the covariance matrix of f(v) is then given by

�f =
X
k;l2V

E
n
(vk � vk) (vl � vl)

o @f

@vk
(v)

@f

@vl
(v)T ; (A.9)



A.2. FIRST-ORDER APPROXIMATION OF THE COVARIANCE 215

where fvi; i 2 V g are the components of v, vi denotes the mean value of vi, and
@f
@vi

(v)

denotes the partial derivative of f(�) with respect to vi, evaluated at v = v.
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