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Abstract

This technical report describes the status of the robotic soccer team ISocRob
(RoboCup initiative, mid-size league) as after the EuRoboCup-2000 event
that took place from May 28th to June 2nd at Amsterdam, Netherlands.
This report focus on the technical aspects of the robots, in terms of software
and hardware.
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1 Introduction

This technical report describes the status of the robotic soccer team ISocRob
(RoboCup initiative, mid-size league) as after the EuRoboCup-2000 event
that took place from May 28th to June 2nd at Amsterdam, Netherlands.
This report focus on the technical aspects of the robots, in terms of software
and hardware.

The participation of the ISocRob team in RoboCup scientific events is
part of the SocRob project running at ISR/IST. This project goal is the de-
sign and development of multi-agent systems and the study of methodologies
for teamwork among physical robots. The ISocRob team is an appealing ap-
plication of the methodologies discussed in the context of the SocRob project.

This report is organized as follows: Section 2 describes the underlying
conceptual architecture, Section 3 describes the robots hardware , Section 4
focus on the software architecture, and finally Section 5 closes this report
with some conclusions about the SocRob project.

The reference architecture of the SocRob project is based on the multi-
agent architecture developed by Alex Drougol [3, 2]. The society of agents
is divided in three layers: Organizational, issues related with the whole
society; Relational, issues related with interactions among two or more
members, and which do not directly affect the society as a whole; and In-
dividual, issues related with individual members. Instantiating this archi-
tecture to the robotic soccer team, the organizational layer comprises issues
such as determing the team formation or acting upon the start and end of the
game, the relational layer comprises for instance the coordination preventing
two robots from approaching the ball at the same time, and the individual

layer, the issues such as the visual servoing control behind the behavior of
dribbling the ball throughout the field.

2 Hardware Issues
The robots are based on Nomadic SuperScout robots equipped with the
following items:

e Two-wheel differential drive;

e Sixteen sonar sensors radially distributed around the robot, equally
spaced;

e Pentium 233MHz based motherboard (PCM-5862), 64MB of RAM,
8GB of hard drive (laptop model), one PCI and one PC104 bus con-
nectors;



e m68k based daughterboard with three-axis motor controller, sonar and
bumper interface, and battery level meters;

e Two 12V batteries, 18Ah capacity.
The following components were added to the robot platform:

e Ultrak KC7500CP color 1/3” CCD PAL camera with a Ultrak KL0412DS
lens (4mm, F1.2);

e Omni-directional vision assembly (one MicroVideo MVC26C color CCD
camera under a 11lem diameter mirror);

e Pneumatic kicking device, based on Festo components, plus two 0.85]
bottles for pressurized air storage (70mm diameter by 220mm length);

e Lucent WaveLAN/IEEE Turbo 11Mbps (Silver) wireless ethernet mo-
dem connected through a PC104/PCMCIA bridge;

e Bt848 based (Zoltrix TVmax) frame grabber board, with a S-VHS and
a Composite video inputs.

The total weight of each robot is about 30Kg for the goal-keeper and 35Kg
for the other ones, which complies with the RoboCup limit of 80Kg, and its
height is about 64cm which is below the rule limit of 80cm. The footprint
of robot complies with the RoboCup rules, as shown in the next section.
According to these rules, there are two geometric restrictions imposed at the
convex hull of the robot projection onto the floor plane, with all actuators
extended to their maximum reach: the area must not exceed 2025cm?, and
any single cut must be no longer than 63cm.

2.1 Robot dimensions

The goal-keeper robot is physically different from the other robots, hence its
dimensions must be separately calculated.

To derive the maximum convex hull area (A,,.,) of the field robots (i.e.,
not the goal-keeper) the following geometrical considerations were used:
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Figure 1: Diagram showing dimensions used for the convex hull footprint
calculation: the central circle denotes the SuperScout platform body while
the structure attached below denotes the kicking device fully extended (field
robot). Left: field robot; right: goal-keeper robot.
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For the maximum cut derivation C,,, (dashed line in figure 1, left part), the
following formulae can be used:
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The robot dimensions (figure 1, at left) are R ~ 207mm, W ~ 240mm, and
L ~ 190mm. Therefore,

Aoz >~ 1992cm? < 2025¢m?
Crnaz = 62.2cm < 63cm

(3)

Concerning the goal-keeper, the equations used to derive its area footprint
A9 are (see figure 1, at right):
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and with respect to the maximum cut derivation C9% (dashed line in figure 1,
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The goal-keeper robot dimensions (figure 1) are R ~ 207mm, a ~ 220mm,
b ~ 510mm, ¢ ~ 604mm, and § ~ 47mm. Therefore,

Ak~ 2018cm? < 2025¢m? (6)
Co%k ~ 60.4cm < 63cm

max

2.2 Video cameras

The robot contains two cameras: one placed slightly behind the front sonar
hole (which was previously displaced), and one in the omni-directional vision
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assembly. These cameras are called in this document front and up cameras,
respectively.

In order to obtain accurate distance measurements of an object position
using the front camera, its inverse projective geometry was derived. Figure 2
shows the notation used in the derivation. The goal is to obtain z and y
coordinates (at the floor level) of an object, given the u and v coordinates
on the image plane and the camera intrinsic parameters.

\‘\\\\\\ 1( \
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Figure 2: Notation used to derive the front camera inverse projective geom-
etry. Left: sideways view, parallel to the floor. Right: up view, orthogonal
to the projection plane and parallel to the wheels axis.

The above geometry suggests the following set of triangle similarity rela-
tions:
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Taking into account the fact that a? = h? +¢?, it is straightforward to obtain
from (7) the desired relations:
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The intrinsic parameters of the camera are condensed in three constants: h,
f, and c¢. The camera pitch was adjusted for a convenient! ¢ ~ 625mm,
while the remaining parameters were obtained experimentally by calibration
(solving (8) for a set of calibration points?). Note that the image point
(u,v) = (0,0) corresponds to the center of the image. The relevant mea-
surements of objects — the object distance d and angular deviation § — are
easily obtained from (8):

N R

f = arctany 2

(9)

These equation are only valid for points on the floor level. However, the
center-of-mass of the ball in the camera image does not satisfy this con-
straint. A correction factor has to be introduced for this case (see figure 3).
Moreover, the derivation of this correction factor can also be used to evaluate
the expected ball radius in the camera image. This value is used to decide
whether to consider a given mass of pixels as a ball or just noise.
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Figure 3: Notation used to derive the correction factor for the ball position
measurement,.

Figure 3 suggests the following geometrical relations:

D _w
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yop (10)
Tq Tg—Tp

!The rationale of this adjustment was to have, best visibility of the area close to the
robot, whole field visibility, including goals, and visibility below the top of the field walls.

2The calibration points were: three points horizontally centered, at 1/4, 1/2 (center),
and 3/4 vertical positions.



Solving (10) for the corrected ball coordinate z;, and the expected ball radius
in the image w, taking z &~ z+ s = {/h? + 22 as a rough estimate (assuming
s << z), the following expressions can be obtained:

Ty = (1 — %) Tq
D (11)
\/h2+a?

The omni-directional vision device is based on a small video camera,
pointing upwards. Above this camera stands a mirror with a cylindrical
revolution profile so that the camera image equals an orthographic projec-
tion of the points at the floor level (apart from an affine transform). The

mirror diameter is about 11em. Further details can be found at the end of
Section 3.2.1 and in [7].

2.3 Kicker device

The kicker device is based on a double-effect pneumatic cylinder with a reg-
ulated pressure, fed by two pressurized air bottles. The air flow is controlled
by an electro-valve. The air circuit schematic can be found in figure 4. The
air bottles (d) are externally filled with pressurized air from (a). The valve
(c) keeps the air from escaping while the robot is not connected to the ex-
ternal compressor. The pressure regulator (e) feeds the electro-valve (f) with
a constant pressure, lower than the one in (d), so as to save air pressure.
The electro-valve (f) switches the pressure between the two air entries of the
double-effect cylinder (g). Before each game (and during the half-time inter-
val) the bottles are filled with about 8 bar of pressure and the regulator is
set to about 4 bar. These settings result in an autonomy of roughly 80 kicks.

The components used in this device were the following Festo components:

e Pression regulator (e), ref. LRMA-1/4-QS-38;
e Electro-valve (f), ref. CPE-10-M1H-5L-MT;
e Compact cylinder (g), ref. ADVUL-20-50-P-A.

2.4 Network infrastructure

Each robot is equipped with a WaveLAN wireless ethernet card (IEEE 802.11
compliant), rated at 11Mbps maximum transfer throughput. These cards use
a direct sequence spread spectrum (QPSK) modulation in the frequency band
2400-2483.5MHz. Since no access point was used, the cards were configured
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Figure 4: Kicker device pneumatic circuit: (a) external air compressor; (b)
connection socket; (c¢) one-way valve; (d) two 0.851 air bottles; (e) manual
(constant) pressure regulator; (f) electro-valve; (g) double-effect cylinder.

to work in ad-hoc mode. These cards use a PCMCIA interface, therefore a
PCMCIA /PC104 bridge was used (Advantech PCM-3110A).

3 Software Issues

The software architecture shares most of the features used in RoboCup-99 [6].
The architecture was revised while some parts were re-implemented reflecting
lessons from previous experience.

As in RoboCup-99, the CVS? version management system was used, con-
sisting on a software repository on a server machine, from which each robot
obtains a working copy. This way, the software development and the dis-
tribution of new code versions among the robots is straightforward. The
repository module is called eurocobup2000.

Figure 5 shows a diagram of the current software architecture. The mod-
ules enclosed by the dotted region labeled HAL* constitute the infrastructure
on the top of which the main modules work:

Scout — abstracts the Scout robot platform details, providing functions to
access the motors controller, odometry, sonars, bumpers, and battery
status;

Camera — abstracts the BTTV frame grabber driver details, providing an

3Concurrent Versions System.
4Hardware Abstraction Layer.
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Figure 5: Software architecture: gray arrows denote the main information
flow from sensors to effectors.

API® to allow full-rate vision processing (through a double-buffering
technique);

Blackboard — implements the blackboard, which is the communication
medium among the architecture components (intra-robot) as well as
between physically distinct robots (inter-robot);

pAgents — implements the pAgents (micro-agents, to distinguish them
from the robot as a single agent) facility allowing concurrent processing,
abstracting the operating system multi-thread mechanisms;

Kicker — interfaces with the kicker hardware;
Multicast — abstracts the multicast network communication details;

X11 — interfaces with the X Window System (bitmapped display);

All the remaining modules are pAgents constituting the main components
of the architecture:

Vision — all vision processing is done by this pgAgent, multiplexing the
two video inputs (up and front camera), and providing three modes of
operation: front camera, up camera, and self-localization;

Guidance — implements three motion control methods: position, velocity,
and potential modes;

5 Application Programming Interface
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Machine — implements a set of state machines which are responsible for
the robot behavior. Each state machine is termed a role. Three roles
were built: attacker, defender, and goal-keeper;

Kicker — interfaces the kicker HAL module, providing the temporization
needed for the actuation of this device;

Proxy — waits for networked blackboard variables changes (multicast net-
work packets) updating the local blackboard accordingly;

Relay — socket server providing access to the software architecture, namely
blackboard variables access;

Monitor — optional module for text-based remote monitoring;

Monitor-X11 — like the above but X11-based (e.g., camera image moni-
toring).

The following subsections describe these modules in more detail.

3.1 Hardware Abstraction Layer (HAL)

The source files prefixed with ‘hal-" implement these modules.

The hal-scout.c contains functions to access the Scout robot platform.
These functions are: motor control, in position or velocity mode; odometry,
providing a posture state vector (z, y, #) obtained from the integration of the
wheel encoder readings; sonars, providing a vector containing a proximity
value given by each sonar, and allowing the user to restrict the active sonars
to an arbitrary subset; bumpers, indicating whether there was a collision
(ignored because they were totally unreliable); battery status, providing a
high/medium/low status report.

The hal-camera.c implements the interface to the frame grabber allow-
ing channel switching between the up and front camera, and individual frame
grabbing. This module handles double buffering internally to allow full-rate
image processing.

The blackboard (hal-blackboard.c) is a central data structure to the
whole architecture, since all modules depend on it for communications. More-
over it also supports the communication among different robots via the net-
work. The blackboard is a set of symbol/value bindings. The symbols are
ASCII strings while values can be of one of the following types: integer (Int),
floating point (Float), boolean (Bool), and string (String). The symbols
follow a hierarchical namespace convention, where the levels are separated by
adot. Forinstance, local.var.machine.config.def.near-ball represents
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a local (local) variable (var) related with the machine yAgent (machine),
containing the configuration parameter config of the defender’s (def) idea
of a near ball distance (near-ball). The first level can be one of: local for
variables local to the robot, * for variables global (distributed) to all robots,
and n for a variable local to a specific robot where n is its ID8. The second
level corresponds to the type of the variable: var for a simple binding between
a symbol and a single value, and talk for FIFO-like message queue (not used
yet, but will be necessary for more complex cooperation mechanisms). Only
the first two levels of the hierarchy have built-in meaning. All other levels
are somewhat arbitrary. However, coherence is essential for code readability.
It was conventioned that the third level corresponds to the pAgent to which
a variable is related to, an optional fourth level config corresponds to a
pre-specified (in the configuration files, described below) configuration pa-
rameter, and optional fourth/fifth level corresponding to a possible pAgent
sub-module (e.g., guidance method), and a final level describes the variable.
Every time a variable is set, a timestamp is attached, to allow detection of
outdated values. If the variable is distributed over the network (multicast),
the timestamp corresponds to the packet reception time, with respect to the
receiver’s clock, to avoid confusion due to clock skew among robots. Note
that a brief description of all variables in the blackboard can be found in
a documentation file”. When the software is launched a set of blackboard
variables initial values (configuration parameters) from the files config.dat
and config-n.dat, by this order, where n is the robot’s ID, is read.

The pAgent infrastructure is implemented by hal-microagent.c using
the OS multi-threading support. This module allows creation and destruction
of pAgents and a simple send/receive signal mechanism. Unless the receiver
is blocked waiting for a signal, any received signals are ignored.

The hal-kicker.c module provides the interface with the kicking device
hardware. When ordered to kick, it opens the pneumatic electro-valve during
an adjustable time interval (125ms) to provide a both swift and confident
kick. The pneumatic electro-valve is connected to the motherboard parallel
port, by the means of a high-current driver.

The hal-multicast.c abstracts the details of sending and receiving mul-
ticast packets over the network. The standardized IP address 224.0.0.1
(RFC1112) is used to broadcast packets to all hosts of a physical network
which support multicast.

Finally, the hal-x11.c abstracts the Xlib routines for handling the dis-

6Each robot has a unique ID (environment variable ROBOT_ID, set by the root user
.cshrc file), being 1 for scout1, 2 for scout2 and so on.
"Filename Docs/Catalog, with respect to the code base directory.
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play of images, namely the ones originating from the vision processing, with
some debugging info drawn.

3.2 pAgents

Implementing the robot software as a society of puAgents has demonstrated
many benefits, such as modularity, readability, concurrency, information
pipelining, to name a few. This section describes each pAgent in further
detail. But before proceeding it is important to refer the rationale behind
this particular task division among pAgents.

The first implementation of the software in 1998 [1, 8] was based on a
big while (1) loop containing most of the central code: vision frame grab,
image processing, state machine, and motor controller commanding. The
first motivation for the introduction of concurrency was to pipeline the vision
processing with the remaining stages. In other words, the vision processing
should be kept at the maximum rate (the video full-rate if possible), while
the other stages are free to use the information provided by vision, at its
rate, or do something else (path planning, inter-robot communication, etc.).
This principle eventually proved to be very useful and was further extended.
The present software architecture contains eight pAgents (while 2 of them
are optionally launched and are used for debugging and monitoring purposes
only). The following sections describe each pAgent in detail.

3.2.1 Vision pAgent

This pAgent multiplexes vision processing among the three image process-
ing methods, and the corresponding video channel. The multiplexing code
resides in vision.c. The provided vision processing methods are:

front — this method uses the front camera to search for the ball and both
goals in the image. The results are used to update the correspond-
ing blackboard variables, i.e., local.var.vision.front.* hierarchy.
The projective geometry derived in Section 2.2 is used to obtain the
objects relative position to the robot, in world coordinates. The code
contained in this method is strongly based on the vision code used in
previous competitions [8]. The two core functions are findBall() and
findGoal () that calculates the center of mass of the ball (if any) and
goals (if any), given a specified window and color thresholds (further
details below);

up — this method uses the up camera to find the ball. On one hand, the up
camera field of view is omnidirectional, but on the other hand its range
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is limited in distance: the robot body occludes the mirror view of about
Im from the central robot vertical axis, and the range is about 4.5m.
Because of the mirror geometry (hardware unwrapping) it is trivial to
obtain floor objects positions in world coordinates;

self — This method also uses the up camera and its purpose is to self-
localize the robot in world coordinates based on field landmarks. Since
the Scout platform provides integrated odometry outputs, this method
is used® to periodically reset the Scout’s odometry integrators.

The color detection is based on thresholds in HSV space. The video
frames are captured in RGB15 format (see the Bt848 datasheet for further

details), where each pixel occupies two bytes, “big endian”?:

first byte: | X |ry [r3 |72 |71 | 70| ga | g3
second byte: | g2 | g1 | go | bs | b3 | ba | b1 | bo

(12)

The red, green, and blue components are encoded in five bits: R =14+ rg,
G = g4 gy, and B = by---bg. Then, each pixel is converted to HSV space
(using a lookup table with 2'5 = 32768 entries) using [5]:

G-B . _
( max{R,G,B}_min|{R,G,B} if R =max{R,G, B},
B-R . _
H={2+ max{R,G,B}—min{R,G,B} if G = max{R, G, B},
e .

) 4+ max{R,G, B —mm{R,G.B] otherwise. (13)

S = max{R,G,B}—min{R,G,B}

- max{R,G,B}

| V =max{R,G, B}
A color C? is defined by a tuple of four thresholds:

C' = (Hin» Hiraas Siuins Viiin) (14)

min’ *maz’ ~min’ ' m

A pixel with color (H,S,V) in HSV space is positively detected as C* iff'
the following constraints are satisfied:

8Because of implementation reasons related with code integration issues, it was not
possible to get this method working in time for the EuRoboCup-2000 competitions.

9The computing jargon term big endian means that the most significant bytes precedes
the least significant one, in contrast with the opposite little endian. In the early times of
computing this trivial issue raised a warm debate comparable to the “Gulliver’s Travels”
Little/Big endian civilizations [endian]. However, modern computers are not yet uniform
to this respect, e.g. Intel 80x86, former-DEC Alpha, and ARM CPUs are little endian,
while Motorola 680x0, PowerPC, and SPARC are big endian. And to be complete, MIPS
CPUs can actually be either, depending on a status bit.

10Tn this document “iff” denotes “if and only if.”
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Figure 15 contains a diagram showing these thresholds in HSV space.
Note that cylindrical coordinates are used, meaning that the H coordinate is
represented as the polar angle around the V' axis. The rationale behind this
arrangement of thresholds is the following: The human perceptual notion
of color corresponds to the hue (H) component, i.e., all colors with the
same hue corresponds to the same perceptual color sensation and vice-versa.
Therefore it is natural to select a slice of hue values to detect a given color.
On the other hand, pixels with low values of saturation (S) and/or value
(V) are not to be detected since they correspond to colorless pixels and its
hue tend to be extremely sensitive to noise. Besides using H . and H! .
for color C?, experience suggested that the minimum values of S and V also
depend on which color is to be detected. Therefore Si . and V.. are also
specific to a C*. One reason behind this dependence might be the fact that
the objects to be detected often have very different predominant values of
saturation and value, e.g., the blue goal is seen by the camera much darker
than the yellow one. This suggests a dependence between the hue and the
other components. This dependence is, for instance, explored by the Fisher
linear discriminants [4].

Given a rectangular window in image coordinates, the center of mass is
calculated. The objects positions relative to the robot, in world coordinates,
are then calculated using equations (8) and (9). For the special case of
the ball, the expected ball radius, in image coordinate dimensions, is also
calculated using equation (10). This value is used to determine whether a
given quantity of detected pixels are to be considered ball or noise. In other
words, it is a dynamic threshold depending on the ball distance. For other
objects — yellow and blue goals — fixed thresholds for detection were used.

It is important to obtain some additional information about goals other
than their center of mass positions. In particular, it is useful to know the
distance to the nearest point of the goal and the direction of the most open
space (to direct the kick). These calculations are done projecting the detected
pixels onto both axis. Specifically, letting u(z,y) € {0,1} be 1 iff the pixel
with image coordinates (z,y) is positively detected as belonging to a goal
color, the horizontal p,(z) and vertical p,(y) projections are defined by:
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Figure 6: Color thresholds in HSV space, using cylindrical coordinates.

pu(z) =D ulz,y) (16)

Y

po(y) =D u(z,y) (17)

xT

The nearest point y, is calculated using y, = argmin{p,(y) | p,(v) > T, }
y

with a small threshold 7, for noise robustness. The most open space z, is a
little more complicated to calculate:

T, = argmax {th(k)h(x — k)}
z k

h(n):{l 1f—To§n§To,
0 otherwise.

(18)

The rationale is to apply a low-pass FIR filter to p,(z), using the non-causal
impulsive response h(n), and then to extract the maximum z, coordinate.
All these results are posted in the blackboard for usage by other yAgents.
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A detailed description of the algorithms used by the self-localization
method can be found in [7]. Briefly, this method performs these steps:

1. Detection of green/white transitions, using a strategic sampling of im-
age pixels;

2. Straight lines extraction using the Hough transform;

3. Application of a combinatorial algorithm to select a sub-set of straight
lines that satisfy the constraints of the field (right angles, distances
between parallel lines, and so on);

4. Sampling of pixels where the goals are expected to be found, in order
to disambiguate between field sides!'!.

Once the extracted lines are matched against the knowledge of the geometry
of the field lines, the robot position is known, apart from which field it is in.
This is at last disambiguated by checking the goal colors (step 4).

3.2.2 Machine pAgent

This pAgent is responsible for the robots behavior at several levels. Recalling
the conceptual architecture explained in Section 1, this gAgent implements
all decision-making in these three levels.

At the organizational level, the team is at a given time in one of these
modes (or organizational states):

none — idle mode entered when the program starts, where the robot waits
for an organizational change of mode (e.g., global post in the black-
board);

play — the team is playing the game against a specified goal (blue or yellow);
pause — entered to suspend temporarily the playing;

setup — the robots move to specified position, usually just before a game
start;

test — test mode to accommodate ad hoc debugging of specific segments of
the code.

Note that the field is symmetric with respect to the middle line, except for goal colors.

17



Due to lack of time to develop complementary software, the full power of
this level was not explored, however the setup/play modes were used when
playing and the test mode proved a useful tool to isolate code segments in
this complex software architecture.

The relational and individual levels only fully take place in the play mode.
In this mode a robot can take one of several available roles:

goalkeeper role (GK) — uses translational movement (orthogonal to the
field’s direction) to put itself in an appropriate position;

attacker role (AT) — runs a state machine described below, spanning the
individual and the relational levels. As to the individual level, it tries
to approach the ball and lead it to the opposite goal, possibly kicking
it. At the relational level, it implements a basic mechanism to prevent
two robots to approach the ball at the same time;

defender role (DF) — similar to the attacker one, but for yet unknown
reasons (at least at the time of this writing), unable to work (“segmen-
tation fault...”);
The goal-keeper uses the up camera exclusively to keep track of the ball,
moving along the goal area (in common mode, with the wheels axis parallel
to the field direction). The vision processing estimates both the ball position
and velocity. Its role is based on three modes of operation: in the FOLLOW
mode it follows the ball position, with respect to its movement axis; in the
INTERCEPT mode, it moves to the estimated crossing between the robot
movement axis and the ball trajectory; and in the HOME mode, it moves to
a pre-defined home position (middle of the goal area) after waiting a certain
amount of time (for the case of temporary ball occlusion). When the ball
is not visible or in the opponent’s half-field, the goal-keeper remains in the
HOME mode, otherwise it switches between the FOLLOW or INTERCEPT, de-
pending on the degree of danger the estimated ball position /velocity presents
to the robot’s goal.
The state machine implementing the attacker role is shown in figure 7.
Each state is briefly described below:

HOME — during this state the robot is performing a trajectory leading
it to the pre-defined home position on the field, by the means of the
ET_go_home () function;

SHOULD_I_GO — this state serves the purpose of deciding whether it
should approach the ball, or not, if there is another robot in better
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APPROACH_BALL

ffb() AND slg() move_close2ball()

NOT fiby()

FACE_GOAL

SHOULD_I_GO

NOT fib()

rotate2face_goal()

NOT fiby)

SEARCH_BALL

rotate2find_ball()

ffog() AND fib()

ffb()

kb() OR NOT fib()

HOME RUN_AND_KICK

ET_go_home() push/kick_ball()

Figure 7: State machine diagram of the attacker role. State names are in
caps; the function executed during that state is shown below its name; the
transition conditions are predicates (or boolean combinations of them). For
the sake of clarity, transitions to the same state were omitted. In other words,
given a state, if no transition condition is satisfied, the machine remains in the
same state. The initial state (APPROACH_BALL) is denoted by a double-line
circle the state name.

condition to do so. This decision is based on inter-robot communica-
tion;

APPROACH_BALL — while the robot remains in this state, it will ap-
proach the ball, visible by the front camera, using the function
move_close2ball() to do so;

FACE_GOAL — in this state the robot performs a trajectory in order to face
the goal, while holding the ball. This trajectory is a circular arc, with a
determined angle (based on current posture and opponent goal relative
position), with both common and differential mode components, in
order to keep hold of the ball;
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RUN_AND_KICK — the robot reaches this state when it holds the ball
while facing the opponent goal. If this goal is near enough, it kicks the
ball (using the kicking device described in Section 2.3), otherwise it will
push the ball towards it. This task is accomplished by the functions
push_ball() and kick_ball();

SEARCH_BALL — while in this state, the robot rotates around itself for 360
degrees in search for a ball, using the function rotate2find_ball();

The state transitions depend on a set of predicates (or boolean combinations
of them):

ffb() — front_found_ball(), returns true if the ball is visible by the front
camera;

ffog() — front_found other_goal(), returns true if the opponent’s goal is
visible by the front camera;

fnb() — front_near_ball(), returns true if the ball is near the robot, i.e.,
its distance to the robot is less than a pre-specified threshold (see con-
figuration parameters);

r(360) — rotated(), returns true if the robot has already rotated 360 de-
grees, using the function rotate2find _ball();

rp() — reached_posture(), returns true if the robot already reached the
desired posture, by the means of the function ET_go_home ();

kb() — kicked_ball(), returns true if the ball was already kicked (by the
kicker);

slg() — should_I_go(), returns true if the robot is the one in better con-
dition to approach the ball. This decision is based on the following:
each robot posts to the blackboard (global, network-wide) a value rep-
resenting the cost of approaching the ball. This value is (periodically)
calculated by the function heuristic() equaling

B = { dbau + k1 fother  1f foau = L, (19)
1000 otherwise.

where dyqy is the estimated ball distance (to the robot), and fy,; and
fotner are 1 or 0 depending in whether the predicates front_found_ball()
and front_found_other_goal() are true or false. The parameter k; <
0 weights how much it is favorable to be already facing the opponent’s
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goal. For instance, if robot 1 and robot 2 are equally close to the ball,
if robot 1 is facing the opponent’s goal, then it should be the one to ap-
proach the ball, while the others stand still. Since each robot’s value is
distributed over the network, each robot has access to everyone’s value.
The should_I_go () predicate returns true iff the respective robot holds
the minimum value at the moment. Therefore (and apart from network
latency) it is guaranteed that only one robot has a true should I _go ()
predicate, and therefore there are never two robots attempting to ap-
proach the ball at the same time. Moreover, not only the decision
process is instantaneous (no latency for any query-response communi-
cation), but also can automatically adjust to changed field situation
(e.g., the ball becomes visible to a better positioned robot, that was
previously unable to see the ball).

3.2.3 Guidance pAgent

This pAgent is responsible for interfacing the robot motorization. It provides
three modes of operation:

velocity mode — given a velocity reference for each wheel in the black-
board, these values are passed to the platform motor controllers, un-
less an obstacle is found by the sonars. If this is the case, the robot
movement is simply halted!'? until further notice;

position mode — this mode is similar to the previous one, except that the
references are now given with respect to wheel position (this mode was
seldom used);

potential field mode — this mode contains the highest degree of sophis-
tication, since it is based on the well-known principle of potential fields
to guide a robot around obstacles. Given an initial robot posture and
a final one (with respect to world coordinates), this mode results in a
smooth trajectory, where the robot is attracted by the target position
and repealed by any obstacle detected by the sonars. Additionally, the
ball is considered here as an obstacle (repealing), so that this mode is
also able to position itself behind the ball, while not touching it. How-
ever, this mode was not frequently used, since its present!? slowness
was not compatible with the competitive level of the games.

12This behavior is a source of major headaches, namely during actual games.
13Work is underway in order to increase its average speed.
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3.2.4 Kicker pAgent

This pAgent monitors the blackboard variable machine .kicker.kick so that
when it is true, the kicker device (Section 2.3) is activated.

3.2.5 Proxy pAgent

This pAgent listens to a network socket awaiting blackboard messages. When
one is received, its contents are posted to the local blackboard. These mes-
sages are carried by UDP protocol packets, using multicast addressing. The
UDP port used is 2000 and the multicast address is 224.0.0.1 (permanent
group of all TP hosts'*, in other words broadcast).

3.2.6 Relay yAgent

The purpose of this pAgent is to provide remote control and monitoring
of the software. This puAgent opens a network socket (TCP protocol, port
2001). When a connection is established, the pAgent responds to a set of
commands. The implemented commands are:

REFR — Sets the refresh rate for the watched variables;
ADDW — Adds a variable to watch;

DELW — Deletes a variable watch;

CLRW — Removes all variable watches;

LSTW — Lists the variables under watch;

SETV — Sets a blackboard variable;

GETV — Obtains a blackboard variable value;

QUIT — Terminates the connection;

3.2.7 Monitor and Monitor-X11 pAgents

These two pAgents provide monitoring of the software for debugging pur-
poses. The Monitor pAgent prints periodically to the console a line of text
containing a set of relevant blackboard variables: the current role, the current
state, and whether the ball is visible by the up camera. The Monitor-X11
pAgent opens a set X windows, each one showing one vision channel (i.e.,

14 According to the RFC1112 (Request For Comments).
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camera). The update of each window depends on which camera is active.
Furthermore, it draws some debugging information pertaining color detec-
tion, center of mass, etc. Each one of these two pAgents can be individually
switched on/off.

4 Conclusions

From the scientific point of view, the mid-size league of the RoboCup com-
petition poses two major challenges: first, the playing is a complex, dynamic
and highly unpredictable environment, and second, the environment itself
was not built by a scientist, in the sense that scientists often tend to tailor
the environment in order to show a particular ability of the artifact (s)he is
demonstrating.

One drawback of these characteristics is that attention is often deviated
to (apparently) minor implementation details, such as mechanical aspects,
illumination, video quality, stable power supply, and so on. However, the
positive side of the scientific challenge is worthwhile, besides some occasional
headaches.

One requirement that the robots have to meet, in order to perform in
such environment is that they have to deal simultaneously and coherently
with a set of heterogeneous sensors and actuators: vision, sonar, motors,
kicking devices. Each one of these devices require a variable amount of
complexity on the software side. And since all these software pieces have to
work together, their integration becomes a very sensitive issue.

The development of a soccer robot always requires the balance of two
objectives: the scientific objective of a clean design, and the pragmatics of
winning the games. These goals are not contradictory, but they are seldom
satisfied at the same time.

If the software architecture deserves too much attention, there is a risk of
devoting too much time writing software that does not qualitatively improve
the playing. On the other hand, too much pragmatic programming may
overlook the fact that some difficulties are inherent to a poor software design,
being virtually impossible to overcome it without a software architecture re-
design.

Of course it is wise to devote effort to create a good software architecture,
flexible enough to be easily extended to cope with new challenges, and simple
enough to provide a smooth integration. However, developments at the level
of the architecture building blocks must be carefully evaluated.
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