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Torre Norte - Piso 8, Av. Rovisco Pais 1
1046-001 Lisboa, Portugal

{pjcro,antonio}@isr.ist.utl.pt

Abstract. A new methodology is proposed for the design of navigation systems
for autonomous marine vehicles. Using simple kinematic relationships, the problem of
estimating the velocity and position of an autonomous vehicle based on motion sensor
data available at different rates is solved by resorting to complementary multirate
time-varying filters. The set-up adopted for filter design and analysis builds on Linear
Matrix Inequalities (LMIs) and on efficient numerical analysis tools that borrow from
convex optimization techniques. The paper describes the key steps involved in the
design of a multirate navigation system for a prototype autonomous marine vehicle.
Results of tests at sea illustrate the performance of the system developed.
Copyright c© 2003 IFAC.
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1. INTRODUCTION

There is currently considerable interest in the devel-
opment of navigation systems to provide robotic vehi-
cles with the capability to perform complex missions
at sea. See (Stambaugh and Thibault, 1992; Fryxell et
al., 1994) and the references therein for in-depth pre-
sentations of navigation systems for marine vehicles. See
also (Lin, 1991; Kayton and Fried, 1969) for an overview
of similar systems and related research issues in aircraft
navigation. Navigation system design is usually done in
a stochastic setting by resorting to Kalman-Bucy fil-

1 This work was supported by the Portuguese FCT POSI pro-
gramme under framework QCA III, projects MAYA of the AdI
and MAROV of the PDCTM, and by the EC under FREESUB
Network.

tering theory (Brown and Hwang, 1992). The stochas-
tic setting requires a complete characterization of pro-
cess and observation noises, a task that may be difficult,
costly, or not suited to the problem at hand. This issue
is argued at length in (Brown, 1992), where the author
points out that in a great number of practical applica-
tions filter design is entirely dominated by constraints
that are naturally imposed by the sensor bandwidths.
In this case, a design method that explicitly addresses
the problem of merging information provided by a given
sensor suite over distinct, yet complementary frequency
regions is warranted.

When motion sensor data are available at exactly the
same rate, the corresponding complementary filters are
time invariant. This in turn leads to a fruitful interpre-
tation of these filters in the frequency domain. In the



case of linear position and velocity estimation, however,
the characteristics of the sensor suites used are such that
sensor data become available at different rates and the
resulting filters become time-varying. This occurs for
example in the case of AUV (Autonomous Underwater
Vehicle) Navigation, when the sensor suite consists of a
Doppler Velocity Log (DVL), an Attitude and Heading
Reference (AHR) unit, and an acoustic based Longbase-
line (LBL) system. Another example is the case of ASV
(Autonomous Surface Vehicle) Navigation, where one
typically resorts to motion sensor data available from
a DVL, an AHR, and a Differential Global Positioning
System (DGPS).

The main purpose of this paper is to show how, using
simple kinematic relationships, the problem of estimat-
ing the linear velocity and position of an autonomous
marine vehicle can be posed and solved by resorting to
multirate complementary filters. These are the natural
generalization (to a multirate setting) of linear time-
invariant complementary filters that are widely used to
properly merge sensor information available at low fre-
quency with that available in the complementary region.
The key results of the paper also imply that the resulting
multirate input-output operators from measured to esti-
mated variables exhibit ”frequency-like” properties that
are the generalization of those obtained for the single-
rate case. This striking property plays a crucial role dur-
ing the navigation system design phase, for it provides
valuable insight into the selection of closed loop filter
”bandwidths” so as to match the natural bandwidths of
the sensors.

The paper exploits well known results that allow for
the characterization of multirate filters as equivalent
periodic ones. See (Oliveira, 2002) and the references
therein. Once in a periodic setting, the filter design pro-
cess builds on two main facts: i) filter performance can
be evaluated by resorting to H2 and H∞ criteria (the
first is closely related to the criteria that are commonly
used for filter design in a stochastic setting, whereas the
latter capture constraints on estimation error bounds);
ii) the computation of the above criteria can be done
in an expedite manner by using the theory of Linear
Matrix Inequalities (LMIs) (Boyd et al., 1994), which
have become the tool par excellence to deal with seem-
ingly unwieldy dynamical system design problems. In
this framework, filter design and ”frequency-like” anal-
ysis is simply done by determining the feasibility of
a related set of linear matrix inequalities. The latter
problem is solved by resorting to commercially avail-
able numerical tools that borrow from convex optimiza-
tion theory (MATLAB, 1997). In this paper, the new
methodology proposed for filter design is applied to the
development of a multirate navigation system for an au-

Fig. 1. The DELFIM autonomous marine vehicle.

tonomous surface craft. Results of tests at sea illustrate
the performance of the system developed. Due to space
limitations, only the key steps in the design procedure
are briefly summarized here. The interested reader is
referred to (Oliveira, 2002) for complete details.

The paper is organized as follows. Section 2 motivates
the problem of multirate navigation system design for
marine vehicles. Section 3 formulates the corresponding
filtering problem, outlines its solution, and includes re-
sults of tests at sea with an autonomous surface vehicle
(ASV). The paper concludes with a short discussion of
the results obtained and of issues that warrant further
research.

2. PROBLEM MOTIVATION. A NAVIGATION
SYSTEM FOR THE DELFIM ASV.

This section motivates the problem of multirate filtering
by presenting the objectives that were set in the design
of a navigation sensor for a prototype autonomous sur-
face vehicle named DELFIM, see figure 1. Notice how-
ever that the methodology for navigation system design
presented in the paper applies to the case of other ma-
rine vehicles, including autonomous underwater vehicles
(AUVs).

The DELFIM ASV was designed and built by the In-
stitute for Systems and Robotics of the Instituto Su-
perior Técnico to carry out automatic marine data ac-
quisition and to serve as an acoustic relay between sub-
merged craft and a support vessel (ASIMOV, 2000). The
DELFIM ASV can also be used as a stand-alone unit,
capable of maneuvering autonomously and performing
precise path following while carrying out automatic ma-
rine data acquisition and transmission to an operating
center installed on-board a support vessel or on-shore.
This is in line with the current trend to develop systems
that will lower the costs and improve the efficiency of
operation of oceanographic vessels at sea.



The DELFIM is a small Catamaran 3.5 m long and 2.0
m wide, with a mass of 320 kg. The propulsion system
consists of two propellers driven by electrical motors.
The vehicle is equipped with on-board resident systems
for navigation, guidance, and control, as well as for mis-
sion control. Navigation is done by integrating motion
sensor data obtained from an attitude reference unit, a
Doppler log, and a DGPS (Differential Global Position-
ing System) receiver. Its guidance and control systems
consist of simplified versions of the s − y controller de-
scribed in (Silvestre, 2000).

Transmissions between the vehicle, its support vessel,
the fixed GPS station, and the on-shore control center
installed on-shore are achieved by means of a radio link
with a range of 80 km. The vehicle has a wing shaped
central structure that is lowered during operations at
sea. At the bottom of this structure a hydrodynami-
cally shaped body is installed that carries all acoustic
transducers, including those used to communicate with
the underwater craft.

In what follows, {I} denotes a fixed reference frame lo-
cated at the origin of a pre-specified mission area and
{S} is a body-fixed coordinate that moves with the ASV.
The vehicle motion is subject to the influence of a con-
stant unknown current IvW = [IuW

IvW 0]T expressed in
{I}. The symbol {W} denotes a coordinate frame that
moves along with the current. The following additional
notation is required:
IpS := [Ixs

Iys
Izs]T - position of the origin of {S}

measured in {I};
IvS := [Ius

Ivs
Iws]T - velocity of the origin of {S} with

respect to the fixed frame {I};
vS,W := [us,w vs,w ws,w]T - relative velocity of the origin
of {S} with respect to coordinate frame {W};
λ := [φ θ ψ]T - vector of of roll, pitch, and yaw angles
that parametrize locally the orientation of {S} relative
to {I};
I
SR (λ) - rotation matrix from {S} to {I}.

With this notation, the relevant kinematics of the ASC
can be written in compact form as

d

dt
IpS = I

SR (λ)S(vS,W ) +I vW , (1)

where S(vS,W ) is the vector vS,W expressed in {S} and

I

SR (λ)S(vS,W ) := I(vS,W ) = [Ius,w
Ivs,w

Iws,w]T

is the velocity of the origin of {S} with respect to the
water, expressed in {I}.

Given a variable x, its measurement will be denoted xm

or (x)m. The ASV sensor suite yields the following mea-
surements:

(1) (IpS)m := [(Ixs)m (Iys)m (Izs)m]T - obtained by
a Differential Global Positioning System with the
mobile segment on board the ASV.

(2) λm - vector of roll, pitch, and yaw angles provided
by the attitude reference unit.

(3) (IvS,W )m := [(Ius,w)m (Ivs,w)m (Iws,w)m]T - ob-
tained by rotating the Doppler log measurements
S(vS,W )m through matrix I

SR (λm).

In this example, the interrogation rates for the GPS unit
and the Doppler sonar are 2 Hz and 4 Hz, respectively.
The sampling rate of vector λ is much larger and does
not play a significant role in the development below.
Consider the following guidelines for the design of a nav-
igation system for the ASV:

(1) Obtain accurate estimates

I p̂S =
[

I x̂s
I ŷs

I ẑs

]T

and

v̂S =
[

I ûs
I v̂s

Iŵs

]T

of the vehicle’s position and velocity vectors, re-
spectively;

(2) Achieve a settling time of approximately 240 s on
the estimate of the water current Iv

W
.

(3) Achieve a settling time of approximately 6 s on the
position estimate.

It is now easy to derive the the model for the design of
a navigation system to complement the data acquired
by the GPS unit with that obtained by the Doppler
log. See (Fryxell et al., 1994) and the references therein.
Straightforward manipulations of the ASV kinematic
equations lead to three sets of decoupled equations that
correspond to the three linear coordinates x, y, and z.
See figure 2 for the design model that captures the dis-
cretized motion of the ASV along the coordinate x−
coordinate.

The output integrator captures the relationship d
dt

IpS =
I(vS,W )+I v

W
. The input integrator was inserted to es-

timate the water current, which is assumed constant.
Let x1 = IpS and x2 = IvW . Adopting the basic sam-
pling period h = 0.25 s, the design model admits the
realization

ΣG2 =

{
x(k + 1) = A(k)x(k) + Bu(k)w(k)

z(k) = Cz(k)x(k)
y(k) = Cy(k)x(k)

, (2)

where x =
[
x1 x2

]T , w = (Ius,w)m, and z = y =
(Ixs)m. Furthermore,
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Fig. 2. Position estimation: filter design model.

A(k) =
[

1 h
0 1

]
, Bu(k) =

[
h
0

]
,

Cy(k) =

{ [
1 0

]T if k MOD M = 0[
0 0

]T if k MOD M = 1
,

and Cz(k) =
[
1 0

]T
, where M = 2. Notice how this

multirate model can be simply viewed as a periodic sys-
tem with period M = 2, the periodic nature of the sys-
tem being clear from the analysis of matrix Cy(k). The
next section addresses the problem of periodic filter de-
sign given the design model described above.

3. FILTER DESIGN. EXPERIMENTAL RESULTS.

The general setup for estimation design for periodically
time-varying, discrete-time systems consists of the inter-
connections presented in figure 3, and is by now stan-
dard.

GM

EM

--
w z

y

ẑFM

6
-

-

e

Fig. 3. General setup for periodic filtering synthesis.

The design model GM is a linear, periodically time-varying
discrete-time system with realization

ΣGM =





x(k + 1) = A(k)x(k) + Bw(k)w(k)
z(k) = Cz(k)x(k) + Dzw(k)w(k)
y(k) = Cy(k)x(k) + Dyw(k)w(k)

, (3)

where x(k) ∈ Rn is the state vector, w(k) ∈ Rm is the
vector of external inputs, z(k) ∈ Rp is the vector of out-
puts from the system, y(k) ∈ Rq represents the measure-

ment vector, and the remaining matrices have compat-
ible dimensions. It can be shown, extending the results
for the linear time-invariant case available in (Anderson
and Moore, 1979) that the optimum estimator in the
sense of providing the state estimate with minimum vari-
ance for the system (3) consists of a finite-dimensional
linear, periodically time-varying estimator with realiza-
tion

ΣEM
=

{
x̂(k + 1) = A(k)x̂(k)

+K(k)(y(k)− Cy(k)x̂(k))
ẑ(k) = Cz(k)x̂(k)

, (4)

where K ∈ Rn×q is a periodically varying observer gain
to be determined and x̂(k) and ẑ(k) have the dimensions
of x(k) and z(k), respectively.

Let x̃ = x − x̂ and e = z − ẑ be the state and output
estimation errors, respectively. Using (3) and (4), the
dynamics can be written as

ΣFM
=

{
x̃(k + 1) = (A(k)−K(k)Cy(k))x̃(k)

+(Bw(k)−K(k)Dyw(k))w(k)
e(k) = Cz(k)x̃(k) + Dzw(k)w(k).

(5)

It now remains to chose the periodically varying gains
so as to meet adequate performance criteria for the esti-
mated variables. The work in (Oliveira, 2002) describes
in detail how this choice can be done in a ”frequency-
like” setting that naturally captures the requirements
that the ”transfer function” from position measurement
(Ixs)m to position estimate x̂1 be ”low-pass”, while that
from the integral of I(us,w)m to x̂1 is high pass. See also
(Pascoal et al., 2000) and the references therein. The
design tools used are well rooted in the theory of Linear
Matrix Inequalities (Boyd et al., 1994). Namely, they
use the extensions of previous results for linear time-
invariant filter design to a periodic setting, reported in-
dependently in (Oliveira, 2002) and (Bittanti and Cuz-
zola, 2001). Using this framework, filter design can be
cast in the form of an optimization problem and solved
using efficient numerical tools such as those described in
(MATLAB, 1997).

The key results required for filter design involve the com-
putation H2 and H∞ norms of closed loop periodic op-
erators. It is assumed that the reader is familiar with
these concepts. See for example (Boyd et al., 1994) for
formal definitions. In a stochastic setting, the H2 of a
stable operator can be interpreted as the asymptotic
output variance of its output when the input is excited
by white noise input signals. In a deterministic setting,
it is simply the ”total output energy” of its impulsive re-
sponse. The H∞ norm of a stable operator captures the
worst case ”energy” amplification from input to output
and admits (in the linear time-invariant case) important
interpretations in the frequency domain. As an example,
the following theorems derived in (Oliveira, 2002) allow



for the computation of the H2 and H∞ norms of impor-
tant closed loop operators using LMIs.

Theorem 3.1. Consider the periodically time-varying dis-
crete time system FM : w → e composed of a nomi-
nal system GM : w → [zT yT ]T and an estimator EM :
y → ẑ interconnected as described in figure 3, with re-
alization (5). The H2 norm of such a system, from the
input w to the output estimation error e, is such that
‖FM‖2 < γ if and only if there exists a set of symmetric,
positive definite matrices P (i) ∈ Rn×n, i = 0, · · · , M−1,
a set of auxiliary variables X(i) ∈ Rm×m, i = 0, · · · ,M−
1 and a set of auxiliary variables Y (i) ∈ Rn×q, i =
0, · · · ,M − 1 verifying Y (i) = P (i + 1)K(i), such that

[
P (i) ∗ ∗

P (i + 1)AT (i)− Y (i)Cy(i) P (i + 1) ∗
Cz(i) 0 Ip

]
> 0,

i = 0, ..., M − 1;[
X(i + 1) ∗

P (i + 1)Bw(i)− Y (i)Dyw(i) P (i + 1)

]
> 0,

i = 0, ..., M − 1;
M−1∑
i=0

tr(X(i)) + tr(DT (i)D(i)) < Mγ2.

Theorem 3.2. Consider the discrete-time system FM :
w → e, composed of a nominal system GM : w →
[zT yT ]T and an estimator EM : y → ẑ interconnected
as described in figure 3, with realization (5). The H∞
norm from the input w to the output estimation error e
verifies ‖Fk‖∞ < γ if and only if there exists a symmet-
ric, positive definite set of matrices P (i) ∈ Rn×n, i =
0, · · · ,M − 1 and a set of auxiliary variables Y (i) ∈
Rn×q, i = 0, · · · ,M − 1 verifying Y (i) = P (i + 1)K(i),
such that each LMI given by




−P (i) ? ? ?

0 −γ2Im ? ?
P (i + 1)A(i) P (i + 1)Bw(i) −P (i + 1)
−Y (i)Cy(i) −Y (i)Dyw(i) ?

Cz(i) Dzw(i) 0 −Ip


 (6)

is negative definite, for i=0, ..., M-1.

To cast the problem of navigation system design as an
optimization problem, define

Txm→e - operator from position measurement (Ixs)m to
estimate error e = (Ixs)m − I x̂s;

Tum→x̂ - operator from velocity measurement (Ius,w)m

to position estimate I x̂s;

Txm→x̂ - operator from the position measurement (Ixs)m

to the position estimate I x̂s.

Then, as argued in (Oliveira, 2002) the simplest problem
of ASV navigation can be formulated as
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Fig. 4. Position Ixs (solid line) and position estimate
I x̂s (dotted line) on top; Velocity Ius and velocity
estimate, in the middle; current IuW and symmetric
of current estimate, at the bottom.

min ‖Txm→e‖2
subject to:

‖Tum→x̂‖2 < γv

‖Txm→x̂‖∞ < γp

(7)

The first minimization objective captures the classical
objective that the H2 norm from position measurements
to estimation errors be small. The two other constraints
aim at meeting adequate time and ”frequency-like” de-
sign specifications. The positive variables γv and γp play
the role of tuning knobs in the filter design process.
See (Oliveira, 2002) for a more elaborate setting where
”frequency-like” weights are directly incoporated in the
criteria above.

A design exercise was carried out and a navigation filter
was designed for the ASV to meet the design require-
ments introduced above, as well as other requirements
in the frequency domain (Oliveira, 2002). This led to the
the bounds γv = 0.65 and γp = 1.8 and to the multirate
filter gains

K(k) =

{ [
0.1890 0.0027

]T
if k MOD M = 0[

0 0
]T

if k MOD M = 1

yeilding a minimum value of ‖T ∗xm→e‖2 = 1.0651.

The performance of the navigation system was first eval-
uated in simulation for an initial 10 m error on the po-
sition estimate. The unknown water current was set to
0.1m/s in the x− direction while its initial estimate was
set to 0m/s. The temporal evolution of the estimates is
shown in figure 4.

This navigation system was tested at sea with the DEL-
FIM catamaran. Figure 5 shows the actual path of the
vehicle during a mission off the coast of Setubal, Portu-
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Fig. 6. Detail of the trajectory of the Delfim catamaran.

gal. Figure 6 shows a zoom in on position estimates over
a period of 50 samples (= 12.5 s). The figures illustrate
clearly the multirate characteristic of the navigation sys-
tem as well as the ”low-pass” characteristics from mea-
sured position to estimated position, which arise natu-
rally from the complementary nature of the filter chosen.

4. CONCLUSIONS

The paper introduced a new methodology for the design
of multirate navigation systems for autonomous marine
vehicles. The set-up adopted for filter design and analy-
sis builds on Linear Matrix Inequalities (LMIs) and on
efficient numerical analysis tools that borrow from con-
vex optimization techniques. Tests at sea showed good
performance of the filtering algorithms derived. Future
work will address the problems that arise from latency
in sensor measurements.
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