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Abstract
This paper describes a multi-loop, modular navigation

architecture for mobile robots whose structure allows the
execution of most types of navigation tasks in a highly
robust manner. The modularity allows the clear
separation of functions according to their complexity and
priority.  We propose a clear separation between local
and global navigation in such a way that both can run
independently, but an adequate alternation/competition
between them allows accomplishment of trajectory
execution including avoidance of unknown obstacles. The
multi-loop nature of the architecture ensures adequate
stability at different levels yielding safe navigation and
accomplishment of higher level tasks. Examples may
range from goal reaching in some point of the
environment to a 3D-environment mapping application,
as this is the case in this work.

1. Introduction
Navigation is a major issue when addressing mobile

robotics because the concept is so wide that it includes
all aspects of directing a robot's course as it traverses the
environment. These issues include path planning, path
execution, obstacle avoidance and localisation, just to
mention those more frequently addressed by researchers
in the area. Navigation is the intermediate level (or
sometimes the final one, depending on the ultimate goal)
to accomplish task oriented jobs in the mobile robotics
domain. The navigation architecture represents the robot
internal organisation and the interactions among all the
actions that are to be executed to accomplish a task.

In most of the navigation tasks, a place in space is to
be reached, that is, the user or another application
external to the robot must indicate some type of co-
ordinates or references for the robot to reach and/or
detect. Another type of navigation may be the roving or
wandering mode where not a single co-ordinate or
landmark is ever given to the robot. This type of
navigation will be mentioned further as a by-product of
the proposed architecture. In both cases, obstacle
detection and avoidance capabilities are assumed to be
executed.

The navigation architecture proposed in this paper is
implemented on the AEST (Autonomous Environment
Sensor for Telepresence) mobile platform displayed in
Figure 1, which was developed in the framework of the
RESOLV project. The project aims at the 3D
reconstruction of large and complex indoor
environments based on range [1] and video data. The
transportation of the sensor head (Laser Range Scanner
plus Vision Camera) between the successive acquisition
positions is done according to a perception plan that
defines the next goal to be reached by the AEST [2].
Within a universe where the environment is unknown
until it is reconstructed and where autonomous motion is
required both in reconstructed and yet unmodelled
regions, a robust navigation architecture for the AEST is
imperative.

        
Figure 1 - AEST mobile platform

The proposed architecture is based on previous
developments presented in [3] and [4] where obstacle
detection and avoidance were implemented in a
wandering based approach combined with a reflexive
loop that handled emergencies. In the context of the
RESOLV project, a final goal has to be reached which
requires the execution of a designed trajectory, the
avoidance of eventual unknown or unexpected obstacles
and the recovery or, should it be necessary, the
recalculation of the path to accomplish the final goal.
The proposed architecture, composed by three enclosed
loops implementing reflexive, reactive and functional
procedures, is robust and modular achieving correct
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motion in dynamic environments. The major novelty is
the competition of different navigation modes (sets of
motion strategies) according to the robot status and task
under execution.

2. Proposed architecture

The most well known navigation architectures include
the subsumption variant introduced by Rodney Brooks
[5] which is characterised by the clear intention of
separating priorities, and creating hierarchies of blocks
whose actions would inhibit (subsume) other blocks in a
lower level according to the system inputs. This
inhibition would transfer the responsibility of defining
actions to “more intelligent” modules if one of them
“decided” to do so. The structure is based in what
Brooks called the levels: level zero corresponds to the
simplest behaviour (avoid touching obstacles) with
successive layers growing vertically on top of this one
and having increasing complexity.

The subsumption is a reactive type architecture
meaning that actions depend on inputs after some
processing upon them, where the processing could be
very simple in the lowest level and highly sophisticated in
higher levels. A related variant is the purely reflexive
architecture, where actions are taken after inputs with no
further processing, meaning that no other condition than
the input value itself is taken into account for the
decision. However, this may create stability problems.

Without being exhaustive, most navigation
architectures can be divided into two main categories: the
behavioural , such as the subsumption described before,
and the functional. The functional type is opposed to
behavioural in the sense that no action is taken without
the proper analysis of its consequences and/or
interactions. Actions tend to be very optimised and the
structure of such architectures is fairly complex allowing
eventually that communication among its parts is fully bi-
directional. They are usually more algorithmic and less
reactive. A third type, the hybrid, tries to fuse the pros of
both categories to end up with architectures with larger
capabilities. Further analysis and comments on these
variants can be found in [6].

The envisaged application in the RESOLV project
requires an intensive relation with the environment,
which could be dynamic, therefore demanding a great
deal of reactivity. A navigation architecture for a robot as
complex as the one involved in our work cannot be
purely reflexive because that would certainly lead to
instabilities due to the large number of sensors (24
ultrasonic for navigation purposes) and to the poor
reliability of individual measurements. Therefore, a
reactive structure, though appearing somehow limited,
was a suited point to start defining an alternative. In the

other hand, as some navigation actions were to be more
elaborate than simple reactive behaviours, the functional
component had certainly to be inserted in the
architecture. Stated this, it is clear that the final
architecture would possibly be of the hybrid type.

However, independently of remaining attached to the
reactive and functional concepts, the main design
requirements of the architecture were:
• separation of navigation actions according to some

functional independence;
• responsiveness of system in case of high priority

events, such as imminent collision but yet, efficiency
to avoid entering the previous conditions of
emergency;

• stress the importance of local navigation as the
closest active contact with the environment;

• count both on local and global information provided
by sensors and a priori knowledge, respectively;

• robustness to sensor failure, or irregularity and
resolution;

• architecture and architecture modules must be easily
modifiable and expandable.
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Figure 2 - Proposed Navigation Architecture

The proposed architecture is represented in Figure 2.
Earlier developments towards such type of architecture
[3] [4] [7] did not implement some of the modules now
presented and some were even not so detailed. This
architecture may be described as a set of enclosing loops.
A loop is a closed circuit of information going from the
perception of the status of the environment and/or the
status of the robot to actions. The three executive loops
are the reflexive loop that handles collision
avoidance/emergencies, the reactive loop responsible
for local motion/path following and the functional loop
that is in charge of local motion strategy and trajectory
planning.
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2.1. Reflexive Loop

The reflexive loop deals with imminent collision
detection, loss of communications with a remote host (if
one is used), freshness of sensorial data, and very simple
motion commands to evade traps or dead locks. Raw
sensorial data is available within this loop.

2.2. Reactive Loop

The reactive loop deals with local motion and path
following issues. Actions to be taken after data
acquisition are more elaborate than simply reflexive and
sensorial data can be more than simply raw. Processed,
integrated or fused data is obtained at this level. Also at
this level, eventual external a priori knowledge (processed
data, e.g., a full or partial model of the environment) can
be supplied to the system.
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Figure 3 - Transitions of navigation modes

The main issue is to perform safe motion in the
environment whatever it may be. Three navigation
modes, teleoperation , path following and local
navigation are implemented with motion achieved by
alternation/competition among them. Each of these
modes is permanently available and assured by specific
modules. The modules attached to each navigation mode
(essentially path follower and local navigation)
continuously calculate what would be, from their point
of view and with their inputs, the correct motion.
Another module, the mode selector acts as a referee by
defining which is to be the "winning" motion according
to some rules. Teleoperation, by definition, always wins
unless path appears obstructed, or other safety concerns
are to be taken into account. In the path following mode,
robot performs motion along specified curves in order to
cover sequentially a list of subgoals. Local navigation
wins when the path being executed risks the short term
collision with obstacles, or when wandering or similar
modes are desired (by the user, for example). Normally,
the local navigation module actuates when the projected
path is non-feasible due to obstacles. In this working
mode the obstacle is avoided (contoured or deviated
from, depending on the current local navigation strategy)
and as soon as the locally desired path is free, the system
returns to path following mode. Figure 3 illustrates the

basic navigation modes and the main transitions.

2.3. Functional Loop

The functional loop is responsible for evaluating the
path to next subgoal and which strategy is suited for local
navigation, should it become active. It still verifies
whether remote operator (user/application) is demanding
direct control on the robot. Whenever the path following
mode is the desired one, the competition among modes
occurring at the reactive loop may raise a path-recovery
problem, i.e., the definition of a new path to reach the
final goal. This problem is not directly solved by the
competition among navigation modes given that the
reactive nature of the modules involved determines
conflicting behaviours competing for the control of the
system and path recovering requires co-operation. So, it
is only at the functional level that the problem is solved,
by computing in real time appropriate motion plans to
influence (not decide) the behaviour of the reactive loop.

Among the functions assured by this functional loop
there is still the verification whether subgoals have been
reached, and the manipulation and rearranging of their
sequence in order to fulfil or try to optimise the
navigation task. It is worth noticing that in the functional
loop, more processing, decision and analysis is
performed rather than action upon the real system. This
is a characteristic of functional architectures as
mentioned earlier.

Expanding this architecture to an outer loop that
encloses all these three is not difficult. One could
imagine a loop including the user or an application
responsible for the task planning issues. That would
include path planning or teleoperation or other task
planning concerns. Sophisticated perception of the
environment could be required, and actions would be of
highest level.

2.4. Major novelties
The proposed architecture presents some novelties

relative to known solutions. When compared to Brooks'
subsumption architecture, behaviours are not predefined
but rather built and modelled along a data path. This
allows the creation of many, eventually unexpected
behaviours. Moreover, the inhibition (subsumption) of
actions is not done downwards but upwards: lowest level
(and fastest) units of the architecture have priority upon
highest levels.

Robustness is achieved with simplicity: when
executing a planned trajectory, the path follower
monitors it constantly and ensures it is being
accomplished within given limits. However, if path faces
toward occupied space, local motion is allowed to
interfere and deviate or circumscribe the obstacle. If local
motion fails for some reason and approximates beyond
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safety, the emergency handling actuates imposing speed
reduction, or, most of the times, definitely stopping the
vehicle. Though likely to occur rarely, further procedures
will be carried in case of dead locks, such as "U" shaped
obstacles. On the other hand, well-planned tasks are
completed successfully without the intervention of lower
levels.

The modularity is an important feature of this
architecture as well; modules can run independently of
the others or even on separate hardware. Another
interesting, and somehow novel, concept emerging
naturally from this architecture is the so called "Assisted
Navigation" [4][7]. This means that the user may
control the robot directly (joystick, mouse, etc.), but
when it approaches more difficult situations, like
traversing a door, the automatic activation of the local
navigation will assure that part of motion.

3. Main blocks of the architecture

In terms of computational and algorithmic
complexity, some blocks of Figure 2 are much relevant,
namely: path following, local navigation, perception
maps, localisation, emergency handling. A brief
description of the principles underlying some of them is
presented as follows.

3.1. Emergency handling

This is a key block on the reflexive loop of the
architecture, managing the lowest level of procedures. Its
actions concern essentially on the detection of imminent
collision and brake actuation in case the velocity
(intensity and direction) is considered unsafe for the free
space perceived by one or more sensors. Collision, in the
sense of emergency situation, is extended to several
cases: obstacles in the path, holes in the ground or
hanging obstacles above a certain height. The sensorial
data is not processed at all, thus revealing the reflexive
component. In the current implementation, an
emergency procedure assures some low level motion to
escape traps or dead locks as the case of "U" obstacles.
The system detects such situations by two means: the
frequency of imminent collision detection and also
detecting what was called repetitive stopped rotation.
This last occurs when the robot tries to execute pure
rotations to the left and to the right and enters a periodic
cycle. In these situations the navigation mode is most
certainly the local navigation, which, having simple
behaviours to react to free space, may eventually yield
that the robot fall trapped in local minima. In any of
those situations, the emergency handling block will
provide very simple slow motion forwards or backwards
in a straight or equally simple line, should sensorial data
allows. This temporarily overrides all other motion

commands (except a remote "stop" command).

3.2. Local Navigation

The local navigation is a block on the reactive loop,
and also the name of a navigation mode. Local
navigation provides motion to allow the robot to move
with no given references. It exclusively uses the
perception of the environment plus some motion
behaviour: the navigation strategy . The use of raw data
from 24 ultrasonic sensors to generate local motion is
not suited due to the poor stability caused by erroneous
and unstable sensorial measurements. Therefore, data
must be processed in order to obtain a more robust and
solid representation of space occupancy around the
robot. This is achieved by the perception maps, [3] [4],
which results from data integration and are organised as a
radial robot-centred grid as displayed in Figure 4.

Robot

Figure 4 - Perception Map structure

The perception maps are built using sonar data, but
can be refined with complementary data (such as laser
range or infrared). Among the developed methods to
build the map, the most robust found was one based on
Neural Networks [3] [7]. With these maps, and obeying
some simple strategy, such as "follow the free space",
"follow the environment on the left/right", or "contour
obstacles", motion is then generated using a dedicated
algorithm [7].

3.3. Navigation in the global frame

Some modules are concerned with the issues of
navigation in the global (world) frame, namely the path
follower. This is achieved by sequentially tracking the list
of subgoals generated by the path planner, ended with
the desired final goal. Each subgoal, gi, consists of a
vector pi = (xi ,  yi , θi )T defining its pose in the global
frame, and a flag with three possible status: stopped (goal
to reach at zero velocity), forward or reverse (goal to reach
with the correct heading). The list of subgoals constrains
the path to be executed, but leaves freedom on the
navigation between them. The trajectory generator
module computes, on-line, a smooth trajectory between
the robot’s current location and the next subgoal. The
type of curves used are clothoid pairs [8], but cubic
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spirals [9], splines, or other smooth curves could be used,
all of them aiming at smoothing motion to reduce the
odometry errors produced by undesirable wheel slippage.
The referred smooth trajectory is defined by a sequence
of vectors pk defined in the global frame and an
associated curvature, ck, and velocity, vk. Whenever the
robot deviates more than a given amount from this
trajectory a new one is computed from the actual
location to the current subgoal.

odometry
( x, y, θ ) T

u = (v, w) T

HYBRID
CONTROLLER

ref  
i

Mobile Robot
Wheels Actuators

2nd order
curve

segment

Trajectory Following

Point Stabilization

Figure 5 - Path following control block

The path follower evaluates the set (pk-1, pk), in real
time, with the smaller distance to the robot’s actual
location based on an ellipse inclusion criteria. Then, it
dispatches ref k = (pkT ck vk )T as the local reference for
the control block in Figure 5, where feedback is provided
by odometry. The odometric information is always
assumed as the most accurate estimate for absolute
location, given that it is corrected by an external
localisation system. The vector refk locally defines a
generic second order curve segment that the hybrid
controller takes as reference to implement a trajectory
following control law. Due to the non-holonomic nature
of the system, the control law will always have
singularities in the reference vector space when vk=0. In
this case, refk defines a single static posture in the
system’s state space and the control problem to consider
is point stabilisation, instead of trajectory following. This
requires implementation of hybrid control laws, [10] [11].
The hybrid controller computes a motion ready to be
dispatched to the wheel actuators. This motion is only
affected by odometry and does not take into account any
other sensor information.

The path manager module checks odometry
regularly and when the current subgoal is reached, takes
the next subgoal as the current one to attract motion to.
A path is considered as having been executed when the
final goal is reached. Whenever the current sub-goal is
blocked by an unexpected obstacle (which is checked out
through the combined information of the perception
maps and odometry), the path manager considers and
computes an alternative subgoal.

3.4. Navigation mode selection

Through the interface with the remote operation
channel the operator/user application chooses the
desired navigation mode which, however, might not be

always active. In fact, the selection of the active mode is
performed by the mode selector that takes into account
the desired navigation mode and the motions proposed
by the modules competing on the reactive loop.
Considering the robot dimensions and the motion
proposed by the module corresponding to the desired
navigation mode, the mode selector estimates, within
certain tolerances, the spanned area needed to perform
the desired motion. The occupancy status of this area is
checked by analysing the perception maps. If it is
occupied, local navigation is selected. Otherwise, the
navigation mode will be the desired one.

3.5. Localisation

In a non-periodically basis, an absolute localisation
system based on the detection of natural landmarks of
the environment sets odometry system to correct its
cumulative errors. Details of the implemented algorithm
are in [12].

3.6. Other modules
Given the robot actual location, the already

reconstructed model of the environment and the location
of the next laser data acquisition (the desired goal), the
path planner evaluates a set of subgoals. A simple
optimisation algorithm defines a set of line segments to
the goal, keeping a safe distance from already modelled
environment and avoiding, whenever possible, motion
on unmodelled regions. Subgoals are taken from the
intersection points of consecutive segments. In the
framework of the RESOLV project no sophisticated
optimisation is required at this level since partially
modelled environments are to be dealt with most of the
times. Instead, subgoals and trajectories may be
dynamically recalculated at different modules and during
task execution, as already referred.

4. Results

Extensive results on local navigation can be found in
[3] [4] [7]. The new results obtained concern the
interaction of the remainder blocks, namely the path
follower. Figure 6 illustrates situations of path recovery
performed with the mobile robot. A sequence of
subgoals, sgi (position and orientation), is given as a path.
Superimposed are the results of two experiments: one,
represented by a dashed line, corresponds to the
execution of a path exclusively in the path following
mode. On the second one, the robot is teleoperated
during two time intervals. When teleoperation is no
longer active, a new path is evaluated to regain the
original one. Yet, one intermediate subgoal is skipped by
the path manager.
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Given a goal straight ahead with an unknown
obstacle in between, the robot deviates from the obstacle
and resumes its path towards the goal as illustrated in
Figure 7. In this figure, the path is made up of a
succession of local navigation (thick lines) and  path
following (thin) tracks. As the robot initially approached
the obstacle, the local navigation deviated the robot’s
path slightly away from it. The path follower took
control and continued executing a newly planned smooth
trajectory. Local navigation took control two more times
whenever path following tried to approach the robot to
the obstacle edges. When the path cleared (seen through
the perception maps), path following mode controlled
the robot towards the goal, shown as a dot (plus heading)
in the figure.

5. Conclusions

This paper presents a navigation architecture with
great robustness at several levels: safety against collisions,
completion of navigation tasks, possibility of distributed
processing, dealing with dynamic environments, adequate
motion generation, modularity and expandability. The
system is highly responsive to emergencies. This is done
at the reflexive loop level, which has the highest priority.
Navigation tasks are assured by the several loops: the
more complex the task the more frequent will be the
interactions among the loops and the transitions of
navigation modes. However, means exist to fulfil even
the more demanding motion related tasks, namely going

from one point to another with limited sensorial
information and with unexpected obstacles. The
architecture can also integrate user intervention as a
normal operation, without breaking the normal flow of
execution.

The dynamics of the environment has no limits,
assuming that moving parts deliberately do not try to
collide with the robot in any direction. The way motion
is generated is very robust since several motion
generators may exist in competition and the "best"
motion is selected. Higher levels propose motion plans,
but the way these are carried out is normally out of their
direct control. If no unexpected situation occurs, the
plans are accomplished as expected. Otherwise, the lower
level loops will have to intervene, imposing their own
proposed motions or motion plans.

Future work includes the thorough testing of the
architecture in several types of environments and with
different degrees of 3D environment reconstruction
completed during previous navigation tasks.
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