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Abstract This paper presents a system which integrates a

geographic information system of a building with computer

vision. It uses only one camera, for example, the one of a

mobile phone. Visual landmarks, such as frontal and lateral

doors, stairs, signs, and fire extinguishers, are employed for

localizing the user in the building and for tracing and

validating a route for the user’s navigation. The developed

system clearly improves the autonomy of persons with a

very low vision during indoor navigation.
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1 Introduction

Worldwide, approximately 285 million persons are visually

impaired. About 39 million are completely blind and 246

million have low vision [30]. There are many types of visual

impairments and official definitions in terms of reduced

acuity and field of view. Below, the word blind is used to

refer to persons who may have some residual vision but who

must rely on—or simply feel more comfortable when

using—the white cane, or, if they can afford one, a guide dog.

The white cane serves local navigation, by constantly

swaying it in front for negotiating walking paths and obsta-

cles in the immediate vicinity. In this paper, global naviga-

tion is addressed, going to a specific location in a large

building. If there are no Braille signs and the building has not

yet become familiar, blind persons, even when accompanied

by a guide dog, must rely on people passing by to ask for

information. Apart from guiding a user to a destination, a

global navigation aid can provide the user with important

landmarks for creating a more complete mental map of the

building, therefore improving autonomy in the future.

Different assistive technologies exist or have been pro-

posed. One named smart cane [26] is an electronic cane

with built-in ultrasound sensors for detecting obstacles,

both horizontally and vertically. It is planned to be cheap

such that it can be afforded by poor persons. Drishti [20] is

an in- and outdoor navigation system. Outdoor it uses

DGPS localization to keep the user as close as possible to

the central line of sidewalks. It provides the user with an

optimal route by means of its dynamic routing facility. The

user can switch the system from out- to indoor operation

with a simple vocal command, which activates a precise

ultrasound positioning system. In both cases, the user

receives vocal prompts which alert for possible obstacles

and provide guidance while walking about. CASBliP or

Cognitive Aid System for Blind People [3] was a European

project. Its main goal was to develop a system capable of

interpreting and managing real-world information from

different sources in order to improve autonomous mobility.

Environmental information from various sensors is

acquired and transformed into enhanced images for
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visually impaired users, or into acoustic maps via head-

phones for blind users. SmartVision: active vision for the

blind [6] was a Portuguese project. Its prototype is an in-

and outdoor navigation system with different modules

which integrate GPS and WiFi localization with a geo-

graphic information system (GIS) database, passive RFID

tags in sidewalks, and computer vision for path centering

and obstacle avoidance.

Schmitz et al. [23] developed a navigation system that

seamlessly integrates static maps with dynamic location-based

textual information from a variety of sources. Each informa-

tion source requires a different kind of acquisition technique.

All acquired information is combined by a context manage-

ment platform and presented to the user as a tactile or acoustic

map depending on the sources available at a current position.

Positioning is achieved by a combination of an inertial tracking

system, RFID technology, and GPS, and the user is guided to a

desired destination by speech output and a haptic cane. Costa

et al. [5] presented an algorithm to recognize landmarks suit-

ably placed on sidewalks. The proposed algorithm uses a

combination of Peano–Hilbert space-filling curves for

dimension reduction of image data and ensemble empirical

mode decomposition (EEMD) to preprocess images, which

yields a fast and efficient recognition method.

This paper presents a system which integrates data in a

GIS of a building with detection of visual landmarks. Any

normal camera can be used together with a small, portable

computer such as a netbook. GIS/vision-based localization

is complemented by navigation: At any time, the system

traces and validates a route from the current position to a

given destination. Although designed for being integrated

in the Blavigator prototype, see Sect. 2, this system can be

used by any person who wishes to navigate in a complex

building. The main contributions are the integration of

existing GIS data with visual landmarks (staircases, doors,

fire extinguishers, etc.) for localization and navigation, and

the detection of stairs and lateral doors in corridors. For

previous work on the detection of doors, the reader can

refer to [4, 18, 19, 28], for stairs to [12, 13, 15, 16, 24, 31],

and for object recognition to [21].

The rest of this paper is organized as follows. The fol-

lowing section describes the prototype and the geographic

information system. In Sect. 3, landmark detection,

including doors and stairs, is explained. Section 4 deals

with navigation, i.e., route planning and localization during

navigation. Final conclusions are presented in Sect. 5.

2 The prototype and the geographic information

system

The system presented here is part of a larger project enti-

tled ‘‘Blavigator: a cheap and reliable navigation aid for the

blind’’. The goal is to develop a vision and navigation aid

which is (a) not expensive, given that about 90 % of

potential users live in so-called developing countries;

(b) easily portable, not being a hindrance when walking

with the cane; (c) complementing the cane, but not

substituting it because blind persons must always be able to

rely on the cane; (d) extremely easy to use in terms of

intuitive interfacing; (e) simple to assemble, install, and

operate, without need for very skilled technicians; and

(f) providing useful assistance for local and global navi-

gation in real time. Blavigator, a synthesis of the words

‘‘blind’’ and ‘‘navigator’’, is a follow-up project of the

above mentioned SmartVision [6].

Geographic information usually links locations to prop-

erties of those locations. Technologies for handling such

information include GPS, remote sensing, and geographic

information systems (GIS) [10]. In the prototype presented,

any detected landmarks (doors, stairs, fire extinguishers,

exit, and WC signs, etc.) are matched against those in the

GIS for each room, corridor, etc. By combining the detected

landmark positions with the traced route, the user can be

informed about the current location by a speech module.

Since the GIS/landmark system must be integrated in the

SmartVision/Blavigator prototype, all visual functions have

been optimized for small CPU time and memory usage.

Most visual functions are based on a few basic algorithms,

which are employed only once for each video frame.

For the validation of the concept, the prototype was

developed on a netbook with a standard WiFi webcam. It

was tested at the Institute of Engineering (ISE) of the

University of the Algarve (ISE/UAlg). A mountable sup-

port holds the camera at the chest of the user (see [6]), at a

height of about 1.5 m from the floor. The height of the

camera depends on the height of the user, though it is not

relevant to the system’s performance. The camera points

forward, the image plane being almost vertical, and devi-

ations due to swaying during walking are not problematic

because problems are solved in the image processing steps.

When a user location is not certain due to missing or

ambiguous visual landmarks, the user can take the camera

from the mountable support and hold it in one hand for

pointing it into different directions. Even a mobile phone

with built-in camera can be used, as nowadays most models

have a very good resolution.

Geographic information systems comprise tools for the

processing, analysis, modeling, and storage of spatial data

[10]. The growth of location-aware services and ubiquitous

computing is leading to more indoor applications. In

addition, since many buildings such as airports, shopping

malls, and hospitals have become bigger and also more

complex, more indoor GIS databases are becoming avail-

able, and increasingly more aging persons need more

assistance in finding a destination [29].
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Fig. 1 The top three database

levels (at top) and two partial

maps of the ISE/UAlg building

with two routes (dashed) on two

floors, linked by an elevator
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GIS data can be structured in raster and in vector formats.

The GIS of ISE/UAlg employs vectorial data, and it was

implemented using Postgresql/Postgis. The database model

is illustrated in Fig. 1 (top). It includes three main classes

Campuses, BuildingsPerimeter, and BuildingsIndoor. The

datasets Campuses and BuildingsPerimeter are mainly for

outdoor purposes: Campuses provides data about the areas

and groups of buildings, whereas BuildingsPerimeter

specifies the area and position of each building, its name,

and the number of floors. BuildingsIndoor details all dif-

ferent spaces of each building. These include structural

components, i.e., walls, doors and windows, circulation

areas such as halls, corridors, stairs, elevators, and ramps,

and rooms. The latter are classified by their type, function,

and usage, for example office, classroom, lecture amphi-

theater, laboratory, library, and bar. The bottom part of

Fig. 1 shows two partial maps of the 1st and 3rd floors of the

ISE/UAlg building, including an example of a route which

starts in the bar and goes to room number 172.

The system’s component which handles spatial data was

developed by using the OGR Simple Features Library.

OGR is part of GDAL—the Geospatial Data Abstraction

Library. OGR/GDAL is a project supported by the Open

Source Geospatial Foundation (OSGeo) [9].

3 Landmark detection

Having information about the spatial layout of the building,

it is necessary to discriminate all spaces. This can be done

at a first level by localizing doors, windows, stairs, and

elevators. However, this is not sufficient. All additional

information which characterizes spaces, such as signs and

objects, is useful for building a map, similar to simulta-

neous localization and mapping (SLAM) in robotics, e.g.,

[22].

Inspired by this idea, all useful landmarks such as

objects, signs, and tags were retrieved and included in the

GIS. Although anything can be stored in a GIS, it is not

common to include things such as flowerpots, lockers,

garbage bins, and vending machines. These may be

important landmarks for localization, but they are not

interesting for other GIS users. Hence, for a first prototype

version, the more permanent landmarks were selected, such

as fire extinguishers, exit, and WC signs, in order to

complement doors, stairs, and elevators. Figure 2 (bottom)

illustrates more examples. For detecting these special

landmarks, the OpenSURF (Speeded-up Robust Features)

library [8] was used. The SURF algorithm detects objects

by finding correlations with templates. The attributes and

points of interest of an object are invariant to scaling,

rotation, distortion, and illumination. As a consequence, it

is possible to identify objects almost regardless of their

location, position, or rotation. Nevertheless, it is necessary

to build a database of templates of each object as seen from

several perspectives.

Although SURF is not computationally demanding, it is

necessary to limit the search space of objects to small areas

of interest instead of analyzing entire images. In the case of

robotics, Nick’s Machine Perception Toolbox [1] was

Fig. 2 Top two rows, left to right input images, color segmentations after dilations, and bounding boxes with SURF’s interest points. Bottom row

more examples of templates
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applied for generating saliency maps. By thresholding

these and by creating bounding boxes, region sizes can be

limited to areas with possible objects [22]. In this case, the

algorithm was simplified because (1) being an indoor space

of a public building, most walls are white and even if they

have a different color, they are normally light and homo-

geneous, and (2) most signs and selected objects have

rather pure and saturated colors. For the above reasons, a

simple segmentation by color in RGB space was applied, as

described next.

In a preprocessing step, the color histogram and the

dominant color of each object and sign are computed.

Then, each image is segmented using these colors with

intervals of ±25 of the R, G, and B components. The

segmented regions are dilated with 30 iterations, which

eliminate gaps due to other colors. The minimum and

maximum coordinates in x and y of the dilated regions are

used as bounding boxes. Finally, to the regions delimited

by the bounding boxes, the SURF algorithm is applied to

characterize the object. The top two rows of Fig. 2 illus-

trate, from left to right, the processing steps.

3.1 Doors

Detection of doors is challenging because there are dif-

ferent types with different frames, also with different

geometries if viewed non-orthogonally. Below, two situa-

tions are addressed: (a) the detection of lateral doors when

the user is walking along a corridor, and (b) more or less

frontal doors, when the user wants to identify a specific

door which he is facing.

3.1.1 Detection of lateral doors

Assuming that the user walks along a corridor guided by

the local navigation module, more or less centered toward

the corridor’s end, most doors are viewed laterally. This

complicates their geometry, although three things can be

assumed: Doors have vertical frames, their height is larger

than their width, and they connect to the floor. The latter

means that they can be found close to the corridor (path)

borders.

In a previous paper, the authors have been presented

path and obstacle detection [14]. The goal is to guide the

user on walkable paths, i.e., the area where the user can

walk safely. Examples are indoor corridors and outdoor

sidewalks. Because of perspective projection, the left and

right border and other parallel lines intersect at the van-

ishing point, and this point defines the horizon line. Fol-

lowing preprocessing using the Canny edge detector [2], an

adapted version of the Hough transform [7] is applied to

extract the left and right borders from the image. Since

vertical camera alignment varies over time when the user

walks, the height of the horizon line is computed dynam-

ically, by averaging the values of the previous five frames.

The area inside the left and right borders and the bottom

line of the image is called the path window. For more

details concerning path detection see [14].

Detection of lateral doors starts when the user enters a

corridor, i.e., the corridor’s two borders on the floor have

been detected. As the user is guided to walk along the

corridor, doors enter the camera’s field of view at a large

distance such that they are rather small. Depending on their

distance, there may not be enough information to confirm

their geometry. Therefore, they are called candidates which

will be tracked while approaching them. As the distance

decreases, more information becomes available and a

detailed analysis can be applied to confirm if a candidate is

actually a door or another rectangular structure. Tracking is

important because in some frames a door may be occluded,

for example by another person.

After the Canny edge detector (r = 1.0, Tl = 0.25, and

Th = 0.5), the result of which is already available because

of path detection, the first step is to extract long vertical

edge segments. The system looks for doors on both sides if

the horizontal distances between the position of the van-

ishing point, and the leftmost and rightmost point of the

path window are bigger than 50 pixels. If one distance is

smaller, the corresponding side will not be analyzed

because it does not show sufficient information. In addi-

tion, vertical edges are only checked in the left and right

regions from the image borders to 3/4 of the distance to the

vanishing point; these are the light gray regions in Fig. 3

(top).

For detecting the edge segments, the positions of edge

pixels are stored as nodes in a graph, but all edges in the

path window are ignored. The graph is constructed by

checking all edge pixels on image lines, from left to right

and top to bottom. However, instead of analyzing all image

lines, in a first step, only every tenth line is selected,

starting at 2/3 of the image height. Considering a horizontal

interval of ±5 pixels to the left and to the right of each

edge pixel, the next 10th line for edge pixels in these

intervals, if an edge pixel is found, a new node is created

and linked to the edge pixel on the above 10th line. Fig-

ure 3 (middle) illustrates the checked lines and the created

nodes. Edge segments with less than three connected nodes

can be discarded because they are not long enough.

The next step is to verify vertical edges between the

sampled lines. The top and bottom nodes of each edge

segment define a straight line where edges are checked.

Starting at the middle of the line and going up and down

until the end points, edge continuity is checked by applying

a distance tolerance of one pixel to each side. Small gaps

are filled by interpolating the nearest, confirmed edge

positions. Vertical edges below the path borders are not
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checked, but those above 2/3 of the image height are in

order to obtain the most complete edge information. The

result is a list of confirmed and significant vertical edges.

Since short vertical edges are not likely part of door

frames, they are discarded. Taking into account perspective

projection, the vertical distance between the path border on

the floor and the corresponding (left or right) border of the

ceiling can be easily computed because they pass through

the vanishing point. This distance is a linear function of the

distance to the camera. All vertical edges with a length

shorter than 2/3 of their corresponding distance are

ignored.

Fig. 3 Top at the left the

regions in which doors are

detected, and at the right part of

the door detection algorithm.

Bottom detection of

quadrilaterals; see text
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Having a list of long vertical edges, quadrilateral

geometry must be checked for confirming door frames. To

this end, the neighborhoods of the top points of the vertical

edges are first checked for corners. The Harris corner

detector [11] is applied with a window of size

CRsize = 5 9 7 pixels. This detector is based on the fact

that corners cause strong partial derivatives. If the two

eigenvalues of the so-called Harris matrix H are approxi-

mately similar and above a threshold which depends on the

size of the window, there is likely a corner present. The

corner response is based on the approximation CR = kx ky

& det(H) - k 9 trace (H), with k = 0.8.

Let Pi,top be the top point of vertical edge i, and the local

maximum of the corner detector be at position Pc,i,top. If

CR at Pc,i,top is higher than a threshold (10-6), a corner is

assumed, and Pi,top is substituted by Pc,i,top. After all top

points of vertical edges have been checked for corners, an

edge-tracking procedure is started, from each corner point

in the direction of the vanishing point, along the connecting

Bresenham line, but with an angular tolerance of about five

degrees. This means that the tracked edge is extrapolated,

pixel by pixel, in the direction of the vanishing point, and

the maximum vertical color gradient is sought (the sum of

the differences of the R, G, and B values). The mean of the

color gradient along the tracked part is also computed,

from the start point Pc,i,top to the current position. The

tracking stops when the color gradient at a new position

differs more than 40 from the mean over the tracked part.

In that case, the tracking can still continue a few pixels

further, using a new mean, and if successful, the small gap

can be filled. If not successful, the tracking has stopped at a

point Pi,run, and this forms, together with Pc,i,top, an edge

segment Si,run. A quadrilateral is formed by searching for

the top of the vertical edge which is nearest to Pi,run; see

Fig. 3 (bottom-left). If the nearest top position is above

Pi,run, see Fig. 3 (bottom-right), the edge is trimmed to the

intersection point. The same process is repeated for all i.

A quadrilateral found in one frame may not be detected

in another frame. This can be due to excessive camera tilt,

or because of poor or excessive lighting which can hide

real edges or create shadow edges. For these reasons,

quadrilaterals, once detected, are tracked in subsequent

frames. The quadrilaterals’ bottom points, close to the floor

and therefore close to the path border, are good indicators

for tracking. In principle, all bottom points are collinear,

for example four points of two doors, and their distance

ratios in two consecutive frames are preserved in per-

spective projection. Hence, tracking over frames could

work if there are at least four matching edges in two

consecutive frames. However, this is unlikely to happen,

mainly because of perspective occlusion of the closest

inner edge between door surface and door frame by the

frame itself.

Therefore, the following approach was adopted: If a

quadrilateral is found in region r1, see Fig. 3 (top), the

search for the quadrilateral in the next frame will begin in

the same region of the quadrilateral’s bottom points, con-

sidering a displacement of three pixels in both directions

along the path border. If a corner of the quadrilateral enters

region r2, a template patch of the bottom point is saved for

further localization. The same interval plus displacement is

considered, but each bottom point of vertical edges is

tested against the patch.

Figure 4 shows examples of corridors with detected path

borders and doors in red. The top row shows door detection

and tracking while approaching an obstacle in the center of

the corridor. The bottom row shows more examples of door

detection. In the right two frames, one can see that some

Fig. 4 Top path, obstacle, and doors detected along a corridor. Bottom more examples
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doors have not been detected, because they are too close or

too far. Nevertheless, these are detected in other frames due

to the tracking, such that the user can be informed about

their existence.

Detection of lateral doors was tested using video

sequences captured while moving a camera along corridors,

such that the doors could be tracked over time. The corridors

were in three buildings, including ISE/UAlg, because of the

different architectures: doors in the wall plane versus

recessed in niches, wall, and door paints, periodic incan-

descent versus more continuous fluorescent illumination

along the corridor, and tidy versus niches occupied by metal

lockers. Most doors, about 80 %, could be detected and

tracked. False positives were mainly due to vertical edges of

real doors which were connected by a horizontal edge caused

by wall paints. Unfortunately, other studies on the detection

of lateral doors did not provide quantitative results; hence, a

direct comparison of the results is not possible.

3.1.2 Frontal doors and their classification

For detecting frontal doors, two types of rectangle detec-

tors are combined for increasing robustness: (a) The

Hough transform is applied to edges detected by the

Canny algorithm (the same as in the previous sections).

After selecting vertical and horizontal edges, the inter-

sections are detected and rectangular shapes are analyzed.

(b) An unsupervised binary segmentation is checked for

rectangular shapes. Both algorithms must detect the same

rectangle before a candidate door is subjected to final

verification.

In method (a), the Canny edge detector is applied to Ii

(x, y), the input frame. This results in Ib, to which the Hough

transform is applied, yielding the edge histogram IH(q, h).

Only (almost) horizontal and vertical edges are relevant, so

the following orientation windows are applied:

70� \ h\ 110� for horizontal edges and -20� \ h\ 20�

Fig. 5 Frontal doors. Top two

rows, from left input image,

detected horizontal and vertical

edges and intersection points,

detected rectangles of method

(a), plus segmented image,

detected rectangles and selected

ones of method (b), and final

result. Third and 4th rows

another door. Bottom row

examples of texts extracted

from doors
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for vertical ones. To determine the intersections of two

edges, the equations q1 ¼ x cos h1 þ y sin h1 and q2 ¼
x cos h2 þ y sin h2 are simply applied. All intersection

points are grouped in sets that define rectangular shapes.

The above processing steps related to method (a) are

illustrated in Fig. 5: the top row shows, from left, Ii, Ib and

all detected intersections and the detected rectangles, in this

case belonging to a double door. The corresponding images

on the 3rd row show results in the case of a partial view of a

single door. The remaining images on the 2nd and 4th rows

illustrate processing using method (b), see below.

Method (b) is based on K-means clustering with only

two classes and a segmentation by using minimum distance

pixel classification to the two class centers. The next step

consists of searching for rectangles in the binary image,

i.e., connected regions of pixels (black in this case).

Rectangles extracted by this method are validated as door

candidates if they are delimited by two vertical edges and a

neighboring horizontal one. The images on the 2nd and 4th

rows of Fig. 5 show segmentation results, detected rect-

angles, and selected ones.

Door candidates (DC) identified by the two methods are

further screened in order to eliminate all rectangles which

are not likely part of a door, assuming that doors have a

height H greater than their width W and occupy a sub-

stantial area A of the image. All door candidates that do not

satisfy the relations ADC C TA and (HDC/WDC) C TR are

ignored. The area threshold TA = 16 % of the total number

of pixels of the image and the ratio threshold TR = 1.2.

After a door has been detected, it must still be recog-

nized. In public buildings, most doors are identified by a

sign or a text label. This is very important because (1) the

user may want to go to a specific room, and (2) in corridors

with several doors, the GIS can be used for localization.

Recognition of common signs on doors is solved by

landmark recognition. For text recognition, ‘‘Tesseract-

OCR’’ [27] is applied. This application is free for academic

and commercial use. Tesseract accepts an input image and

returns a text file with the OCR result. Although Tesseract

has mechanisms for correcting spelling errors, there still

remain errors in the form of fractions of invalid text.

Hence, there still is a need for post-processing in order to

obtain useful and valid information. The bottom row of

Fig. 5 shows texts on doors in the ISE/UAlg building. For

example, in case of the left two texts, Tesseract created the

following two strings: ‘‘Escola Superiorde Tecno\og’\ a’’

and ‘‘-\ 160’i.’’ Both strings are partly correct, but contain

snippets of invalid text. This issue was addressed by

developing an algorithm which isolates and corrects each

word, using predefined words in a reference database. This

database is created dynamically from the GIS information

and consists of existing labels in the space where the user

is. Normally, there are less than a few dozens of words.

The correction algorithm first eliminates all non-

alphanumeric characters and then compares the remaining

character string, starting with the first character or the first

one after a detected and validated word, with all words in

the database. If the number of matching characters is

bigger than about 80 % of a word, the substring is

substituted by the word in the database. In nearly all

cases, including the texts on the bottom row of Fig. 5, the

result is correct.

Detection of frontal doors was tested on four types:

elevators, double and single doors, and glass doors with a

frame. The tests involved real conditions, i.e., different

viewpoints, light sources and levels, and occlusions; see

the two examples in Fig. 5. On the set of 200 test images, a

detection rate of 82 % was achieved. Tian et al. [28]

achieved better results on a different dataset with a total of

203 images containing 210 doors in various environments

(elevators, open doors, glass doors, and book cases; dif-

ferent colors and textures, viewpoints, light conditions, and

occlusions; image resolution 320 9 240). Their detection

rate was 92 % with a false-positive rate of 3 %.

3.2 Detection of stairs

Stairs consist of a series of steps with almost parallel edges,

and the distance between the steps varies almost linearly.

As a chest-mounted or handheld camera is used, edges may

not be horizontally aligned. This variation in orientation of

the camera is also responsible for the lines between steps

not being completely parallel.

The first processing step is similar to the one in the

detection of doors as explained before. Canny’s edge

algorithm and the Hough transform are applied; however,

in this case, focus is on horizontal and almost horizontal

lines for which -35� \ h\ 35�.

Horizontal and vertical surfaces of the steps may consist

of differently colored or textured materials. In order to

eliminate possible errors which are caused by the different

materials, and to improve edge periodicity, it is necessary

to apply a minimum threshold to the distances between the

edges which mark parts of individual steps. After analyzing

many different stairs, a minimum distance of 5 % of the

frame height is applied. If the distance between two lines is

bigger than the minimum distance, the edges are kept. All

lines with a smaller distance are discarded and replaced by

only one with the average vertical position and orientation

of the discarded lines. For non-horizontal edges that have

about the same orientation (±5�), the process is similar, but

only the most horizontal ones are kept.

This preprocessing yields almost horizontal and periodic

lines (edges) which can occur in the entire image. Keeping

in mind that a blind person will walk with the white cane

and that the goal is to inform the person on approaching a
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staircase, a region-of-interest (ROI) is applied. The width

and height of this ROI are 80 and 50 % of the image width

and height, respectively, discarding the left, right, and top

parts of the image. Candidate stairs are detected if (1) at

least 2 lines exist in the ROI, (2) each of these has a length

of at least 20 % of the ROI’s width, and (3) these lines are

a majority with congruent angles. The latter criterion

serves to discard spurious lines with different angles.

When a candidate staircase has been detected, a final

validation is applied. Since only edge information has been

exploited in the previous steps, now pixel values are con-

sidered because most stairs appear as bright and dark

horizontal bars. First, a vertical region with a width of 7

pixels in the center of the ROI is selected, and on each line,

the 7 pixels are averaged to reduce noise. The resulting

vector is then thresholded by using the central minimum of

the histogram of all pixels in the vertical region (because

this region has more pixels than the average vector). Val-

idation is positive if there are at least 2 bright bars sepa-

rated by a dark one, each bar consisting of at least 10

connected vertical pixels. Figure 6 shows two sequences

containing stairs with different viewing angles. The ROI is

indicated by the blue rectangle, and the red lines are (parts

of) edges which passed the candidate test in case if the

stairs also passed final validation.

It should be stressed that false positives cannot be

avoided, because there are many quasi-periodic and

‘‘horizontal’’ structures, for example zebra crossings (out-

door), pavements which consist of differently colored tiles

(in- and outdoor), and (book) shelves (indoor). The dataset

used to test the algorithm contains images of many stairs

captured at different sites, both in- and outdoor. Although

this paper is about indoor navigation, the prototype also

serves outdoor navigation and stairs; there are also an

important hurdle. The set contains a large variety of styles

(open and solid construction, different materials), views

(oblique, frontal, seen from the top and bottom floors), and

distances. It also contains many images with quasi-periodic

patterns such as zebra crossings, pavements, and benches

with shadows; see Fig. 7.

Of all images without stairs, only 7 % were detected

as having stairs. This low false alarm rate is mainly due

to insufficient periodicity of non-stairs patterns. Of all

images containing stairs, 88.5 % were correctly detected.

The false-positive rate of 11.5 % is mainly caused by

insufficient lighting or low contrast due to the stairs’

materials. Hence, it makes sense to repeat the experi-

ments after applying brightness and contrast correction,

for example histogram equalization, but a false-positive

rate of 0 % is not very realistic. Once again, it should be

stressed that the white cane must be used to check the

space in front, but at least in most cases, the user will be

informed about objects and problems before they are

encountered by the swaying cane. The experimental

Fig. 6 Two sequences with stairs. The ROI is indicated by the blue rectangle. The red lines are parts of edges which passed the candidate test
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results were obtained without exploiting any context

information. In case of indoor navigation (see Sect. 4),

context information is available through GIS-based

localization. In addition, temporal consistency over con-

secutive frames can be used together with estimation of

the ground plane, although the latter implies stereo

vision [15]. The latter authors aimed at reducing false

positives, but presented results in terms of ROC curves

with recall and precision statistics (they mention 501

false positives in 852 frames which contain multiple

stairs). To the best of authors knowledge, all other

studies on the detection of stairs using a monocular

camera did not provide quantitative results; hence, a

direct comparison of the results is not possible.

4 Navigation

Being able to detect doors, stairs, and many objects and

signs, and by including their positions in the database, GIS

can be used for route planning and user localization [25].

These are described below.

4.1 Route planning and tracking

As already mentioned, maps based on the GIS of the

ISE/UAlg building can be used for user navigation. Data

from the GIS system are retrieved by using GDAL (see

Sect. 2). GDAL allows to extract all information con-

cerning geographical divisions (spaces, rooms, corridors),

landmarks, and structures such as walls, doors, and

windows. The top left map in Fig. 8 shows one room

highlighted in red, and the table next to it lists additional

information of that room. It is also possible to integrate

specific landmarks such as objects and signs at different

GIS layers. All information can be used to create a map

suitable for navigation. For example, in division X, there

are four walls, one window in the wall opposite to the

door, a fire extinguisher at the left side of the door, an

exit sign to the right, etc. In addition, it is straightfor-

ward to determine a representative location of each room

on the basis of the geometric centroid. Figure 8, top

right, illustrates two locations by the green and red dots.

This example will be used to illustrate path planning,

where these dots are initial start and end points (during

navigation the user can indicate a new destination).

Specifically for navigation, a data structure was created.

This relates data of, for example, a room with its neigh-

boring spaces: Room X has one door which connects to

room W, and another door which connects to corridor V. In

turn, room W has only one door which connects to room X,

and so on. These relations are very important and useful for

path planning between start and end points on a same floor.

If a desired destination is on another floor, as illustrated in

Fig. 7 Some examples of the stairs dataset; see text for detailed explanation
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Fig. 1, the closest elevator or staircase on the actual floor

will be selected as end point, and the elevator or staircase

will be a new start point on the new floor.

Figure 8 illustrates, from left to right and top to bottom,

the 1st floor of ISE/UAlg with all the steps for building a

valid route between the start and end positions, i.e., the

green and red dots. Step-by-step, the straight routes (blue

lines) are substituted by real routes (red lines), first through

an existing door, then to the end of the corridor, across the

hall, to the entrance of the other corridor, etc. This process

is repeated until the end point. Note that the two yellow

dots in Fig. 8 mark doors of spaces without access of

normal persons (electric installation, air conditioning), and

these are therefore omitted.

4.2 Localization during navigation

Once a valid route has been built, the special data

structure for path planning, which also contains the final

path, can be integrated with the GIS. The latter holds,

apart from all divisions etc., all registered landmarks:

doors, stairs, elevators, and all kinds of signs. In other

words, the system knows where the user is assumed to

walk, but it cannot be sure about the actual location. In

Fig. 8 Left to right and top to bottom 1st floor of the ISE/UAlg building and step-by-step route planning; see text for explanation
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addition, the user can change his mind and decide to go to

another destination.

The vision system is always active, analyzing incoming

image frames for landmarks. Every time it detects and

recognizes a landmark, the landmark type is checked in the

GIS at the current location, i.e., the assumed space or

division. If its type can be confirmed, the current location is

also confirmed. If not, then the neighboring divisions are

tested by using the last part of the traced route. In case of

doubts, the user is instructed to point the chest-mounted or

handheld camera slowly into different directions while

standing or slowly walking about.

A division is recognized and confirmed if at least three

visual landmarks can be confirmed in the GIS. If less than

three have been confirmed, all neighboring spaces with those

landmarks are checked and memorized as likely locations,

until a third landmark is encountered. In the case that abso-

lute certainty cannot be obtained, the region formed by the

(assumed) actual and neighboring spaces is enlarged by

applying an increasing circular area in the GIS and checking

the most recently detected landmarks in this area. Also, most

likely errors are checked, for example an elevator detected as

a normal door, but represented as an elevator in the database.

5 Conclusions

This paper presented a system which integrates an indoor

GIS of a building with visual landmarks detected by a

normal, chest-mounted, or handheld camera. It serves to

improve user autonomy in finding a destination. Visual

landmarks are used to localize the user, and routes to the

destination are dynamically updated by tracing detected

landmarks. The system was designed such that it can be

integrated in the ‘‘Blavigator’’ prototype. The latter is able

to detect valid paths and any obstacles for local navigation

[14, 17]. The system presented here complements local

navigation with global navigation, but only indoor. In

addition, detection of obstacles on the ground in front of

the user is complemented by detection of doors and stairs

and other objects, such that the user can build a more

complete mental map of the building.

The system works in real time on a netbook computer,

and it was tested successfully in the ISE/UAlg building,

first by sighted persons and then by blindfolded ones. Most

planned routes could be followed from the start to the

destination, even when these were on different floors. The

few which caused a problem were due to a lack of land-

marks at a certain location. However, after finding a new

start position by walking about to a location with multiple

landmarks, the updated routes could also be accomplished.

Regarding the detection of doors, both lateral doors and

frontal-facing ones were considered. The first show good

detection results when they are at a range of about five

meters, problems mainly being due to occlusions, low

contrast, and wall patterns. Frontal-facing doors also show

good detection and classification rates, although text rec-

ognition must be improved. In the case of stairs, despite the

excellent results, errors still occur when the lighting is not

sufficient and tile or paint patterns on the floor and walls

are very similar to those of stairs.

Ongoing work concerns the following: (1) including

more landmarks in the database such that all spaces can be

covered more densely, (2) improving the detection of doors

and stairs especially at oblique viewing angles, such that

the user can limit the pointing angles of the camera

to ±45� from the front, and (3) developing a speech-based

interface with queries and messages which replaces the

provisional one based on different beeps. The final goal is a

system which only employs a smartphone with a built-in

camera, worn by a strap around the neck. Tests with blind

persons, in collaboration with ACAPO, the Portuguese

association of blind and amblyopes, are already planned.
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Realtime local navigation for the blind: detection of lateral doors

and sound interface. In: Proceedings of the 4th International

Conference on Software Development for Enhancing Accessi-

bility and Fighting Info-exclusion, Porto, Portugal pp. 74–82

(2012)

18. Munoz-Salinas, R., Aguirre, E.,Garca-Silvente, M., Gonzalez, A.:

Door-detection using computer vision and fuzzy logic. In: Pro-

ceedings of the 6th WSEAS International Conference on Math-

ematical Methods and Computational Techniques in Electrical

Engineering, p. 6 (2004)

19. Murillo, A., Kosecka, J., Guerrero, J., Sagues, C.: Visual door

detection integrating appearance and shape cues. Rob. Auton.

Syst. 56(6), 512–521 (2008)

20. Ran, L., Helal, S., Moore, S.: Drishti: an integrated indoor/out-

door blind navigation system and service. Proc. Second IEEE

Annu. Conf. Pervasive Comput. Commun. 11(6), 23–30 (2004)

21. Roth, P., Winter, M.: Survey of appearance-based methods for

object recognition. Technical report ICG-TR-01/08, Institute for

Computer Graphics and Vision, Graz University of Technology,

Austria (2008)

22. Saleiro, M., Rodrigues, J., du Buf, J.: Minimalistic vision-based

cognitive SLAM. In: Proceedings of the 4th International Con-

ference on Agents and Artificial Intelligence, Special Session

Intelligent Robotics (ICAART-SSIR2012), Vilamoura, Portugal

1, pp. 614–623 (2012)

23. Schmitz, B., Becker, S., Blessing, A., Matthias, G.: Acquisition

and presentation of diverse spatial context data for blind navi-

gation. In: Proceedings of the IEEE 12th International Confer-

ence on Mobile Data Management, vol. 1, pp. 276–284 (2011)

24. Se, S., Brady, M.: Vision-based detection of stair-cases. In:

Proceedings of the Asian Conference on Computer Vision,

pp. 535–570 (2000)

25. Serrão, M., Rodrigues, J., Rodrigues, J., du Buf, J.: Indoor

localization and navigation for blind persons using visual land-

marks and a GIS. In: Proceedings of the 4th International Con-

ference on Software Development for Enhancing Accessibility

and Fighting Info-exclusion, Porto, Portugal, pp. 65–73 (2012)

26. Singh, V., Paul, R., Mehra, D., Gupta, A., Sharma, V., Jain, S.,

Agarwal, C., Garg, A., Gujral, S., Balakrishnan, M., Paul, K.,

Rao, P., Manocha, D.: ‘‘Smart’’ cane for the visually impaired:

design and controlled field testing of an affordable obstacle

detection system. In: Proceedings of the 12th International Con-

ference on Mobility and Transport for Elderly and Disabled

Persons, Hong Kong, China, p. 13 (2010)

27. Tesseract-ocr (2011). http://code.google.com/p/tesseract-ocr/

28. Tian, Y., Yang, X., Arditi, A.: Computer vision-based door

detection for accessibility of unfamiliar environments to blind

persons. In: Proceedings of the 12th International Conference on

Computers Helping People with Special Needs, Springer LNCS,

vol. 6180, pp. 263–270 (2010)

29. Worboys, M.: Modeling indoor space. In: Proceedings of the 3rd

ACM SIGSPATIAL International Workshop on Indoor Spatial

Awareness, pp. 1–6 (2011)

30. World Health Organization: Visual impairment and blindness.

Fact sheet 282, October 2011. http://www.who.int/mediacentre/

factsheets/fs282/

31. Zhong, C., Zhuang, Y., Wang, W.: Stairway detection using

Gabor filter and FFPG. In: Proceedings of the International

Conference of Soft Computing and Pattern Recognition,

pp. 578–582 (2011)

80 Univ Access Inf Soc (2015) 14:67–80

123

http://code.google.com/p/tesseract-ocr/
http://www.who.int/mediacentre/factsheets/fs282/
http://www.who.int/mediacentre/factsheets/fs282/

	Computer vision and GIS for the navigation of blind persons in buildings
	Abstract
	Introduction
	The prototype and the geographic information system
	Landmark detection
	Doors
	Detection of lateral doors
	Frontal doors and their classification

	Detection of stairs

	Navigation
	Route planning and tracking
	Localization during navigation

	Conclusions
	Acknowledgments
	References


