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Abstract

A thorough methodology to design robust adaptive controllers for uncertain Linear

Parameter Varying (LPV) systems, with stability and performance guarantees, is

presented. Multiple-Model Adaptive Control (MMAC) strategies are adopted, due

to their advantages in terms of design and implementation. Hence, the core of this

thesis is devoted, on the one hand, to the design of high-performance Local Non-

Adaptive Robust Controllers (LNARCs) and, on the other, to the development of

enhanced decision subsystems.

The design of LNARCs, robust against parametric and complex-valued uncer-

tainties, and which are able to cope with time-variations of the dynamics of the plant,

is tackled resorting to an optimization procedure with Bilinear Matrix Inequalities

(BMIs) constraints.

A novel supervisor for MMAC architectures – the Stability Overlay (SO) – is also

proposed, enabling closed-loop stability guarantees for uncertain and time-varying

environments.

A whole new approach to MMAC is also introduced, that relies on Set-Valued Ob-

servers (SVOs) to falsify regions of uncertainty. This control architecture, referred

to as MMAC/SVO, guarantees, under mild assumptions, stability and performance

for the closed-loop system. Moreover, the developed model falsification strategy is

also applied to Fault Detection and Isolation (FDI). As a caveat, the computational

requirements of the SVOs can be higher than the alternatives.
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Resumo

Nesta tese, propõe-se uma metodologia para sintetizar controladores adaptativos

para sistemas dinâmicos lineares variantes nos parâmetros, cuja modelação inclui

incerteza, garantindo estabilidade e desempenho robustos. Dadas as suas vantagens,

tanto a ńıvel de śıntese, como a ńıvel de implementação, optou-se por estratégias

de controlo adaptativo multi-modelo (Multiple-Model Adaptive Control – MMAC).

Como tal, esta tese centra-se, por um lado, no desenho de controladores localmente

robustos de elevado desempenho, e, por outro, no desenvolvimento de sistemas de

decisão.

A śıntese de controladores não-adaptativos, robustos em relação a incertezas

paramétricas e/ou complexas, é endereçada recorrendo a problemas sujeitos a re-

strições sob a forma de desigualdades matriciais bilineares, tendo em conta que a

dinâmica do sistema pode ser variante no tempo.

Propõe-se, também, um novo supervisor para arquitecturas MMAC, designado

por supervisor de estabilidade, que permite garantir estabilidade da malha-fechada,

inclusive para sistemas variantes no tempo e com incertezas de modelação.

Finalmente, introduz-se um novo método de MMAC, baseado em observadores

de conjuntos para invalidar modelos, e que garante estabilidade e desempenho para

a malha fechada. O método de invalidação de modelos proposto é também aplicado

à śıntese de sistemas de detecção de falhas. Como desvantagem, salienta-se o elevado

ńıvel de requisitos computacionais.
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Chapter 1

Introduction

1.1 Motivation

Adaptive control laws are required in many practical applications, where a single

(non-adaptive) controller is not able to achieve the stability and/or performance

requirements of the problem at hand. This happens because every physical system

can only be known up to some finite bound on the accuracy, specially when there

are uncertain real parameters impacting on the dynamics of the plant and changing

with time.

Although several approaches have been proposed to address this problem during

the last decade, there are still many open questions. In particular, some of the

solutions available in the literature posit assumptions that do not hold in practice,

while some other methods lack in terms of theoretical guarantees of stability, let

alone performance.

Thus, the goal of this PhD thesis is to provide a theoretically sound methodology,

to design robust adaptive controllers for Linear Parameter Varying (LPV) uncertain

plants, without posing assumptions that are restrictive from a practical point of

view, and achieving high levels of closed-loop performance.

1
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Figure 1.1: General model reference adaptive control architecture.

1.2 Previous Work and Brief Literature Review

Beginning in the mid 1960’s, the research in adaptive control led to several different

types of architectures, with different sorts of design specifications. Examples of

the wide applicability of these adaptive control laws include Fault Detection and

Isolation (FDI), Fault Tolerant Control (FTC), aircraft control, vibration control,

power systems control, biomedical solutions, automotive suspension systems control,

and flexible space structures control [1–24].

A well-known strategy, referred to as Model Reference Adaptive Control (MRAC)

and depicted in Fig. 1.1 – see [25–30] and references therein – compares the output

of the plant, y(t), at each time, t, with that of a given reference model, yM(t), and

tunes the parameters of the controller according to the output error e(t), so as to

follow the reference model output.

Another important class of adaptive control, illustrated in Fig. 1.2, is referred to

as Multiple-Model Adaptive Control (MMAC). This architecture has several advan-

tages [31], such as the fast adaptation when the plant dynamics change abruptly, and

the ability to provide high levels of performance for different classes of dynamic mod-

els. The MMAC architecture uses a divide-and-conquer strategy to stabilize/control

an uncertain plant. Instead of designing a compensator for a largely uncertain plant,

the family of admissible plants to be controlled is split into several subsets. For each
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Figure 1.2: General multiple-model adaptive control architecture with N models.

uncertainty subset, a non-adaptive controller is synthesized. Then, an on-line model

identification/estimation subsystem blends or switches the control signals that are

applied to the plant, depending on the significance of each model [27, 32–38].

However, many adaptive control laws can lead to unstable closed-loop systems

when connected to a plant with even the slightest discrepancies from the family of

admissible plant models. This issue was first described in [39], in the so-called Rohrs

et al. counterexample. Very small disturbances can be responsible for destabiliz-

ing the closed-loop system because of the unavoidable unmodeled high frequency

dynamics, present in every physical system – see [25, 26, 28]. We stress that ev-

ery non-ideal plant possesses such dynamics, and hence this is one of the primary

concerns of this PhD thesis. We are, therefore, interested in the so-called robust

adaptive control problem [27–29, 40].

To overcome this problem, several solutions are available in the literature of

adaptive control, that pose more restrictive conditions on the plant, but that provide

stability guarantees, at least for time-invariant plants – see [25–30, 34, 41–43] and

references therein. Nevertheless, these strategies are in general very sensitive to

unmeasured disturbances and measurement noise. Moreover, such architectures are
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in general not easily extended to multi-input/multi-output plants.

We address, in particular, the case where the process model has one or more

parametric uncertainties, ρ ∈ Ω. Although several switching MMAC methodologies

are available to solve this problem, they all share the same principles: in terms

of design, we divide the (large) set of parametric uncertainty, Ω, into N (small)

subregions, Ωi, i = {1, · · · , N} – see Fig. 1.3, for a single uncertain parameter

case – and synthesize a non-adaptive compensator for each of them; in terms of

implementation, we try to identify which region the uncertain vector of parameters,

ρ, belongs to, and then select the controller designed for that region.

#2#1 #N

0 rmin rmaxW1 W2 WN

...

W

r

Figure 1.3: Uncertainty region, Ω, for one parameter ρ, split into N subsets.

In summary, a multiple-model adaptive control architecture, as depicted in Fig.

1.2, is in general composed of a bank of estimators, a bank of controllers and a

switching logic. In some cases, the bank of estimators can also be substituted by

a (single) global parameter identification subsystem. Hence, a MMAC architecture

can typically be separated into two autonomous subsystems:

1. an identification/decision subsystem (ID subsystem);

2. a bank of non-adaptive controllers (control subsystem).

Each of these subsystems requires particular information regarding the plant to

be controlled and, in some cases, can be designed independently. The identifica-

tion/decision subsystem is usually composed of an estimator of parameters of the

plant, and a switching logic, which should take into account the optimization of a

given performance and/or stability criterion. The non-adaptive controllers are usu-

ally endowed with performance capabilities for a given region of uncertainty of the

parameters, while yielding stability guarantees for a wider family of plants [44–49].
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The classical MMAC [25, 29, 30] uses state-feedback controllers, connected to

Multiple-Model Adaptive Estimation (MMAE) schemes [33, 35], while more recent

approaches only require that one of the eligible (output-feedback) controllers is able

to stabilize the plant. For instance, the authors of [50–52] evaluate the perfor-

mance of the closed-loop obtained with each controller, using the so-called Unfal-

sified Control Theory, providing them with “rewards”. Thereafter, based upon the

rewards received after its most recent utilization, each controller is disqualified or

not. Notwithstanding the stability guarantees obtained with this method, the per-

formance levels are highly conditioned by the frequency-dependent weights of the

output and control signals. In a similar line-of-thought, the authors in [53] use the

unfalsified control theory to select a controller for a plant, taking into account: a)

the behavior each controller would show, had it been connected to the loop; b) the

discrepancy between the output of the plant and the estimated output obtained by

each of the possible dynamic models. The authors in [54] use a Lyapunov-based ap-

proach to select controllers, and hence require an in-depth knowledge of the plant.

Another very promising approach is presented in [41], where a parameter estimator

is used to select a controller, guaranteeing the stability of the closed-loop. The so-

called supervisory control strategies in [31, 36, 37, 55] rely on the output (control

or estimation) error to select, at each time instant, the controller that yields the

smallest output error, while avoiding fast transients in the control signals.

Other adaptive control laws design strategies are available in the literature [16–

18], including the ones based on classical control theory, statistical methods, fuzzy

architectures, neural networks, etc. – see [56] and references therein. However, some

of the assumptions posed by these methodologies are often unnatural or cannot be

verified in practice. Moreover, the stability and performance guarantees provided

by these approaches are in general only valid for a restrictive class of plants, and/or

for a small region of uncertainty.

Another important MMAC architecture is the so-called Robust Multiple-Model

Adaptive Control (RMMAC) – see [57–59] and references therein. The RMMAC

is a multiple model approach that computes and uses the posterior probabilities of
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Figure 1.4: The switching RMMAC architecture with N models.

the uncertain parameters of the process model being in a specific region to switch

or blend the outputs of a set of controllers, each of which designed for a given

uncertainty region. The identification subsystem utilizes a bank of Kalman filters

(KFs), while the control subsystem consists of a set of mixed-µ controllers, referred

to as Local Non-Adaptive Robust Controllers (LNARCs). Figure 1.4 depicts the

switching RMMAC architecture, for the case where N regions for the uncertain real

parameters are used.

The KFs are used to generate residuals, which are obtained by subtracting the

actual output of the plant to the outputs estimated by each of the KFs – we stress

that Kalman filtering is one of the most widespread and significant theories on opti-

mal filtering design. These residuals, in turn, are used by the Posterior Probability

Evaluator (PPE), to compute an estimation of the posterior probabilities of a given

uncertain parameter being in a specific interval.

In prior RMMAC studies [57–59], it was pointed out that the performance of any

adaptive system must be evaluated not only for constant but unknown parameters,

but also for time-varying parameters which undergo slow or rapid time-variations.

The mass-spring-dashpot (MSD) testbed example presented in [59] and [58], was
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used to evaluate the RMMAC performance for such time-variations and for different

intensities of unmeasurable plant disturbance. The results obtained and summarized

in [60, 61], indicate that the violation of assumptions such as the knowledge on the

intensity of the disturbances, can lead to a significant deterioration in terms of the

closed-loop performance. The most important conclusion of the research to date is

that unmeasured disturbances must be modeled well, otherwise the adaptive system

“misbehaves”.

1.3 Contributions of the Thesis

The main contributions of this PhD thesis are as follows:

• The development of a thorough methodology to design robust LTI controllers

for uncertain LPV plants, referred to as LPV/BMI controllers – the goodness

of this type of controllers is assessed in simulation, with a detailed comparison

with the mixed-µ approach.

• The development of the Stability Overlay algorithms, that are capable of en-

dowing a class of multiple-model adaptive control architectures with stability

guarantees, for LTI and LPV plants, presenting, for the first time, a theoreti-

cal proof that one can, at least in some cases, detect and correct instability in

adaptive control schemes for time-varying plants, without prior assumptions

other than feasibility.

• The extension of the work on Set-Valued Observers (SVOs) to uncertain LPV

plants, with a particular attention to the development of solutions to the main

numerical and computational issues.

• The introduction of the absolute input distinguishability concept, with appli-

cation to model falsification, and the derivation of necessary and sufficient

conditions for absolute input distinguishability of uncertain LTI and LPV sys-

tems.
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• The use of SVOs for model falsification, demonstrating its applicability, under

mild assumptions, to: a) robust adaptive control with stability and perfor-

mance guarantees; b) fault detection and isolation with guarantees of detecting

faults and avoiding false alarms.

Each of the following chapters contains a list of its specific contributions.

1.4 Organization of the Thesis

1.4.1 The Control Subsystem

Even assuming perfect model identification, i.e., that the switching signal in Fig. 1.2

is always correct, the RMMAC architecture does not provide stability guarantees for

time-varying plants, since the mixed-µ performance bounds are only valid in a Linear

Time-Invariant (LTI) environment. Furthermore, switching between controllers can

lead to transients that may destabilize the plant.

Therefore, in Chapter 2, we start by focusing our attention in the design of

non-adaptive controllers that potentially provide robust-stability and -performance

guarantees for time-varying plants. In particular, we start by considering the design

of robust non-adaptive controllers for Linear Parameter Varying (LPV) systems [62].

The design of robust controllers for LPV systems is able to cope with time-

varying uncertain parameters, and can be cast as an optimization problem, – see

[63–67] and references therein. One of the main advantages of LPV systems is that

they allow for arbitrary dependence of the matrices of the dynamics on the time-

varying parameters.

Nevertheless, the synthesis of LTI controllers for LPV plants with unknown pa-

rameters, that cannot be measured or estimated on-line with enough accuracy, is

cast, in general, as an optimization procedure subject to bilinear matrix inequalities

(BMIs). In Chapter 2, some methods to solve this problem are proposed. We stress

that both mixed-µ and BMI/LPV controllers are LTI systems and hence do not

depend upon the uncertain parameters of the plant.
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1.4.2 Standard RMMAC vs RMMAC/BMI

In Chapter 3, the RMMAC/BMI architecture is introduced, by replacing the mixed-

µ controllers in the standard RMMAC architecture by the LPV/BMI controllers de-

scribed in Chapter 2. The classical RMMAC and the RMMAC/BMI are, thereafter,

thoroughly compared in simulation, by means of an example.

1.4.3 Stability Overlay

The robustness of the control subsystem is an important part of an MMAC archi-

tecture. In spite of that fact, this may not be enough in order to provide global

stability guarantees for the closed-loop system. Thus, in Chapter 4, we introduce

a novel methodology that can endow virtually any switching MMAC system with

stability guarantees.

The strategy developed, referred to as Stability Overlay (SO), takes into account

both stability objectives – often robust to a very wide class of disturbances and model

uncertainty – and performance requirements – that, in general, assume a stronger

knowledge about the plant to be controlled. The algorithms proposed are based upon

the work in [68] and were introduced in [69, 70]. They assess the “rewards” received

by each controller after its most recent utilization, without any prior information on

the bounds of the exogenous disturbances and measurement noise. A control law is

then disqualified or not, based upon its rewards.

For the proposed SO methodology, it is neither required to know the model of the

plant to be controlled, nor the properties of the disturbances. Still, it is clear that

the performance of the closed-loop system can be severely affected if no knowledge

is available regarding the plant. Nonetheless, the model-free characteristic of this

method ensures robustness to several types of model uncertainty. In a sense, if the

actual plant is close enough to a model of a plant in the family used to design the

adaptive control law, then the adaptation runs as usual, without (or with minor)

intervention of the SO. If, however, the actual plant or properties of the disturbances

do not match the ones used during the design, the closed-loop system may become

unstable. Therefore, instead of blindly continuing to use the adaptation law, the SO
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assesses the norm of the inputs and outputs of the system, and eventually switches

to a controller that is able to stabilize the plant, as long as this controller belongs

to the set of legal controllers that the SO is allowed to use.

Therefore, the SO can be seen as a safety net that can be integrated with many

adaptive control algorithms, achieving high levels of performance, while providing

robust stability guarantees for several different types of modeling errors. We show

that the applicability of the SO is very wide, in the sense that it can be used in

parallel with several adaptive control laws, as long as a few set of natural assumptions

is satisfied, in particular that at least one controller in the set of eligible controllers

is able to stabilize the plant. Moreover, the SO provides, for the first time, a

theoretical proof that one can, at least in some cases, detect and correct instability

for time-varying plants, without prior assumptions other than feasibility1.

1.4.4 The Decision Subsystem

The SO, however, does not endow these adaptive control laws with any guarantees

in terms of performance. This is due to the fact that, as mentioned, only a small

number of assumptions is posed regarding the plant to be controlled. Since per-

formance requirements are, in general, of major relevance in practical applications,

a more sophisticated decision subsystem is developed in this thesis, by taking into

account a deeper knowledge regarding the plant. The discussion on the assumptions

required to achieve such goals is discussed in Chapter 5.

Most decision subsystems try to identify the correct uncertainty region, i.e., the

region where the uncertain parameters take value, by hypothesis testing or parameter

estimation. In this PhD thesis, a different approach, referred to as model falsification

or model invalidation and described also in Chapter 5 – see [71] and references therein

–, is adopted, where the wrong regions are excluded as time goes by. In other words,

if the time-evolution of the inputs and outputs of the plant cannot be explained by

a dynamic model with uncertain parameters ρ, such that ρ ∈ Ωi – see Fig. 1.3 – ,

1In MMAC, we say that the control problem is feasible if there is a controller, among the set

of eligible ones, that is able to stabilize the plant.
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then region Ωi cannot be the one which the uncertain parameters belong to. Hence,

by discarding those models, this technique aims to eventually disqualify all but one

model. This remaining model, under certain assumptions, is the correct model of

the plant, since it is the only one which is compatible with all the input/output

sequences.

1.4.5 Set-Valued Observers

The previously described decision subsystem requires, therefore, the development of

methods to invalidate models of a dynamic system. For dynamic uncertain models,

described by differential inclusions, this can be posed as the problem of tracking

a differential inclusion – we remark that there is a rich set of references in the

mathematical literature on differential inclusions as discussed in [72–75].

For linear dynamic models, the problem of “disqualifying” regions can be tackled

using Set-Valued Observers (SVOs) for linear systems – see [76]. These observers

consider that the initial state of the system is uncertain, that there are disturbances

acting upon the plant, and that the measurements are corrupted with noise. There-

fore, the estimate of the state of the plant, at each time, is a set, instead of a single

point. The observers in [76] are extended, in Chapter 6, to uncertain models, pro-

viding sufficient conditions for the convergence of the SVOs when implemented in a

non-ideal environment.

1.4.6 Model Falsification Using SVOs

The aforementioned observers can, thereafter, be used for model falsification, in a

very straightforward manner – see Fig. 1.5, where the Logic block uses the set-

valued state estimates provided by the SVOs, to decide which dynamic models are

compatible with the observed input/output sequence. Similarly to other model

falsification architectures, a bank of observers – in the present case, SVOs – is used,

each of which tuned for a pre-specified region of uncertainty. However, the observers

can only discard regions, rather than identify them.
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Figure 1.5: Model falsification architecture using set-valued observers.

Under mild assumptions on the disturbances and on the dynamic models, Chap-

ter 7 shows that the correct model of the plant is eventually selected, if it is contained

in the set of eligible ones. Moreover, under certain circumstances, an upper bound

on the number of iterations required to perform this selection can also be computed

as a function of the intensity of the disturbances.

MMAC Using SVOs

Using this model falsification scheme, it is also possible to decide which non-adaptive

controllers should not be selected in an MMAC architecture. This strategy provides

robust stability and performance guarantees for the closed-loop system, even when

the model of the plant is uncertain and time-varying. Figure 1.6 depicts one of the

possible MMAC/SVO architectures which are proposed in Chapter 7

We stress that developing an adaptive control system for uncertain LPV plants

is the main goal of this thesis. Therefore, notwithstanding the theoretical stability-

and performance-robustness guarantees provided, a series of simulation examples are

presented, in order to evaluate the behavior of the proposed method when applied

to actual physical systems.
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FDI Using SVOs

As a different example of the applicability of the model falsification scheme using

SVOs, Chapter 7 also describes the implementation of this methodology for Fault

Detection and Isolation (FDI) of LPV systems. For certain scenarios, it can be

proven that a given fault is always detected and isolated. Moreover, guarantees of

avoiding false alarms can also be provided. Several examples illustrating the use of

this model falsification technique in FDI are also shown in Chapter 7.

1.4.7 Comparison of MMAC/SVO with RMMAC/BMI

This chapter presents several results regarding the comparison of the Robust Multiple-

Model Adaptive Control with LPV/BMI controllers (RMMAC/BMI) with the Multiple-

Model Adaptive Control using Set-Valued Observers and RMS considerations (MMAC/SVO-

RMS), when applied to a double Mass-Spring-Dashpot (MSD) plant. Although the

design assumptions of each of the aforementioned adaptive control methodologies

are different, it is worthwhile to evaluate the main advantages and shortcomings of

each technique, using a system with an important physical meaning, such as the

MSD plant. The comparison is performed resorting to a series of simulations that
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highlight the most significant features of the methods.

1.5 Notation and Definitions

This section introduces some of the mathematical notation used throughout the

thesis. Further details will be presented later on, whenever necessary. In particular,

definitions which are only useful in one chapter, will be introduced in that same

chapter.

Z set of integers,

Z+
o set of non-negative integers,

Rn set of ordered n-tuples of real numbers,

Rn×m set of n by m matrices with elements in R,

Cn set of ordered n-tuples of complex numbers,

Cn×m set of n by m matrices with elements in C,

xT transpose of vector x,

AT transpose of matrix A,

A∗ conjugate transpose of matrix A,

λi(A) i-th eigenvalue of matrix A,

σi(A) i-th singular value of matrix A,

σ̄(A) largest singular value of matrix A,

ρ(A) spectral radius of matrix A,

tr(A) trace of matrix A.

For a vector v ∈ Cn, we define the vector p-norm of v as

|v|p :=

(
n∑
i=1

|vi|p
) 1

p

,

for 1 ≤ p ≤ ∞. The subscript p is dropped whenever clear from the context.

For a matrix A ∈ Cm×n, we define the matrix norm induced by a vector p-norm

as

‖A‖p := sup
x6=0

‖Ax‖p
‖x‖p

,
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and the Frobenius norm as

‖A‖F :=
√
tr(A∗A).

A square hermitian matrix A = A∗ is said to be positive definite (semi-definite),

denoted by A > 0 (A ≥ 0), if

∀x6=0 : x∗Ax > 0 (x∗Ax ≥ 0).

`p[0,∞), or simply `p, consists of all sequences x =
(
x(0), x(1), · · ·

)
, with x(i) ∈

Rn for all i ∈ {0, 1, · · · }, and such that

∞∑
i=0

|x(i)|p <∞.

Furthermore, the associated norm is defined as

‖x‖p :=

(
∞∑
i=0

|x(i)|p
) 1

p

.

For simplicity, the dimension of Rn in the definition of `p is not specified.

In particular, `2[0,∞) denotes the usual space of square measurable sequences

in Rn, with norm ‖ · ‖2, and `∞[0,∞) denotes the space of bounded sequences, with

norm

‖x‖∞ := sup
i
|x(i)|.

For simplicity, we define `2 := `2[0,∞).

The `2-norm induced gain of an operator H : `2 → `2 is defined as

sup
0<‖w‖2<∞

‖Hw‖2

‖w‖2

.

L2[0,∞), or simply L2 consists of all square integrable and Lebesgue measurable

functions defined on R, with the inner product defined as

〈f, g〉 :=

∫ ∞
0

f(t)∗g(t)dt,

for f, g ∈ L2[0,∞). Similarly, if the function is vector- or matrix-valued, the inner

product is defined as

〈f, g〉 :=

∫
I

tr
(
f(t)∗g(t)

)
dt.
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For simplicity, we define L2 := L2[0,∞).

The L2-norm induced gain, or H∞ norm, of an operator J : L2 → L2 is defined

as

‖J‖ := sup
0<‖w‖2<∞

‖Jw‖2

‖w‖2

.

For a linear time-invariant operator G, the corresponding transfer function is

denoted by G(s).

For M ∈ Cn×n, the structured singular value µB(M) is defined as

µB(M) :=
1

min{σ̄(∆) : ∆ ∈ B, det(I −M∆) = 0}
.

If det(I −M∆) = 0 for all ∆ ∈ B, then we define µB(M) = 0. Whenever B can be

inferred from the context, we write

µ(M) := µB(M).



Chapter 2

The Control Subsystem

2.1 Introduction

In order to be successfully implemented, a feedback controller must be robust against

model uncertainty. Without robustness guarantees, even the slightest difference be-

tween the true plant dynamics and the model used to design the controller can lead

to an unstable closed-loop – see for instance [39, 77, 78]. In this view, a methodology

to synthesize Linear Time-Invariant (LTI) controllers for time-varying Linear Param-

eter Varying (LPV) plants (see [62, 79, 80]), with uncertain real-valued parameters

and complex uncertainties, using Bilinear Matrix Inequalities (BMIs), is proposed

in this chapter. These disturbance-rejection controllers, referred to as LPV/BMI

controllers, are able to provide performance-robustness guarantees against different

types of uncertainties on the model of the plant, while also providing performance-

robustness guarantees against time-variations of the unmeasured parameters.

As mentioned in [81], Linear Time-Varying (LTV) systems depend on their fu-

ture dynamics, despite the fact that, in general, their time-varying dynamics may

be measurable on-line, but may not be available beforehand. Thus, in this thesis,

we adopted the LPV framework, introduced in [62], which assumes that the dynam-

ics of the plant depend upon time-varying parameters, whose corresponding time

variations are not known a priori.

17
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2.1.1 Types of Model Uncertainty

Several types of model uncertainty have been considered in the literature of dynamic

systems. In particular, the so-called complex-valued uncertainties1 have been used to

model LTI uncertainties in the input and output of the nominal plant (c.f., [77, 78]).

These complex uncertainties are commonly divided into the following categories:

i) Multiplicative uncertainty – see Fig. 2.1;

ii) Additive uncertainty – see Fig. 2.2;

iii) Division uncertainty – see Fig. 2.3.

G(s)

W (s)mo D(s)mo

+ yu

(a) Multiplicative uncertainty at the output of the plant.

G(s)

W (s)mi D(s)mi

+ yu

(b) Multiplicative uncertainty at the input of the plant.

Figure 2.1: Multiplicative uncertainty.

G(s)

W (s)a D(s)a

+ yu

Figure 2.2: Additive uncertainty.

The multiplicative and division uncertainty can either be at the input or at the

output of the nominal plant.

1Typically, representing unmodeled dynamics.
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G(s)

W (s)do D(s)do

+ yu
-

(a) Division uncertainty at the output of the plant.

G(s)

W (s)di D(s)di

+ yu
-

(b) Division uncertainty at the input of the plant.

Figure 2.3: Division uncertainty.

The applicability of these types of uncertainties is considerably broad, since they

can be used to model a wide range of dynamic phenomena. For instance, and as

shown later on, the multiplicative model uncertainty in the input of the plant can

be used to model unknown input time-delays, which should often be accounted for

in realistic applications. As another example, changes in the input variable, u,

which rapidly propagate to the output of the plant can be modeled by additive

uncertainties. For further examples on this topic, the reader is referred to [77, 78]

and references therein.

Despite of the many uses of the aforementioned types of uncertainties, they

all can be represented by Linear Fractional Transformations (LTFs, [77]). These

LFTs are suitable for robust-stability and -performance analysis and synthesis, as

described in the sequel.

Another important class of model uncertainty is designated by real-valued (or

parametric) uncertainty. This type of uncertainty also has an important physical

meaning, since it can be used to model uncertainty in parameters of a plant. Typical

examples of parametric uncertainty include uncertain spring stiffnesses, uncertain

damping coefficients, uncertain gains of the sensors and actuators, among others.

A system with parametric uncertainty can also be represented in an LFT fashion,

where the uncertainty block is now a diagonal block containing the uncertain vector
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Pw z

u y

K

Figure 2.4: Mixed-µ synthesis block diagram.

of parameters. Nevertheless, it can also be modeled by an LPV system, which

depends upon these uncertain parameters.

2.1.2 Controllers for Uncertain Dynamics

A well-know method to design LTI controllers, with disturbance-rejection objectives,

for uncertain LTI plants, is called µ-synthesis, and is going to be used herein for

comparison purposes. A mixed-µ controller is an approximation of the optimal con-

troller in the L2-induced norm sense, from the exogenous inputs to the performance

outputs – see [47, 77, 78, 82, 83]. The architecture for the synthesis of this type

of controllers is depicted in Fig. 2.4. Despite the sub-optimality of the solution,

these controllers are capable of handling different types of uncertainties, namely

complex and parametric uncertainties, by using the so-called D,G-K iterations – see

[44, 46, 48, 84] and references therein. However, µ-controllers can only guarantee

robust-performance and -stability for time-invariant systems. This means that the

controllers’ guarantees of performance are valid for every “legal” uncertainty of the

plant, as long as it does not vary with time.

This may be problematic, since in many applications (such as multiple-model

adaptive control) it is desirable that these time-variations of the plant do not im-

pact on the performance and, ultimately, the stability of the closed-loop plant.

Nonetheless, if the time-varying parameters of the plant change very slowly with

time, then the assumptions of the µ-controllers design are approximately met, and

it has been shown in some examples that the results do not deteriorate significantly
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– see [58–61].

A different approach to the design of robust controllers for LPV systems [62, 79,

80] has been developed that is able to handle time-varying uncertain parameters and

that can be posed as an optimization problem, e.g., minimize the L2-induced norm

of the closed-loop – see [63–67, 85–89] and references therein. Furthermore, LPV

systems can be time-varying and have arbitrary parameter dependence. As a caveat,

complex uncertainties cannot be treated the same way as parametric ones, and some

relaxations have to be introduced (for instance, using integral quadratic constraints)

in order to take them into account during the controller design phase, thus adding

conservatism to the solution – see [63]. Another option, which is adopted herein,

resorts to the so-called D-scales to reduce the conservatism of the result obtained

with the minimization of the H∞-norm (see [77]).

When there are unknown parameters in the plant dynamics that cannot be mea-

sured nor estimated on-line with enough accuracy, this type of controller design

problem can be cast as an optimization procedure subject to Bilinear Matrix In-

equalities (BMIs). This is known to be an NP-hard problem, and hence cannot

be used for very large design problems. Since new BMI software packages are now

available that can solve this kind of optimization for medium size problems (plants

with about 20 states), it is worthwhile to try to design and evaluate such controllers

in the cases where the plant dynamics depend upon uncertain parameters. More-

over, the BMIs can also be solved by very simple methods, as shown in the sequel,

that “eliminate” the bilinearity of the optimization procedure, and hence problems

with larger numbers of states can be handled. We stress that both mixed-µ and

LPV/BMI controllers are LTI systems and hence do not depend upon the uncertain

parameters of the plant, but only on prior-known bounds.

From a physical point of view, uncertain plant parameters represent uncertain

energy storage and/or uncertain gains. If the uncertain parameters do not change

with time, then this initial “energy uncertainty” does not change; the robust µ-

compensators do take into account this uncertain constant energy. Indeed the infor-

mation about the upper and lower bound for each uncertain parameter is required
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to design the robust µ-compensator. We stress that we cannot guarantee stability

robustness if the µ-compensators are used for a plant with time-varying parameters.

In the case of uncertain time-varying parameters, as in LPV systems, there is

a time-varying exogenous energy added and/or subtracted to/from the dynamic

system, in addition to the uncertain exogenous energy of the disturbances. This

“time-varying uncertain energy” exists in addition to that provided by the plant

disturbances and the control inputs. If the parameters of the LPV plant are mea-

sured (which is not the case in adaptive systems), then there is no uncertainty in the

energy associated with the time-varying parameters. If, however, we do not measure

the uncertain time-varying parameters, then the solution of the BMI problem pre-

sented in the sequel allows us to construct a time-invariant LPV/BMI compensator

with guaranteed stability and performance of the closed-loop.

2.1.3 Main Contributions and Organization

The LPV/BMI compensator takes into account

a) the same performance requirements used to design the µ-compensator

b) the same upper and lower bounds for each real uncertain parameter as the µ-

compensator

c) a bound on the maximum slope (time-rate-of-change) of each uncertain time-

varying parameter (not required by the µ-compensator, i.e., assumed zero)

Property (c), from a physical point of view, bounds the time-rate-of-change of

the exogenous energy associated with each uncertain parameter. In this manner, the

LPV/BMI compensator guarantees stability-robustness. Thus, property (c) allows

us to use LPV/BMI compensators when the plant parameters are time-varying.

In the numerical example presented in the sequel, which uses a Mass-Spring-

Dashpot (MSD) type of system with an uncertain spring, we will discuss with greater

specificity the above “uncertain energy” issues.

The key contributions of this chapter are as follows:



2.1. INTRODUCTION 23

1. The use of D-scales with LPV/BMI controllers and the development of the

D-BMI algorithm;

2. The development of an algorithm to solve optimization problems subject to

BMI constraints;

3. An insightful practical and theoretical comparison between LPV/BMI and

mixed-µ controllers.

More precisely, the first main contribution of this chapter amounts for the use of

D-scales with the LPV/BMI controllers, in a similar manner to what is done in the

µ-synthesis. We also adopt the technique in [58, 59] to derive lower bounds in terms

of performance for the closed-loop plant, while guaranteeing stability against model

uncertainty. An iterative algorithm, referred to as D-BMI iterations, is proposed to

synthesize this type of controllers.

The second main contribution of this chapter is concerned with the optimization

of problems subject to BMI constraints. We claim that, for small problems (plants

with less than 20 states), the use of general BMI solvers leads to a solution in a

reasonable amount of time (a few hours). For plants with a higher number of states,

we propose a faster algorithm that, by fixing the optimization variables one at a

time, reduces the BMI problem to a Linear Matrix Inequalities (LMIs) problem.

The final main contribution of this chapter is the insightful comparison between

LPV/BMI and mixed-µ controllers. We assess in detail the practical and theoretical

differences between the two designs, when applied to LTI and Linear Time-Varying

(LTV) plants, and illustrate, in simulation, the benefits of the proposed approach.

The remainder of this chapter is organized as follows: Section 2.2 introduces

the mixed-µ controllers, which are going to be needed for comparison purposes;

the synthesis of LPV/BMI controllers, as well as a detailed analysis of this type of

controllers, is presented in Section 2.3; in Section 2.4, simulation results are shown

that illustrate the applicability and the advantages of the LPV/BMI controllers;

finally, in Section 2.5, we summarize and discuss the proposed methodologies.
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2.2 Mixed-µ Controllers

The design of mixed-µ controllers (see, for instance, [46, 48, 77]) is done resorting

to the so-called D,G-K iterations. This (local) optimization procedure is able to

account for constant real parametric and complex-valued uncertainties on the model

of the plant. As a caveat, the degree of conservatism of this method can become

prohibitive if the plant depends upon more than a couple of uncertain parameters.

Figure 2.4 depicts the block diagram used to synthesize a mixed-µ controller.

The ∆ block represents the (possibly structured) uncertainties of the plant, while K

is the controller that we are trying to synthesize. The resulting mixed-µ controller

must have an L2-induced norm from the ∆ block input to the corresponding output

smaller than one, while minimizing the norm from the exogenous inputs, w, to the

performance outputs, z, using the measurements y, that may be corrupted with

noise. Hence, the mixed-µ design specifications can be stated as follows: synthesize

an LTI controller which minimizes the L2-induced norm of the exogenous inputs

to the performance outputs, while guaranteeing that the product of the L2-induced

norm from w∆ to z∆ with the norm of the ∆ block is smaller than 1.

The main advantage of mixed-µ controllers is that they can guarantee robust

performance and stability for the aforementioned different types of uncertainties.

However, it is assumed that the system to be controlled is linear and time-invariant,

and therefore no guarantees can be provided for time-varying plants. This means

that a given mixed-µ controller can guarantee robust performance for every valid

realization of the plant dynamics, but cannot guarantee even stability if the plant

dynamics are changing with time. Another practical problem with the mixed-µ

approach is the deterioration of the performance when the parameter is time-varying.

Since this type of controllers is not guaranteed to be robust to such variations, a

significant loss in terms of performance can occur when that assumption is violated.

Furthermore, the dynamics of the plant cannot depend arbitrarly upon the uncertain

parameters. In fact, these uncertain parameters must be represented by means of

an LFT, as previously described – see [77, 78].

The mixed-µ controller synthesis can be separated into two steps:
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1. one for the computation of the D- and G-scales;

2. and another for the computation of an H∞ controller.

In the proposed approach, we keep the computation of the D-scales unchanged, and

eliminate the computation of the G-scales, by using the method in Section 2.3 to

synthesizeH∞ controllers that are robust against real-valued parametric uncertainty.

Therefore, the same structure of the mixed-µ controller design is going to be used

to synthesize robust LTI controllers for LPV systems.

2.2.1 Robust Performance Specifications

The performance output, z(·), is often obtained by weighting certain variables of

interest by a low-pass filter2 of the form

Wp(s) = Ap

(
α

s+ α

)q
.

As previously mentioned, the design objective of the controller is to minimize the

L2-induced norm from the exogenous inputs to this performance output, for all the

legal realizations of ∆. In reference to Fig. 2.4, we say that robust performance is

achieved by controller K if

‖Fu (F`(P,K),∆)‖ < 1, ∀
∆,‖∆‖≤1

. (2.1)

In (2.1), the upper and lower LFTs are denoted by Fu and F`, respectively – see

[77].

As shown in [77], the condition in (2.1) can be used to design controllers yielding

robust performance, by redefining the allowable realizations for the uncertainty block

as

∆ ∈


∆unc 0

0 ∆perf

 : ∆unc,∆perf ∈ RH∞; ‖∆unc‖ ≤ 1, ‖∆perf‖ ≤ 1

 , (2.2)

where ∆unc is used to describe complex-valued uncertainty (e.g., unmodeled dynam-

ics of the plant), and ∆perf is a full complex-valued matrix of appropriate dimensions.

2It can also be used a band-pass filter in certain applications.
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As stated in [34, 77], the robust performance condition in (2.1) is achieved if and

only if

µ(F`(P,K)) < 1,

where the complex-µ (see [77]) is computed with respect to the structure of ∆ in

(2.2), and where ∆perf is a full complex-valued uncertainty matrix with appropriate

dimensions, reflecting the performance specifications.

The maximization of the performance from the exogenous inputs to the perfor-

mance variables of interest, is done iteratively by using the following algorithm:

Algorithm 1: Algorithm for the maximization of the performance from the

exogenous inputs to the performance outputs.

Input: η

Output: K, Ap

Initialization µ(0) =∞, n = 1, Synthesize mixed-µ controller and compute

value of µ(1)

while |µ(n)− µ(n− 1)| ≤ η or µ(n) ≥ 1 do
• n = n + 1;

• Synthesize mixed-µ controller and compute value of µ(n);

• if µ(n) < 1 then
Increase Ap

else
Decrease Ap

end

end

In the algorithm, we denote by µ(k) the value of the complex-µ with respect

to the structure of ∆ in (2.2), at iteration k. The value of η defines the minimum

variation of µ from one iteration to the other, such that it is worthwhile to keep the

algorithm running.

In summary, we try to maximize the value of Ap, while guaranteeing the robust

performance of the closed-loop system. This method has been extensively used in

our previous work, as an evaluation tool to compare the performance of different

controllers [58, 59].
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2.3 LPV/BMI Controllers

As stress in the Introduction, LPV models represent nowadays a compromise be-

tween the global accuracy of nonlinear models and the straightforward controller

synthesis techniques available for LTI representations. In classical LPV control,

we assume that the matrices of the dynamics depend upon measurable exogenous

time-varying parameters. Moreover, these parameters are usually confined to a

given (convex) set, and the corresponding maximum time rate-of-variation may be

assumed known.

2.3.1 Classical LPV Controllers

The type of controllers for disturbance rejection reviewed in the sequel (see [63, 86,

90, 91] and references therein for further details) can be applied to LPV systems

that can be described by ẋ(t) = A (ρ(t))x(t) +B (ρ(t))u (t) + L (ρ(t)) d(t)

y(t) = C (ρ(t))x(t) +N (ρ(t))n(t)
, (2.3)

where x(t) is the state of the system, y(t) is the noisy measurements vector, u(t)

represents the control inputs, ρ(t) = [ρ1(t), ρ2(t), · · · , ρp(t)]T is the vector of the

(possibly time-varying) real-valued exogenous parameters of the plant, d(t) are the

exogenous disturbances, and n(t) is the sensor noise. We further assume that ρ(t) ∈

Ω and ρ̇(t) ∈ Λ, for all t, where Ω is a convex polytope of Rp and where

Λ := {λ : |λi| ≤ νi, i = {1, · · · , p}} , (2.4)

for given νi ≥ 0, i = {1, · · · , p}. Notice that Λ is a hyper-parallelepiped. The

dynamics of the controller to be designed are described by ẋc(t) = Ac(ρ(t))x(t) +Bc(ρ(t))uc(t),

yc(t) = Cc(ρ(t))xc(t) +Dc(ρ(t))uc(t).
(2.5)

The closed-loop plant with the controller in (2.5) is described by ẋcl(t) = Acl (ρ(t))xcl(t) +Bcl (ρ(t))w(t)

z(t) = Ccl (ρ(t))xcl(t) +Dcl (ρ(t))w(t),
(2.6)
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where z(t) is the performance output and w(t) = [d(t), n(t)] includes both exogenous

disturbances and measurement noise.

The key principle in designing a controller for LPV systems is that we want

to find a Parameter Dependent Lyapunov Function (PDLF), V (xcl, ρ), such that

the stability of the closed-loop is guaranteed even for time-varying plants – see

[63, 90, 92, 93] and references therein.

Instead of trying to find an arbitrary candidate PLDF for the closed-loop system,

we are interested in finding quadratic PDLF, i.e., functions of the form V : Rn × Ω→ R,

V (xcl, ρ) = xTclP (ρ)xcl,

where

P (ρ) = ξ1(ρ)P1 + ξ2(ρ)P2 + · · ·+ ξm(ρ)Pm, (2.7)

(and where P1, P2, · · · , Pm are constant symmetric matrices) so that the problem

becomes tractable, at the cost of some increased conservatism [94]. In the previous

equation, ξi : Ω→ R, for each i ∈ 1, · · · ,m, is a differentiable function of ρ.

Remark 2.1: Although the candidate Lyapunov function may be parameter de-

pendent, the matrices of the compensator are not. This is important given that,

unlike “classical” LPV control, our approach aims to design LTI controllers that are

non-parameter-dependent, and hence are robust to parametric uncertainty. �

Remark 2.2: Describing the Lyapunov function by means of basis functions makes

the problem tractable, but, at the same time, introduces conservatism in the solu-

tion. Nevertheless, we can have as many basis functions as we want, thus we can

give arbitrary degrees of freedom to P (ρ). �

In this case, we get

V̇ = xTclPAclxcl + xTclA
T
clPxcl + xTclṖ xcl,

where Acl is the closed-loop system dynamics matrix, as in (2.6). We omitted the

time-depence of the Lyapunov and plant matrices, for the sake of clarity.

It can be shown – see, for instance, [90, 92] – that the closed-loop system is stable
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if there exists P (ρ) > 0 such that

PAcl + ATclP + Ṗ < 0, (2.8)

for every valid value of ρ and ρ̇. This idea is going to be used in the sequel in order

to design robust controllers.

The same block diagram of Fig. 2.4 can be used to synthesize this type of

controllers (for instance, with an H∞ minimization objective), but in this case the

plant is assumed to be time-varying and described by (2.3). Notice that ρ(t) can

only represent time-varying parameters, thus complex valued LTI uncertainties, such

as unmodeled dynamics, are going to be handled using the small-gain theorem.

The use of the D-scales is therefore required to reduce the conservatism of the

solution, in the same way they are used in the D,G-K iterations. Integral quadratic

constraints (IQCs) have also been successfully used to tackle this problem, adding

some conservatism to the solution. The interested reader is referred to [63] and

references therein. However, we do not examine IQCs in this thesis.

Since the controller synthesis problem involves testing an infinite number of Ma-

trix Inequalities (MIs), several different structures for the LPV system have been

proposed which reduce the problem to that of solving a finite number of MIs. For

LPV systems that depend in an affine manner upon the parameters that, in turn, can

only take values inside (or on the boundaries) of a convex polytope, a state-feedback

solution may exist that guarantees stability for the (arbitrary or rate-bounded) time-

varying plant, by checking a (finite) set of Linear Matrix Inequalities (LMIs) in the

vertices of that polytope. With this approach, one can find robust state-feedback

controllers that do not depend upon the vector of parameters, ρ(t). In case the

system depends arbitrarily upon the parameters, a griding on the parameters set

is required – see [86, 90]. In that case, the resulting controller is an LPV system

itself, as in (2.5), which schedules on the vector of exogenous parameters. Therefore,

uncertainty in the measured parameters can result in a deterioration of the perfor-

mance of the closed-loop and, ultimately, may lead to instability. Moreover, the

dynamics matrices in (2.5) are typically obtained by controller interpolation, which

does not guarantee, in general, even stability of the closed-loop.
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2.3.2 Robust Controllers for LPV Systems

In what follows, it is assumed that the vector of exogenous parameters, ρ(t), is

uncertain or cannot be measured. Therefore, the controllers to be designed are

assumed LTI and described by ẋc(t) = Acx(t) +Bcuc(t)

yc(t) = Ccxc(t) +Dcuc(t)
, (2.9)

where xc(t), for each time-instant t, is a vector, with pre-specified length, containing

the state of the controller. Notice that uc(·) corresponds to the output measurements

and yc(·) is the control signal applied to the plant, i.e., uc(t) = y(t) and yc(t) = u(t)

– see (2.3).

The non-parameter-dependent robust output feedback can be cast as an opti-

mization problem subject to a set of Bilinear Matrix Inequalities (BMIs), as de-

scribed in [63–65, 86], where one can use the knowledge about the maximum rate of

variation of the parameters to reduce the conservatism of the solution. This result

is summarized in what follows.

Theorem 2.1 ([86]). Let Tzw denote the closed-loop operator from w to z, and

suppose x(0) = 0. Then, the H∞-norm of Tzw is less than γ, that is, ‖Tzw‖∞ < γ,

if a continuous symmetric map P : Ω→ Sn×n exists such that P (ρ) > 0, and
W (ρ) P (ρ)Bcl(ρ) γ−1CT

cl(ρ)

Bcl(ρ)P (ρ) −I γ−1DT
cl(ρ)

γ−1Ccl(ρ) γ−1Dcl(ρ) −I

 < 0, (2.10)

where

W (ρ) = P (ρ)Acl(ρ) + ATcl(ρ)P (ρ) +

p∑
i=1

ρ̇i
∂P

∂ρi
(ρ),

holds for every realization of the parameters vector, ρ(t) ∈ Ω, and corresponding

time-derivatives, ρ̇(t) ∈ Λ.

Proof. For the sake of clarity, the proof of Theorem 2.1 is presented, along similar

lines as in [86].
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Consider the map V : Rn × Rp → R defined as

V (x, ρ) = xTP (ρ)x. (2.11)

We omit the time and parameter dependence of all maps, for the sake of simplicity.

We also omit the subscript cl in maps Acl(·), Bcl(·), Ccl(·) and Dcl(·), for the same

reason. Then, for ρ ∈ Ω, and ρ̇ ∈ Λ, we have

dV
dt

=
(
xTAT + wTBT

)
Px+ xTP (Ax+Bw) + xT dP

dt
x

= xT
(
ATP + PA+ dP

dt

)
x+ wTBTPx+ xPBw.

(2.12)

Using the Schur complement of the last 2×2-block of the matrix on the left-hand

side of (2.10) leads to

I − γ−2DTD > 0. (2.13)

Also by Schur complement arguments, we have that

ATP + PA+ dP
dt

+

+γ−2CTC +
(
PB + γ−2CTD

) (
I − γ−2DTD

)−1 (
PB + γ−2CTD

)T
< 0.

(2.14)

Hence, using inequality (2.14) in (2.12), we obtain

dV
dt
≤ −xT

[(
PB + γ−2CTD

) (
I − γ−2DTD

)−1 (
PB + γ−2CTD

)T
+ γ−2CTC

]
x+

+wTBTPx+ xPBw.

(2.15)

We recall that z = Cx+Dw. Therefore,

dV
dt
≤ −‖

(
I − γ−2DTD

) 1
2 w −

(
I − γ−2DTD

)− 1
2
(
PBγ−2CTD

)T
x‖2−

−γ−2zT z + dTd

≤ −γ−2‖z‖2 + ‖d‖2.

(2.16)

Integrating both sides of (2.16) from t = 0 to t = ∞, for x(0) = 0, and using

Lemma 3.3.2 of [90], we get

‖z‖2 ≤ γ2‖w‖2. (2.17)

Remark 2.3: If a constant Lyapunov matrix exists, P (·) ≡ P , that satisfies (2.10),

then the parameters ρ(·) can vary arbitrarily fast. �
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Remark 2.4: Throughout the remainder of this chapter, we will search for Lya-

punov functions with the structure in (2.7), satisfying (2.10). Moreover, as pre-

viously stated, the controller is assumed LTI and described by (2.9). Hence, for

fixed values of ρ and ρ̇, the unknown variables in (2.10) are the controller matrices

(Ac, Bc, Cc, Dc), and the Lyapunov function matrices (P1, P2, · · · , Pm). These vari-

ables appear in a bilinear fashion, since we have the products between P (ρ) and the

closed-loop matrices. Thus, (2.10) is a bilinear matrix inequality (BMI). �

Notice that, contrary to [86, 90], our intention is to design controllers that ac-

count for parametric (and complex) uncertainty on the plant model. Nevertheless,

the same principles can be used in either case, as shown in the sequel. In fact, the

key differences between the approach presented in this chapter and the previous

related work can be summarized as follows:

• in [86, 90], the authors provide an LPV controller synthesis methodology for

LPV systems, with output feedback, which means that the controller itself is

also parameter-dependent – see Section 2.3.1. This requires the classical “gain

scheduling” methodology [95]. Furthermore, it is assumed that these real-

valued parameters can be measured on-line. In our approach, the parameters

are assumed uncertain and the controller is a linear time-invariant system.

• in [63], the authors also provide a solution to robust full-state feedback control,

while in this chapter we are interested in output feedback control.

It is important to stress that (2.10) depends affinely upon ρ̇(t), for each time,

t. Suppose that ρ̇(t), for all t, can only take values in a convex polytope, Λ. Then,

if (2.10) is satisfied in the vertices of Λ, it can be shown that (2.10) is satisfied for

every ρ̇(·) ∈ Λ – see, for instance, [90]. In particular, the following corollary proves

that (2.10) need not be satisfied at every point in Λ, but only at the corresponding

vertices, in case Λ is a parallelepiped:

Corollary 2.1. Let Tzw denote the closed-loop operator from w to z, and suppose

x(0) = 0. Further consider that ρ̇ ∈ Λ and that Λ is a parallelepiped. Then, the

H∞-norm of Tzw is less than γ, that is, ‖Tzw‖∞ < γ, if a continuous symmetric
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map P : Ω→ Sn×n exists such that P (ρ) > 0, and
W (ρ) P (ρ)Bcl(ρ) γ−1CT

cl(ρ)

Bcl(ρ)P (ρ) I γ−1DT
cl(ρ)

γ−1Ccl(ρ) γ−1Dcl(ρ) I

 < 0, (2.18)

where

W (ρ) = P (ρ)Acl(ρ) + ATcl(ρ)P (ρ) +

p∑
i=1

±νi
∂P

∂ρi
(ρ), (2.19)

holds for every realization of the parameters vector, ρ ∈ Ω.

Remark 2.5: The notation ± in (2.19) indicates that (2.18) has to be satisfied at

every vertex of set Λ. �

Proof. Since (2.10) is affine in the derivatives of the parameters, ρ̇, and given that

Λ is a convex polytope, we have that (2.10) is satisfied everywhere everywhere in

Ω×Λ if it satisfied in the vertices of Λ for all ρ ∈ Ω. Therefore, using Theorem 2.1,

we have that ‖Tzw‖∞ < γ.

Remark 2.6: As previously stated, our main goal is to design LTI controllers for

LPV plants. Therefore, imposing such a structure to the controllers guarantees that

they are time-invariant, even if the Lyapunov function depends upon the uncertain

parameters of the plant. �

The optimization problem at hand can be stated as follows: Find the minimum

value of γ such that (2.10) holds for every realization of the parameters vector, ρ ∈ Ω,

and corresponding time-derivatives, ρ̇ ∈ Λ.

Given that we cannot evaluate (2.18) for every point in Ω (since this is a set that,

in general, contains an infinite number of elements), a finite number of representative

points in Ω has to be selected. The method adopted in this thesis is to uniformly grid

the space of parameters, and then to constraint the optimization program (i.e., the

minimization of the L2-induced norm from the exogenous inputs to the performance

outputs) by the BMIs in (2.18) evaluated at the points of that grid. In Section

2.3.6, we derive conditions for the density of this grid that allow us to generalize

the results for all the points in Ω. In other words, the conditions in Section 2.3.6
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amount to the selection of the density of the grid such that, if (2.18) is satisfied at

the points of the aforementioned grid, then it is also satisfied at any other point in

Ω.

This type of controllers is thus going to be referred to as LPV/BMI controllers,

since they can be used on LPV systems, and are designed using optimization pro-

grams subject to BMIs. Notice that, using small gain arguments [77], one can readily

guarantee the stability of the closed-loop against complex-valued uncertainties3, as

with the µ-controllers.

2.3.3 BMI Optimization Using General BMI Solvers

As previously stated, in classical LPV control, we assume that we can measure ex-

actly the time-varying parameters. Therefore, there are some methods that can be

used to transform the controller synthesis problem into an optimization program

subject to Linear Matrix Inequalities (LMIs) – see [63, 86, 89]. However, in de-

signing LPV/BMI controllers, we assume that we cannot measure the time-varying

parameters. Indeed, it is only required that the maximum rate-of-change and mag-

nitude bounds of these parameters are known a priori. Hence, there does not exist a

transformation, in the best of our knowledge, that convexifies this problem, for the

general case, and thus an optimization program subject to BMIs has to be solved.

Still, BMIs have been shown to be non-convex NP-hard optimization problems – see

[96]. This obviously implies that large scale problems are most likely to be impossi-

ble to solve in a reasonable amount of time. We stress that, nevertheless, these are

off-line computations.

However, some recent work on finding suboptimal solutions of BMIs rendered

promising results. For instance, [66] and [67] introduce an algorithm that can find a

solution better than the one achieved by the D-K iterations, for a specific example.

However, a recently updated MATLAB Toolbox referred to as PENBMI (see [97]

and [98]) yields even better results for the same example, and requiring reduced

3Note that complex-valued uncertainties are very important when the plant has unmodeled

dynamics (a situation that always occurs).
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computational effort. This suggests that the aforementioned strategy may lead to

reasonable results for medium size problems (about 20 states) with an affordable

computational burden. However, for plants with a larger number of states, this so-

lution may not be implementable, and hence strategies such as the D,G-K iterations

are more suitable [44–48].

2.3.4 BMI Optimization Using LMI Iterations

Although general BMI optimization toolboxes, such as PENBMI, can be used to

tackle the problem at hand, similar results can be obtained, at least in the numerical

example presented in the sequel, much faster by alternating the optimization process

between the Lyapunov function matrices and the controller matrices. This means

that, given an initial µ-controller (that can be obtained using the D,G-K iterations),

we try to find a Lyapunov function that minimizes some optimality criterium (in the

present case, we try to minimize the closed-loop H∞-norm). We do this by keeping

the controller matrices constant, which means that the problem to be solved can

be posed as an optimization procedure subject to LMI constraints. After that,

the matrices of the candidate PDLF (P1, P2, · · · , Pm) are fixed, and we try to find

the controller that optimizes that same criterium. We repeat this process until no

further significant improvements are attained with the iterations, or until a pre-

specified value of γ is achieved. This algorithm is illustrated in Fig. 2.5.
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Figure 2.5: LMI-based algorithm to solve optimization problems subject to BMI

constraints. The algorithm stops if the value of γ is smaller than a given pre-

specified value, γd, or if the maximum number of iterations is exceeded.

For the sake of completeness, the pseudo-code of this algorithm is presented next:

Algorithm 2: BMI optimization algorithm using LMI iterations.

Input: Initial controller (Ki), closed-loop desired H∞-norm (γd), maximum

rate of variation of the parameters (ρ̇max), number of maximum

iterations (nmax)

Output: K, γ

Initialization K = Ki, n = 1

while (γ > γd) && (n < nmax) do
• Find the Lyapunov matrices Pi that minimize the closed-loop H∞-norm,

γ, for LFT of plant with controller K, and such that (2.18) is satisfied at

the points of the grid;

• Find the matrices of the controller that minimizes the H∞-norm of

closed-loop, γ;

• n = n + 1

end

Although this solution may not achieve the global (or even a local) optimum, it
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ensures convergence to (at least) a local optimum with respect to Pi alone and with

respect to K alone.4 Furthermore, the controller obtained after each iteration can

never be worse (in the L2-induced norm sense) than that obtained in the previous

iteration.

2.3.5 D-BMI Iterations

As previously mentioned, the D-scales, obtained with µ-analysis, are very important

in reducing the conservatism of the LPV/BMI controllers. Therefore, if we initialize

the BMI optimization procedure with the mixed-µ solution, obtained with the D,G-

K iterations, it is reasonable to use the D-scales obtained from the synthesis of

that controller to reduce the convervatism of the results. However, the resulting

LPV/BMI controller may be different from the mixed-µ controller, and hence the

D-scales may not be optimal for that controller. Thus, the strategy adopted herein is

to iterate between the BMI optimization and the D-scales computation, as described

in Fig. 2.6, similarly to what is done in the D-K or the D,G-K iterations.

Once again, for the sake of completeness, the pseudo-code describing the algo-

4The D,G-K iterations used in the µ-synthesis are also only guaranteed to converge to a (at

least) local optimum, with respect to K alone and with respect to D alone – see [99].
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Figure 2.6: D-BMI iterations for designing robust controllers. The algorithm stops

if the value of γ is smaller than a given pre-specified value, γd, or if the maximum

number of iterations is exceeded.

rithm is also included as follows:

Algorithm 3: D-BMI iterations for robust controllers design.

Input: Initial controller (Ki), closed-loop desired H∞-norm (γd), maximum

rate of variation of the parameters (ρ̇max), number of maximum

iterations (nmax)

Output: K, γ, D-scales

Initialization K = Ki, n = 1

while (γ > γd) && (n < nmax) do
• Get D-scales, D, and closed-loop H∞-norm, γ, for LFT of plant with

controller K;

• Use K and γ to find initial Lyapunov function;

• Synthesize LPV/BMI controller, K, for plant with D-scales and

compute H∞-norm of closed-loop, γ;

• n = n + 1

end
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Remark 2.7: As mentioned above, the D-BMI algorithm iterates between the syn-

thesis of D-scales and the synthesis of an H∞ controller. Since in both steps of the

iteration, the L2-induced norm of the closed-loop is guaranteed to decrease (or, at

least, not to increase), and given that this norm is bounded by below, it is straight-

forward to conclude that the algorithm converges to a (local) optimum, with respect

to D alone and to K alone. �

In comparison with the D,G-K iterations, used to synthesize mixed-µ controllers,

the main difference is that we eliminate the computation of the G-scales, by designing

controllers that are robust against real-valued parametric uncertainty. Moreover,

at each iteration, the method used to synthesize the LPV/BMI controller is the

optimization program described in the previous subsections, that aims to minimize

the H∞ norm of the closed-loop, while guaranteeing that (2.18) is satisfied at every

point in Ω× Λ.

2.3.6 Gridding the Space of Parameters

One way of avoiding conservative solutions, that usually arise from simplifications of

the model of the plant (for instance, approximating the model by one that depends

affinely on the parameters), is to grid the parameters set, Ω, and evaluate (2.10)

at the points of that grid – see Fig. 2.7. This approach is also used in “classical”

LPV control, as described in [90]. Using this method reduces the number of BMI

constraints that have to be satisfied, since now we only need to compute (2.10) for

a finite set of points.

However, if (2.10) is satisfied in the points of the grid, it does not necessarily

mean that it is satisfied in every point in Ω. In this section, we present sufficient

conditions that guarantee that (2.10) is satisfied for every legal realization of the

pair (ρ(·), ρ̇(·)) if it is satisfied for a finite number of points in Ω× Λ. In summary,

the conditions in the sequel amount for the selection of the density of the grid in Ω.

Theorem 2.2. Suppose that we grid Ω by L1× · · · ×Lp points, uniformly spaced in

each dimension (as depicted in Figure 2.7). Denote the set of points of the grid by

Υ =
{

(ρ1, · · · , ρp) : ρ1 ∈ {ρ1,1, · · · , ρ1,L1}, · · · , ρp ∈ {ρp,1, · · · , ρp,Lp}
}
.
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Ω
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Figure 2.7: Grid for a polytope, Ω, in R2.

Let hmin
j be defined such that, for any two points ρ̄, ρ̃ ∈ Υ, we have ‖ρ̄j− ρ̃j‖ < hmin

j ,

for every j = {1, · · · , p}. Further suppose that, for some δ < 0 and T ≥ max
i
‖Pi‖,

hmin
j < |δ|

m

[
2T

m∑
i=1

max
ρ∈Ω

∥∥∥∥∥∂
(
ξiA

T
cl

)
∂ρj

∥∥∥∥∥
F

+ νjT

p∑
t=1

m∑
i=1

max
ρ∈Ω

∣∣∣∣ ∂2ξi
∂ρjρt

∣∣∣∣+
+ 2T

m∑
i=1

max
ρ∈Ω

∥∥∥∥∂ (ξiBcl)

∂ρj

∥∥∥∥
F

+ 2γ−1 max
ρ∈Ω

∥∥∥∥∂Ccl

∂ρj

∥∥∥∥
F

+ 2γ−1 max
ρ∈Ω

∥∥∥∥∂Dcl

∂ρj

∥∥∥∥
F

]−1

,

(2.20)

for every j = {1, · · · , p}, and that (2.18) is satisfied for all ρ ∈ Υ. Then (2.18) is

satisfied for all ρ ∈ Ω.

Proof. We follow closely the derivations in [90]. Define

F (ρ) =


W (ρ) P (ρ)Bcl(ρ) γ−1CT

cl(ρ)

Bcl(ρ)P (ρ) −I γ−1DT
cl(ρ)

γ−1Ccl(ρ) γ−1Dcl(ρ) −I

 ,
where W (ρ) is as in (2.19). In what follows, we omit the cl subscript, for the sake of

simplicity. Notice that, if (2.18) is satisfied for ρ = ρ̃, then there exists δ < 0 such

that

F (ρ̃) < δ.

We are interested in deriving conditions that guarantee that if ‖ρ̄i − ρ̃i‖ < hmin
i ,

for every i = {1, · · · , p} and where ρ̄, ρ̃ ∈ Ω are two arbitrary points in Ω, then
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F (ρ̃) < δ implies F (ρ̄) < 0. Therefore, consider that indeed ‖ρ̄i − ρ̃i‖ < hmin
i and

that max
t∈R
|ρ̇i(t)| = νi. Then, using (2.7) and (2.18),

‖F (ρ̄)− F (ρ̃)‖F ≤ 2
m∑
i=1

∥∥Pi (ξiAT (ρ̄)− ξiAT (ρ̃)
)∥∥

F
+

+

p∑
j=1

[
νj

m∑
i=1

∥∥∥∥Pi( ∂ξi∂ρj
(ρ̄)− ∂ξi

∂ρj
(ρ̃)

)∥∥∥∥
F

]
+ 2

m∑
i=1

‖Pi (ξiB(ρ̄)− ξiB(ρ̃))‖F +

+2γ−1‖C(ρ̄)− C(ρ̃)‖F + 2γ−1‖D(ρ̄)−D(ρ̃)‖F

≤
m∑
i=1

|ρj − ρj,kj |

[
2

m∑
i=1

∥∥∥∥∥Pi∂
(
ξiA

T
)

∂ρj
(ξ1ij)

∥∥∥∥∥
F

+ νj

p∑
t=1

m∑
i=1

∥∥∥∥Pi ∂2ξi
∂ρjρt

(ξ2ijt)

∥∥∥∥
F

+

+ 2
m∑
i=1

∥∥∥∥Pi∂ (ξiB)

∂ρj
(ξ3ij)

∥∥∥∥
F

+ 2γ−1

∥∥∥∥∂C∂ρj (ξ4j)

∥∥∥∥
F

+ 2γ−1

∥∥∥∥∂D∂ρj (ξ5j)

∥∥∥∥
F

]
,

for some ξ1ij, ξ2ijt, ξ3ij, ξ4j, ξ5j ∈ [ρ1,k1 , ρ1,k1+1]× · · · × [ρp,kp , ρp,kp+p]

≤
m∑
i=1

hmin
j

[
2T

m∑
i=1

max
ρ∈Ω

∥∥∥∥∥∂
(
ξiA

T
)

∂ρj

∥∥∥∥∥
F

+ νjT

p∑
t=1

m∑
i=1

max
ρ∈Ω

∣∣∣∣ ∂2ξi
∂ρjρt

∣∣∣∣+
+ 2T

m∑
i=1

max
ρ∈Ω

∥∥∥∥∂ (ξiB)

∂ρj

∥∥∥∥
F

+ 2γ−1 max
ρ∈Ω

∥∥∥∥∂C∂ρj
∥∥∥∥
F

+ 2γ−1 max
ρ∈Ω

∥∥∥∥∂D∂ρj
∥∥∥∥
F

]
Thus, if

hmin
j < |δ|

m

[
2T

m∑
i=1

max
ρ∈Ω

∥∥∥∥∥∂
(
ξiA

T
cl

)
∂ρj

∥∥∥∥∥
F

+ νjT

p∑
t=1

m∑
i=1

max
ρ∈Ω

∣∣∣∣ ∂2ξi
∂ρjρt

∣∣∣∣+
+ 2T

m∑
i=1

max
ρ∈Ω

∥∥∥∥∂ (ξiBcl)

∂ρj

∥∥∥∥
F

+ 2γ−1 max
ρ∈Ω

∥∥∥∥∂Ccl

∂ρj

∥∥∥∥
F

+ 2γ−1 max
ρ∈Ω

∥∥∥∥∂Dcl

∂ρj

∥∥∥∥
F

]−1

,

(2.21)

and (2.18) is satisfied at the points of the grid, then (2.18) is satisfied everywhere

in Ω.

Remark 2.8: The relevance of this result is twofold. On the one hand, it is im-

portant from a theoretical point of view, since it allows us to provide stability and

performance specifications in a region, based upon the evaluation of an optimization

procedure constrained by a finite set of BMIs. On the other hand, it is helpful, from

a practical point of view, to evaluate whether or not the density of a given grid is

enough. �
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Notice that Theorem 2.2 should be used to test if a given grid is sufficiently

dense, after (2.18) has been checked at every point of the grid. This means that the

steps to be taken are as follows:

Algorithm 4: Gridding the space of parameters

Initialization Create an arbitrary grid for Ω, and use Theorem 2.2 to check

if the grid is sufficiently dense, for a given value of γ

while Density of the grid not enough do
Increase the density of the grid, and use Theorem 2.2 to check if the grid

is sufficiently dense for the given value of γ

end

As an example, consider a plant that depends affinely upon one uncertain pa-

rameter, ρ, i.e., 

A(ρ) = A0 + A1ρ

B(ρ) = B0 +B1ρ

L(ρ) = L0 + L1ρ

C(ρ) = C0 + C1ρ

Cz(ρ) = Cz0 + Cz1ρ

D(ρ) = D0 +D1ρ

N(ρ) = N0 +N1ρ.

In this case, the closed-loop system can be written as

 ẋ
ẋc

 =

A+BDcC BCc

BcC Ac

 x
xc

+

L BDcN

0 BcN

d
n


z =

[
Cz 0

] x
xc

 ,

where  ẋc = Acxc +Bcy

u = Ccxc +Dcuc
,

describes the controller dynamics. For the sake of simplicity, assumeDc = 0. Further

suppose that the PDLF can be written as

V = xTP (ρ)x,
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where P (ρ) = P0 + ρP1. Then, one would get

ξ0 = 1, ξ1 = ρ.

Thus, the derivatives in (2.20) are given by

∂
∂ρ
Acl =

 A1 B1Cc

BcC1 0

 , ∂2

∂ρ2 1 = 0,

∂
∂ρ
Bcl =

L1 0

0 N1

 , ∂
∂ρ
Ccl =

[
Cz1 0

]
,

∂
∂ρ

(ρAcl) =

 A0 + 2ρA1 B0Cc + 2ρB1Cc

BcC0 + 2ρBcC1 Ac

 , ∂
∂ρ
Dcl = 0,

∂
∂ρ

(ρBcl) =

L0 + 2ρL1 0

0 N0 + 2ρN1

 , ∂2

∂ρ2ρ = 0.

Using these derivatives and given that the parameter range and maximum rate

of variation are known, an upper bound for hmin can be computed using Theorem

2.2. For instance, let us suppose that we used a grid with just two points, i.e., the

grid is simply Υ = {ρmin, ρmax} := {0, 1}. Then, the candidate value for hmin would

be ĥmin = ρmax− ρmin = 1. Further suppose that we solve the optimization problem

of minimizing the L2-induced norm from the exogenous inputs to the performance

outputs, while (2.18) is satisfied at the points of the grid, υ, and that this results in

δ = 1, T = 0.1 and γ = 1. If we consider that∥∥∥ ∂
∂ρ
Acl

∥∥∥
F

= 0.1,
∥∥∥ ∂
∂ρ
Bcl

∥∥∥
F

= 0.1,

max
ρ∈[0, 1]

∥∥∥∥ ∂∂ρ (ρAcl)

∥∥∥∥
F

= 0.1, max
ρ∈[0, 1]

∥∥∥∥ ∂∂ρ (ρBcl)

∥∥∥∥
F

= 0.1,

∥∥∥ ∂
∂ρ
Ccl

∥∥∥
F

= 0.1,

then the result obtained is

hmin = 1.56 > ĥmin.

Thus, the density of the grid for this example is sufficient, which means that the

resulting controller guarantees a level of performance of γ = 1 for every realization
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of the plant with ρ ∈ [0, 1]. As a final remark regarding this example, bounds for

the terms like

max
ρ∈[0, 1]

∥∥∥∥ ∂∂ρ (ρAcl)

∥∥∥∥
F

can be obtained by noting that

max
ρ∈[0, 1]

∥∥∥∥ ∂∂ρ (ρAcl)

∥∥∥∥
F

≤

∥∥∥∥∥∥
 A0 B0Cc

BcC0 Ac

∥∥∥∥∥∥
F

+ max
ρ∈[0, 1]

∥∥∥∥∥∥ρ
 2A1 2B1Cc

2BcC1 0

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥
 A0 B0Cc

BcC0 Ac

∥∥∥∥∥∥
F

+

∥∥∥∥∥∥
 2A1 2B1Cc

2BcC1 0

∥∥∥∥∥∥
F

.

Remark 2.9: Notice that solving this optimization problem for a general time-

varying LPV plant, only provides sufficient conditions for stability (and perfor-

mance), since a quadratic Lyapunov function may not exist for that specific plant,

although it might be stable – see [94]. �

Remark 2.10: The main advantage of the LPV/BMI approach, is that, if properly

designed, these LTI controllers can be less sensitive to the variations of the param-

eters, and, therefore, the solution obtained is more robust in that sense. It should

be noticed that, contrary to what happens with the mixed-µ controllers, these con-

trollers can guarantee stability and performance of the closed-loop for time-varying

parameters. We stress that this property is instrumental, for instance, in adaptive

control, as previously mentioned. Furthermore, this method can fulfill other de-

sign requirements, such as closed-loop pole placement [63, 92] and mixed H2/H∞
objectives [63]. �

Table 2.1 summarizes the design procedures and the bounds on ρ̇ for the differ-

ent parameters dependence of the plant and structure of the quadratic Lyapunov

function.

Remark 2.11: Consider that the plant dynamics depend affinely on the vector

of parameters, ρ. Further consider that the Lyapunov function can be written as

V (x) = xTPx, with P a constant matrix. Then, inequality (2.10) also becomes

affine in the vector of parameters, ρ. Therefore, if Ω is a convex polytope, then

(2.10) is satisfied everywhere in Ω if it is satisfied in the vertices of this polytope -
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Constant Lyapunov Function

V (x) = xTPx

Parameter-Dependent Lyapunov

Function V (x, ρ) = xTP (ρ)x

Plant depends

affinely upon

the parameters

ρ̇ may be unbounded.

BMI (2.10) needs only to

be checked at the vertices

of the polytope, Ω

(see Remark 2.11).

Bounded ρ̇.

Gridding may be required.

Plant depends

arbitrarily upon

the parameters

ρ̇ may be unbounded.

Gridding may be required.

Bounded ρ̇.

Gridding may be required.

Table 2.1: Design procedures and bounds on ρ̇(·) for the different parametric de-

pendence of the plant and structure of the quadratic Lyapunov function

see [63] for further details. Nevertheless, considering the same Lyapunov function

for every point in Ω is, in general, a restrictive assumption. �

The comparison between mixed-µ and LPV/BMI controllers is summarized in

Table 2.2.

It is important to stress that the LPV/BMI solution provides stability and per-

formance guarantees for time-varying and time-invariant plants. Moreover, we show

next that, at least in the case presented herein, the LPV/BMI solution can also pro-

vide better performance guarantees for time-invariant plants than those provided by

µ-controllers.

In summary, the conservatism of the LPV/BMI controllers design method is due

to:

a) the (possibly) sub-optimal solution of the BMI solver;

b) the use of basis functions to represent the Lyapunov matrix (although this in

practice is not an issue, since we can use as many basis function as needed);

c) the use of a quadratic PDLF (although this in practice may also not be a short-

coming, since we can have state-dependent parameters, and hence have higher
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mixed-µ LPV/BMI

Stability and performance

guarantees for LTI plants
Yes

Yes, and at least as good

those provided by µ

Stability and performance

guarantees for uncertain LTI plants
Yes

Yes, and at least as good

those provided by the µ

Stability and performance

guarantees for time-varying plants
No Yes

Stability and performance

guarantees for uncertain TV plants
No Yes

Plant parameters dependence
LFT

representable

LPV

representable

Computational complexity Low High

Table 2.2: Mixed-µ vs LPV/BMI Controllers

order dependence of the Lyapunov function upon the states).

2.4 Mixed-µ vs LPV/BMI Controllers

The applicability of the LPV/BMI controllers is going to be illustrated using a

Mass-Spring-Dashpot plant (MSD) with two real parametric uncertainties and a

complex-valued one. Consider the MSD plant depicted in Fig. 2.8.

The unknown spring constant is bounded by

k1 ∈ [0.25, 1.75] N/m,

the unkown mass is bounded by

m ∈ [0.2, 3.8] kg,

and the unknown input time-delay is bounded by

0 < τ < 0.05 s,
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k1

m

y

d
u τ

Figure 2.8: MSD system with uncertain spring constant, k1, and mass, m. The

disturbances are denoted by d(t). u(t) is the control input and y(t) is the system

output. τ is an uncertain time-delay bounded by 0 < τ < 0.05 s.

LFB Design HFB Design

α 0.1 rad/s 3 rad/s

b 0.1 N/(m/s) 0.05 N/(m/s)

Table 2.3: Specifications for the LFB and HFB designs

acting as a surrogate for unmodeled dynamics. The friction coefficient is given by

b = 0.1 Ns2/m.

Figure 2.9 shows the block diagram used in the design process. The disturbances,

d(t), are generated by driving a low-pass filter with transfer function (2.22) with

continuous-time white noise ξ(t) with zero mean and unit intensity.

Wd(s) =
α

s+ α
, α = 0.1 rad/s (2.22)

Two design scenarios are considered, namely one with a low-frequency band-

width (LFB) specification for the disturbances, and another with a high-frequency

bandwidth (HFB). For the LFB design, we consider α = 0.1 rad/s, and for the HFB,

we define α = 3 rad/s, as summarized in Table 2.3.

We assume that the sensor noise can be modeled by continuous-time white noise

θ(t), with zero mean and intensity Wn = 0.001. The performance filter, Wp, is

described by

Wp(s) = Ap
α

s+ α
, (2.23)
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where α = 0.1 rad/s and Ap is called the performance gain and is determined using

Algorithm 1. The unknown input time-delay, τ , is modeled by a complex-valued

uncertainty bounded by the magnitude of

Wun(s) =
2.1s

s+ 40

in the frequency domain. Finally, the control input, u(t), is penalized by

W LFB
u (s) =

10(s+ 10)

s+ 103
,

for the LFB design, and by

WHFB
u (s) =

10(s+ 30)

s+ 3× 103
,

for the HFB design.

In the MSD system, the uncertain spring has a potential energy of

(1/2)k1(∆x)2.

If the spring parameter k1 is constant and bounded, we have an upper and a lower

bound on the potential energy uncertainty stored in the spring. If, however, the

parameter k1 is time-varying, then the spring potential energy changes exogenously.

When the spring parameter k1 is increasing, there is an exogenous addition to the

potential energy; when k1 is decreasing, there is an exogenous decrease in the stored

spring potential energy. A similar line of thought can be applied to the uncertain

mass, m, whose kinetic energy is (1/2)m(ẋ)2.

2.4.1 Design of the Mixed-µ Controller

Assume that the spring stiffness, k1, and that the mass m are constant but unknown,

subject to their magnitude constraints. The framework used to synthesize the mixed-

µ controller for maximum disturbance-rejection is depicted in Fig. 2.9, which can

be re-arranged as in Fig. 2.4 – see [77, 78] for further details on designing mixed-µ

controllers. The transfer function of the plant is defined such that the position of

the mass, x(t), satisfies

ẍ(t) =
1

m(t)
[d(t) + u(t)− k1(t)x(t)− bẋ(t)] , (2.24)
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where b is the friction coefficient. For the LFB design, we consider b = 0.1 N/(m/s),

while for the HFB design we assume b = 0.05 N/(m/s) – see Table 2.3.

G(s)

k 1

m

K(s)

unW  (s)un

W (s) W (s)d n

W (s)u

W (s)p

z (t)1

z (t)2

y(t)u(t)

Plant Model

Figure 2.9: Setup used to synthesize the mixed-µ controller. δk1 and δm represent

the uncertain spring constant and uncertain mass, respectively. ∆un(s) is used to

model the input time-delay. z1(t) and z2(t) are the performance outputs. The goal

is maximum disturbance rejection.

We use Algorithm 1 to obtain the maximum value of Ap that guarantees robust

performance as Ap = Amixed−µ
p := 750. This means that, for values of Ap larger

than 750, there may exist a structured ∆-block in Fig. 2.4, with ‖∆‖ ≤ 1, that

destabilizes the closed-loop system, if we use the mixed-µ controller. Therefore,

Amixed−µ
p can be interpreted as a measure of the guaranteed H∞ performance of the

mixed-µ controller for the constant parameter case.

Remark 2.12: It should be noticed that the same technique as in [58, 59] is used

to maximize the performance of the closed-loop system. By maximizing the value

of Ap, we are able to find the controller that provides the best performance while

guaranteeing the stability of the uncertain closed-loop plant. This is, indeed, the

appropriate method to compare the robust performance levels achieved by two dif-

ferent controllers. �
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The D,G-K iterations treat the (real-valued) parametric uncertainties as complex-

valued uncertainties. Therefore, the resulting controller guarantees stability and

performance not only for all the possible realizations of the plant, but also for real-

izations that are not described by the model of the plant in (2.24) with a real-valued

k1.

2.4.2 LFB Design: Analysis for LTI Plants

The mixed-µ synthesis assumes that the plant to be controlled is time-invariant.

Therefore, suppose that indeed k̇1 = 0 and ṁ = 0. We synthesize an LPV/BMI

controller using the method described in Section 2.3. The BMI optimization was

carried out using the aforementioned weights, except for the performance gain Ap in

(2.23). We define A
LPV/BMI
p as the maximum value of Ap for which the LPV/BMI

controller guarantees stability (and performance) for any structured ∆-block in Fig.

2.4, with ‖∆‖ ≤ 1. Once again, this value is obtained using Algorithm 1.

Figure 2.10 depicts the poles of the open-loop system for several values of k1

and m, and for b = 0.1 N/(m/s). The poles near the imaginary axis are, in general,

and from a physical point of view, the ones that pose sharper constraints on the

achievable performance. Representing k1 by means of a complex-valued uncertainty,

as in the D,G-K iterations, adds admissible realizations of the plant with poles that

are closer to the imaginary axis. In fact, it may even happen that, for some complex

values of k1, the poles of the plant are located in the right half-plane of C. Hence,

the performance obtained with the mixed-µ controller can be severely deteriorated,

since this type of controller accounts for models of the plant which are not realizable

in practice.

The D-BMI iterations were initialized with the matrices of the dynamics of the

µ-compensator. Notice that the initialization of the algorithm is very important,

since we are dealing with local optimization procedures. Each of these optimization

problems subject to BMI constraints was solved using the method presented in

Section 2.3.4.

The Bode plots of the controllers transfer functions for the LTI case are depicted
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Figure 2.10: Poles of the open-loop plant with b = 0.1 N/(m/s).

in Fig. 2.11. Although the controllers are similar, the µ-controller has smaller low-

frequency gain, which explains the benefits in terms of performance of the LPV/BMI

controller for the present case. For higher frequencies, the Bode plots of the two

controllers are very similar. This can be explained by the fact that both controllers

use similar models for those frequencies. In particular, the unmodeled high frequency

dynamics are handled in the same manner (i.e., using D-scales) by the two designs.

Notice that, at those frequencies, these (uncertain) dynamics are predominant.

In terms of guaranteed H∞ performance, we obtained

Amixed−µ
p = 750,

ALPV/BMI
p = 960,

using the so-called µ-analysis [46, 48, 82].

Figure 2.12 depicts the sensitivity gain for the two controllers, using a realization

of the plant with k1 = 0.25 N/m and m = 0.5 kg. We can observe that the

sensitivity for the LPV/BMI controller is smaller than that obtained with the mixed-

µ controller, for the low-frequencies, which is in accordance with the performance

improvements observed with the µ-analysis.

The behaviors of both controllers are assessed in simulation, using k1 = 0.25

N/m and m = 0.5 kg, and considering no input time-delay. Consider that the



52 CHAPTER 2. THE CONTROL SUBSYSTEM

10
−4

10
−2

10
0

10
2

10
4

−10

0

10

20

30

40

50

60

70

80

90

100

Frequency [rad/sec]

M
ag

ni
tu

de
 [d

B
]

 

 

Mixed−µ Ctrl
LPV/BMI Ctrl for LTI

Figure 2.11: LFB Design: Bode plots for the mixed-µ and LPV/BMI controllers,

for k̇1 = 0 and ṁ = 0.
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Figure 2.12: LFB Design: Bode plots of the sensitivity gain for the LPV/BMI and

mixed-µ controllers, for k̇1 = 0, ṁ = 0, k1 = 0.25 N/m and m = 0.5 kg.
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disturbances are as shown in Fig. 2.13. These low-frequency disturbances clearly

illustrate the differences between the controllers, as shown in Fig. 2.14. Consider

the RMS of the performance output, z1(·), of the closed-loop, using each controller.

For this case, we get

RMS for LPV/BMI Controller = 0.0233 m,

RMS for Mixed-µ Controller = 0.0495 m.

Therefore, the RMS of the performance output, z1(·), of the closed-loop with the

LPV/BMI controller is nearly 47% of that obtained with the mixed-µ controller.

0 20 40 60 80 100 120 140 160 180 200
−50

−40

−30

−20

−10

0

10

20

30

40

50

Time [s]

d 
[N

]

Figure 2.13: Low-frequency exogenous disturbances, d(t).

We stress that the design goal of both the mixed-µ and the LPV/BMI controllers

is to guarantee robust H∞ performance of the closed-loop. Nevertheless, for time-

simulations, the RMS is significantly easier to compute, and provides some insight

regarding the behavior of the controllers. This explains why we make such a com-

parison, despite of the fact that these values should only be taken into account as a

superficial evaluation of the controllers.

Remark 2.13: Suppose that we use the performance gain Ap = 960 in (2.23). (We

recall that this is the value of Ap used to design the LPV/BMI controller. For the

mixed-µ design, the maximum value of the performance gain yielding µ < 1 was
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Figure 2.14: LFB Design: Output of the closed-loop for the LPV/BMI and mixed-µ

controllers, for k̇1 = 0, ṁ = 0, k1 = 0.25 N/m and m = 0.5 kg.

Amixed-µ
p = 750.) If one computes the value of µ for the closed-loop of the plant with

the mixed-µ controller and with Ap = 960, one would get

µmixed-µ ≈ 1.27

If we use the LPV/BMI controller, we get

µLPV/BMI ≈ 0.99,

which is in accordance to the fact that the closed-loop system is stable for any legal

realization of the plant. �

Therefore, for time-invariant plants, the level of H∞ closed-loop performance

guaranteed by the mixed-µ controller is only about 77% of that guaranteed by the

LPV/BMI controller, in the LFB design. Furthermore, contrary to what happens

with the mixed-µ controller, when we use the LPV/BMI controller, the stability and

performance of the closed-loop is guaranteed even for time-varying plants.

Remark 2.14: As a technical detail, the PDLF used for the LPV/BMI controller

was V = xTP (k1,m)x, with

P (k1,m) = P1 + k1P2 +mP3 + k1mP4 + k2
1P5 +m2P6,
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although higher order terms could also have been used. �

Although, in this case, both controllers (mixed-µ and LPV/BMI) are pursu-

ing the same disturbance-rejection objectives, the results are clearly different. As

previously stated, there is a conservative step in the D,G-K iterations that can

be avoided with the LPV/BMI design: parametric uncertainties are treated in a

non-conservative manner, i.e., the (possibly) time-varying real-valued parameters

enter the dynamics of an LPV plant in a natural way, and hence do not have to

be approximated by complex-valued uncertainties. Therefore, in spite of also be-

ing solved using local optimization procedures, the LPV/BMI synthesis potentially

leads to results that are less conservative than the mixed-µ design.

As a caveat, the amount of time required by the (off-line) computations of the

LPV/BMI design is almost 100 times larger than the amount of time required to

design the corresponding mixed-µ controller.

2.4.3 LFB Design: Analysis for Time-Varying Plants

The BMI optimization was carried out using the same weights, and for several values

of the bounds on the rate of variation of the parameters. The D-scales obtained

from the mixed-µ design were also used in order to reduce the conservatism of the

solution. The µ-controller matrices were used to initialize the algorithm. Figure 2.22

depicts the value of the H∞-norm of the closed-loop from the exogenous inputs to

the performance output, z1(·), using LPV/BMI controllers, γ, versus the maximum

rate of variation of the mass, m, and of the spring stiffness, k1. As expected, γ

increases when we allow m and k1 to change faster. Intuitively, this means that

increasing the rate by which the uncertain energy of the system can change, we

reduce the performance guarantees. The decrease of the performance guarantees

with the increase of the maximum rate of variation of the uncertain parameters can

also be explained by the fact that we are providing robust-performance guarantees

for a much wider family of plant models.

Remark 2.15: The mixed-µ controller is always a valid controller for ρ̇(·) ≡ 0 – see

[63]. Therefore, for ρ̇(·) ≡ 0, this controller can be used to initialize the algorithm
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Figure 2.15: LFB Design: H∞-norm of the closed-loop, γ, versus the maximum rate

of variation of the mass, m, and of the spring stiffness, k1.

depicted in Fig. 2.5. For values of ρ̇ > 0, one can start with the mixed-µ controller

and try to find a valid initialization for the algorithm by reducing the performance

gain, Ap. �

The results presented next were obtained assuming the bounds on the rate of

variation of |k̇1| ≤ 0.1 (N/m)/s and |ṁ| ≤ 0.1 kg/s. For this configuration, we get

a value of γ of approximately 0.99 using Ap = 950. We recall that, for the D,G-K

iterations, the performance gain was Amixed-µ
p = 750. Therefore, for this particular

example, the LPV/BMI controller provides better performance guarantees than the

mixed-µ controller, for a worst-case situation, even when assuming time-variations

of the uncertain parameters.

Figure 2.16 depicts the Bode plots of the three controllers considered so far,

i.e., the mixed-µ controller, the LPV/BMI controller for the LTI plant, and the

LPV/BMI controller for the LPV plant with |k̇1| ≤ 0.1 (N/m)/s and |ṁ| ≤ 0.1

kg/s. The LPV/BMI controllers have larger low-frequency gains, which is intuitively

in accordance to the fact that they lead to higher levels of performance than the

ones obtained with the µ-controller, for the present example. By comparing the
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two LPV/BMI controllers, it can also be observed that increasing the maximum

allowable rate of variation of the parameters results in a decrease in terms of the

controller gain, as expected.
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Figure 2.16: LFB Design: Bode plots for the mixed-µ and LPV/BMI controllers for

the LTI plant and for the LPV plant with |k̇1| ≤ 0.1 Nm−1s−1 and |ṁ| ≤ 0.1 kg/s.

A time-simulation of the plant with both controllers was performed, for the

time-varying spring stiffness, k1, and mass, m, shown in Fig. 2.17. We used the

low-frequency exogenous disturbances depicted in Fig. 2.13. Figure 2.18 shows the

results obtained. The LPV/BMI controller provides a significant increase in terms of

disturbance-rejection, when compared to the µ-controller. In particular, regarding

the RMS performance, the results obtained are as follows:

RMS for LPV/BMI Controller = 0.0275 m,

RMS for Mixed-µ Controller = 0.0509 m.
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Figure 2.17: Time-varying spring stiffness, k1, and mass, m, with |k̇1| ≤ 0.1 Nm−1s−1

and |ṁ| ≤ 0.1 kg/s.
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Figure 2.18: LFB Design: Output of the closed-loop using the LPV/BMI and mixed-

µ controllers, for the time-varying spring stiffness, k1, and mass, m, with |k̇1| ≤ 0.1

Nm−1s−1 and |ṁ| ≤ 0.1 kg/s, depicted in Fig. 2.17.
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2.4.4 HFB Design: Analysis for LTI Plants

In the following simulations, we use the MSD model in (2.24), but with a smaller

value of b, namely

b = 0.05 N/(m/s).

The poles of the open-loop system for different values of k1 and m are illustrated

in Fig. 2.19. In comparison with Fig. 2.10, the poles can now take place closer to

the imaginary axis. This immediately leads to the following conclusions:

• the achievable performance of the closed-loop system is decreased;

• the D,G-K iterations, due to the modeling of real-valued uncertainties by

complex-valued uncertainties, can become even more conservative, since it

will guarantee stability and performance for realizations of the plant that po-

tentially include unstable poles.
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Figure 2.19: Poles of the open-loop plant with b = 0.05 N/(m/s).

In this subsection, we suppose that k̇1 = 0 and ṁ = 0. Similarly to the LFB

design, we synthesize an LPV/BMI controller using the method described in Section

2.3.

The Bode plots of the controllers transfer functions for the LTI case are depicted

in Fig. 2.20. The conclusions are analogous to those of the LFB design, i.e., although
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the controllers are similar, the µ-controller has smaller low-frequency gain, which

explains the benefits in terms of performance of the LPV/BMI controller.

In terms of guaranteed H∞ performance, we obtained

Amixed−µ
p = 19,

ALPV/BMI
p = 81.
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Figure 2.20: HFB Design: Bode plots for the mixed-µ and LPV/BMI controllers,

for k̇1 = 0 and ṁ = 0.

The behaviors of both controllers are assessed in simulation, using k1 = 1.75

N/m and m = 0.2 kg. The disturbances, d(t), were generated by driving a low-pass

filter with transfer function (2.22) with continuous-time white noise with zero mean

and intensity 10. The output of the closed-loop system using each controller and

averaging 10 Monte-Carlo runs is depicted in Fig. 2.21. Consider the RMS of the

performance output, z1(·), of the closed-loop, using each controller. For this case,

we get

RMS for LPV/BMI Controller = 0.0325 m,

RMS for Mixed-µ Controller = 0.0418 m.

Therefore, the RMS of the performance output, z1(·), of the closed-loop with the

LPV/BMI controller is nearly 80% of that obtained with the mixed-µ controller.
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Figure 2.21: HFB Design: Output of the closed-loop for the LPV/BMI and mixed-µ

controllers, for k̇1 = 0, ṁ = 0, k1 = 1.75 N/m and m = 0.2 kg.

Therefore, for time-invariant plants, the level of H∞ closed-loop performance

guaranteed by the mixed-µ controller is only about 23% of that guaranteed by the

LPV/BMI controller.

2.4.5 HFB Design: Analysis for Time-Varying Plants

The methodology used to synthesize the LPV/BMI controller for the LFB design

with time-varying parameters was also adopted in this subsection. Figure 2.22

depicts the value of the H∞-norm of the closed-loop from the exogenous inputs to

the performance output, z1(·), using LPV/BMI controllers, γ, versus the maximum

rate of variation of the mass, m, and of the spring stiffness, k1. As in the LFB case,

the value of γ increases when we allow m and k1 to change faster with time.

The results presented next were obtained assuming that the bounds on the rate

of variation of |k̇1| ≤ 0.1 (N/m)/s and |ṁ| ≤ 0.1 kg/s. For this configuration, we

get a value of γ of approximately 0.99 using Ap = 75. We recall that, for the D,G-K

iterations, the performance gain was Amixed-µ
p = 19. Therefore, for this particular

example, the LPV/BMI controller provides better performance guarantees than the
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Figure 2.22: HFB Design: H∞-norm of the closed-loop, γ, versus the maximum rate

of variation of the mass, m, and of the spring stiffness, k1.

mixed-µ controller, for a worst-case situation, even when assuming time-variations

of the uncertain parameters.

Figure 2.23 depicts the Bode plots of the three controllers. As in the LFB design,

by comparing the two LPV/BMI controllers, it can also be observed that increasing

the maximum allowable rate of variation of the parameters results in a decrease in

terms of the controller gain, as expected.

Two time-simulations of the plant with both controllers were performed:

1. for the first simulation, the disturbances were generated by driving a low-pass

filter with transfer function (2.22) with continuous-time white noise with zero

mean and intensity 10;

2. for the second simulation, we considered the low-frequency disturbances de-

picted in Fig. 2.24.

In both cases, we used the time-varying spring stiffness, k1, and mass, m, shown

in Fig. 2.17. Figure 2.25 shows the results obtained by averaging 10 Monte-Carlo

runs. Once again, the LPV/BMI controller provides a significant increase in terms of
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Figure 2.23: HFB Design: Bode plots for the mixed-µ and LPV/BMI controllers for

the LTI plant and for the LPV plant with |k̇1| ≤ 0.1 Nm−1s−1 and |ṁ| ≤ 0.1 kg/s.
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Figure 2.24: HFB Design: Low-frequency exogenous disturbances, d(t).



64 CHAPTER 2. THE CONTROL SUBSYSTEM

disturbance-rejection, when compared to the µ-controller. In particular, regarding

the RMS performance, the results obtained are as follows:

RMS for LPV/BMI Controller = 0.0381 m,

RMS for Mixed-µ Controller = 0.0480 m.
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Figure 2.25: HFB Design: Output of the closed-loop using the LPV/BMI and mixed-

µ controllers, for the time-varying spring stiffness, k1, and mass, m, with |k̇1| ≤ 0.1

Nm−1s−1 and |ṁ| ≤ 0.1 kg/s, depicted in Fig. 2.17, and with disturbances generated

by driving a low-pass filter with transfer function (2.22) with continuous-time white

noise with zero mean and intensity 10.

Remark 2.16: For the LTI case, the RMS of the output of the closed-loop system

with the mixed-µ controller was approximately 0.0418 m. For the time-varying

case, and also using the mixed-µ controller, the RMS of the output is increased up

to 0.0480 m, which is equivalent to nearly 15%. Thus, this example illustrates the

shortcomings of the mixed-µ controllers when the plant to be controlled is time-

varying. �

To highlight the differences in terms of performance provided by the two types

of controllers, we now consider a simulation obtained by using the low-frequency

exogenous disturbances depicted in Fig. 2.24. Figure 2.26 shows the results ob-

tained. The benefits in terms of disturbance-rejection of the LPV/BMI controller,
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when compared to the µ-controller, are even clearer in this case. The RMS of the

output of the closed-loop system, using both types of controllers are as follows:

RMS for LPV/BMI Controller = 1.162 m,

RMS for Mixed-µ Controller = 2.441 m.
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Figure 2.26: HFB Design: Output of the closed-loop using the LPV/BMI and mixed-

µ controllers, for the time-varying spring stiffness, k1, and mass, m, with |k̇1| ≤ 0.1

Nm−1s−1 and |ṁ| ≤ 0.1 kg/s, depicted in Fig. 2.17, and using the exogenous

disturbances illustrated in Fig. 2.24.

The RMS of the output of the closed-loop system, using the LPV/BMI controller

is less than half of the value obtained with the mixed-µ controller, for this type of

disturbances.

We stress that the rate of variation of the time-varying parameters is within the

bounds used to synthesize the LPV/BMI controllers. Therefore, we can guaran-

tee robust-stability and -performance of the closed-loop if the LPV/BMI controller

is used. Moreover, we also have a smaller upper bound on the H∞-norm of the

closed-loop system, when compared to the mixed-µ controller. Finally, we also get

significant improvements in terms of RMS performance for this example, as illus-

trated in the simulations.
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2.5 Conclusions

It was shown that LPV/BMI controllers can become significantly less conservative

than µ-controllers when there is more than one uncertain parameter affecting the

plant dynamics. We also demonstrated that LPV/BMI controllers not only guar-

antee stability and performance for time-varying plants, but also provide higher

performance guarantees than (or at least as good as) mixed-µ controllers.

We also developed a new computational algorithm, called the D-BMI algorithm,

which incorporates the use of D-scales in the design of LPV/BMI controllers, by

alternating between the D-scales optimization, and the BMI optimization. The

optimization problem subject to BMI constraints can be solved either by general

BMI optimization procedures, or by alternating the optimization process between

the two sets of variables that generate the bilinearity. In the latter algorithm,

which was developed in this thesis, the BMIs are locally solved using LMIs, which

corresponds to much faster optimization problems. The shortcoming with such

an approach is that we may not converge to the optimal solution. The technique

introduced in [58, 59] to derive lower bounds in terms of performance for the closed-

loop plant, while guaranteeing stability against model uncertainty, was also used in

the design of the LPV/BMI controllers.

Therefore, LPV/BMI controllers may be used in a wide spectrum of applications,

providing

a) potentially higher performance guarantees than (or at least as good performance

guarantees as those provided by) mixed-µ controllers for LTI plants;

b) stability and performance guarantees for closed-loop time-varying plants that

depend upon time-varying (real-valued) parameters;

c) potentially less conservative results than those obtained with the D,G-K itera-

tions, when there are parametric uncertainties in the plant model.

The key differences between LPV/BMI and mixed-µ controllers were illustrated

in a simulation, using LTI and LTV plants. We were able to show that, at least for
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the present examples, a significant increase in terms of performance can be achieved

due to the use of the LPV/BMI controllers.

The proposed method to synthesize these controllers, however, does not void the

use of the D,G-K iterations5, since they are still required to compute an initial guess

for the BMI optimization algorithm and to obtain the D-scales required to handle

the unmodeled dynamics. Moreover, contrary to µ-compensators, the synthesis

of LPV/BMI controllers usually require a heavier, off-line, computational burden.

Thus, further research on solving optimization problems subject to BMI constraints

is needed in order to apply this methodology to plants with a larger numbers of

states.

In closing, we remark that the design of LPV/BMI controllers can be used in

Robust Multiple-Model Adaptive Control (RMMAC) architectures – see [58, 59] –, as

shown in the following chapter. The overwhelming reason for using adaptive control

is the possible time-variations of some real-valued plant parameters. As shown in

[49] and in the following chapter, the bank of controllers in the RMMAC architecture

can be the LPV/BMI controllers designed according to the principles and algorithms

described in this chapter. However, the guarantees in terms of performance and

stability are jeopardized if the decision subsystem of the RMMAC does not guarantee

the convergence for the correct model, as explained in the Chapter 4.

5Any improvement in the D,G-K-type of iterations will also help the BMI optimization.





Chapter 3

Standard RMMAC vs

RMMAC/BMI

3.1 Introduction

In the previous chapter, a new methodology to design (non-adaptive) controllers

that are robust against time-varying uncertainties in the model of the plant was

proposed. As previously stressed, LPV/BMI controllers can become significantly less

conservative than µ-controllers when there are more than one uncertain parameter

affecting the plant dynamics. Unlike mixed-µ controllers, LPV/BMI controllers not

only guarantee stability and performance for Linear Time-Invariant (LTI) plants,

but also for Linear Parameter-Varying (LPV) plants. Moreover, the performance

guarantees provided by an LPV/BMI controller are at least as good as those provided

by the corresponding mixed-µ controller. This motivated the integration of the

LPV/BMI controllers with the Robust Multiple-Model Adaptive Control (RMMAC)

architecture – see Fig. 3.1.

As stressed in Chapter 1, the RMMAC is a multiple model approach that com-

putes and uses the posterior probabilities of the uncertain parameters of the process

model being in a specific region to switch or blend the outputs of a set of controllers,

each of which designed for a given uncertainty region. The estimation part is done

by a bank of Kalman filters (KFs), while for the control part a set of mixed-µ

69
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Figure 3.1: RMMAC architecture.

controllers is used. For further details, the interested reader is referred to [57–59].

To obtain what we are going to refer to as an RMMAC/BMI control archi-

tecture, from a standard RMMAC design, we simply have to replace the mixed-µ

controllers by the corresponding LPV/BMI controllers. The design specifications of

the LPV/BMI controllers are similar to those of the mixed-µ controllers, but assum-

ing nonzero bounds on the rate of variation of the uncertain parameters of the plant,

as detailed in the previous chapter. Since the design assumptions are very similar in

both cases, except for the time-variation of the parameter, little effort is needed in

order to “upgrade” the standard RMMAC method to this novel architecture. Figure

3.2 depicts the RMMAC/BMI architecture. This chapter is, therefore, devoted to

the comparison between the standard RMMAC and the RMMAC/BMI, through an

example.

3.1.1 Main Contributions and Organization

The key contributions of this chapter are as follows:

1. The integration of LPV/BMI controllers in the RMMAC architecture;
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Figure 3.2: RMMAC/BMI architecture.

2. An insightful practical comparison between the standard RMMAC and the

RMMAC/BMI architectures.

The remainder of this chapter is organized as follows: in Section 3.2, the dou-

ble Mass-Spring-Dashpot (MSD) plant is introduced; Section 3.3 presents several

Monte-Carlo simulation results illustrating the advantages of the use of the RM-

MAC/BMI architecture over the classical one; finally, in Section 3.4, the advantages

and shortcomings of each of the methodologies are discussed.

3.2 The Double Mass-Spring-Dashpot Plant

We are going to resort to the (double) Mass-Spring-Dashpot (MSD) testbed ex-

ample of Fig. 3.3 to illustrate the benefits of using LPV/BMI controllers within

the RMMAC architecture. We stress that this testbed has recently been used with

the so-called multiple model adaptive control with mixing (MMACwM) architec-

ture – see [41, 100] – with uncertain time-invariant parameters. Notice that the

MSD testbed represents a challenging control problem, because the control is non-

colocated with the performance variable, the position of mass m2 – see [101] and



72 CHAPTER 3. STANDARD RMMAC VS RMMAC/BMI

references therein for a list of robust control studies using the MSD framework – and

that the use of a non-adaptive controller deteriorates significantly the performance

of the overall system. Further discussion on this subject is presented in the next

chapters. Moreover, there are several real life applications that share the dynamics

of the MSD plant, for instance in seismic and vibration models [1–5], automotive

suspension systems [6–9], flexible space structures [10–15], among others, as stressed

in [100, 102].

The state-space description of the dynamics of the MSD system, excluding the

dynamics of the disturbances, is given by ẋ(t) = A(k1)x(t) +Bu(t) + Lξ(t),

y(t) = Cx(t) + θ(t),

where

xT(t) =
[
x1(t) x2(t) x3(t) x4(t)

]
is the state of the plant, and

A(k1) =


0 0 1 0

0 0 0 1

− k1

m1

k1

m1
− b1
m1

b1
m1

k1

m2
−k1+k2

m2

b1
m2

− b1+b2
m2

 , B =


0

0

1
m1

0

 , L =


0

0

0

1

 ,

C =
[
0 1 0 0

]
.

where

m1 = m2 = 1 kg, k2 = 0.15 N/m, b1 = b2 = 0.1 N/(m/s).

In what follows, the unknown parameters are the time-varying spring stiffness

k1 ∈ K := [0.25 1.75] N/m

and the constant but unknown input time-delay, bounded by

0 < τ < 0.05 s.

The disturbance force, d(·), shown in Fig. 3.3 is a stationary first-order (col-

ored) stochastic process generated by driving a low-pass filter, with transfer function
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Figure 3.3: MSD system with uncertain spring constant, k1, and disturbances de-

noted by d(t). u(t) is the control input and z(t) is the system output.
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Figure 3.4: Magnitude of the transfer function from ξ(·) to the output y(·), for

several values of the spring stiffness, k1.

Wd(s), with continuous-time white noise ξ(·), with zero mean and intensity Ξ = 1,

according to

d(s) =
α

s+ α
ξ(s) = Wd(s)ξ(s).

The sensor noise considered is continuous-time white noise θ(·), with zero mean and

intensity Θ = 0.001.

The magnitude of the transfer function from ξ(·) to y(·), for different values of

the spring stiffness, k1. Notice that the spring stiffness impacts significantly more

the second natural frequency of the MSD system than the first one.

Following the RMMAC synthesis methodology and using the same design choices
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as the ones described in [58, 59], we obtain N = 4 Local Non-Adaptive Robust

Controllers (LNARCs) – which are mixed-µ controllers in the original RMMAC

design – in order to achieve at least 70% of the performance we would have obtained

had we known the value of the uncertain parameter, k1. The boundaries for the

spring constant for each model are summed up in Table 3.1.

Remark 3.1: The so-called problem of model coverage is tackled, in this thesis,

mainly by resorting to the results in [58, 59]. However, different approaches are

available in the literature to address this topic, in particular by developing (stability-

based) proximity measures between a given dynamic system and a set of models gen-

erated by considering bounded parametric uncertainty – see [103, 104] and references

therein.

Moreover, in Chapter 5, we introduce the concept of absolute input distinguisha-

bility, which can be used to discard models (and corresponding controllers) that

cannot be distinguished from each other, based upon a given realization of the

plant. �

Model Spring Stiffness Uncertainty Interval

#1 Ω1 = [1.02 1.75]

#2 Ω2 = [0.64 1.02]

#3 Ω3 = [0.4 0.64]

#4 Ω4 = [0.25 0.4]

Table 3.1: RMMAC Model Definitions

The mixed-µ controllers are thereafter substituted by LPV/BMI controllers with

similar specifications, but assuming nonzero bounds on the time-rate of variation of

parameter k1. In this design, we assume a bound of 0.001 (N/m)/s for the slope

(time-variation) of parameter k1. The state of the plant is augmented by the D-scales

obtained from the µ-analysis, increasing the state up to 16 variables. For the LPV

realization, we have adopted a polytopic description for the system, since, for each

region, the plant dynamics can be naturally described as the convex combination

of the dynamics on the boundaries of that region. We used the mixed-µ controller
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designed for the whole region (k1 ∈ [0.25, 1.75]N/m) to initialize the algorithm.

Each D-BMI iteration takes about 6 hours running in a Pentium IV at 2.6 GHz

and each controller takes up to 10 iterations to achieve an L2-induced norm from

the inputs to the outputs of the closed-loop smaller than 1. The µ-synthesis only

requires a few minutes to obtain a solution which is, however, in general worse than

that of the D-BMI iterations.

A Global Non-Adaptive Robust Controller, denoted by GNARC, was also de-

signed, for comparison purposes. The GNARC determines the lower bound in terms

of robust performance in the absence of adaptive control, and consists of a mixed-µ

controller designed for the whole uncertainty region, K.

3.3 Simulation Results

We considered three different cases for the comparison between the standard RM-

MAC and the RMMAC/BMI. For each case, 10 Monte-Carlo runs were performed.

In the first scenario, we consider k1 constant, while in the second and third ones, we

assume that k1 is time-varying.

Each of the aforementioned situations is going to be analyzed in the following

subsections. The RMS results presented are obtained by averaging the 10 Monte-

Carlo runs of each case. The time-domain results illustrated in the figures are

representative simulations.

3.3.1 Case #1

In the first case considered, we assumed that the spring stiffness is constant. In

particular, let

k1 = 0.9 N/m.

The output of the plant, x2(t), is depicted in Fig. 3.5, for the different controllers

used. The improvements in terms of performance due to the use of adaptive control

are clear from the figure. The outputs of the closed-loop systems using the classical

RMMAC and the RMMAC/BMI are similar for this case. The RMS value of x2 is
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Figure 3.5: Case #1: output of the double MSD plant.

0.0123 m for the RMMAC/BMI controller, and 0.0128 m for the standard RMMAC.

For the sake of completeness, the RMS value of x2 using the GNARC is 0.0327 m.

Let %E denote the ratio between the RMS value of the output of the closed-

loop using the RMMAC/BMI and the RMS value of the output obtained using the

classical RMMAC, i.e.,

%E =
RMS RMMAC/BMI

RMS RMMAC
× 100%. (3.1)

Analogously, let %F relate the RMS of the output obtained by using the RM-

MAC/BMI with that obtained with the GNARC, i.e.,

%F =
RMS RMMAC/BMI

RMS GNARC
× 100%. (3.2)

Remark 3.2: The quantities %E and %F can be used to assess the improvements

due to the use of the RMMAC/BMI architecture, when compared to the classical

RMMAC and to the GNARC, respectively. �

For the current scenario, we have that %E = 96.9% and %F = 37.6%. There-

fore, we are clearly obtaining a significant improvement in terms of performance by

using adaptive control. The improvements due to the use of LPV/BMI controllers,

however, are not significant in this example.
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The posterior probabilities of each model, computed using the residuals of the

KFs, are depicted in Fig. 3.6. Since the outputs of the closed-loop systems, using

both adaptive control strategies, are similar, the differences between the correspond-

ing posterior probabilities are also not significant. Therefore, the decision subsystem

of the RMMAC does not impact severely on the performance of the controllers, in

the present case.
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Figure 3.6: Case #1: posterior probabilities of each model.

3.3.2 Case #2

In the following simulation, we consider that the spring stiffness, k1(·), is time-

varying and with the time-evolution depicted in Fig. 3.7. The time-variations of

the uncertain parameter, k1, impact not only the control part, but also the decision

subsystem.

Figure 3.8 depicts the results obtained. Once again, the performance of the RM-

MAC/BMI controller is slightly higher than that of the classical RMMAC. Moreover,

it is apparent from Fig. 3.8 that both adaptive schemes performed much better than
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Figure 3.7: Case #2: time-varying spring stiffness, k1(·).

the GNARC. Indeed, the RMS of the output is 0.0159 m for the RMMAC/BMI,

0.0165 m for the standard RMMAC, and 0.0432 m for the non-adaptive controller.

Once again, the improvements in terms of RMS performance can be assessed by

evaluating %E and %F in (3.1) and (3.2), respectively. In the present case, we have

%E = 96.3% and %F = 36.8%.

For the sake of completeness, the posterior probabilities of each model are il-

lustrated in Fig. 3.9. The behavior of the aforementioned posterior probabilities

are similar in both cases, as the results obtained with the RMMAC/BMI and with

the classical RMMAC do not differ significantly. However, the transients observed

in the identification subsystem slightly deteriorate the performance of the overall

system.

3.3.3 Case #3

In the following example, we also consider that the spring stiffness is time-varying,

but now with the time-evolution depicted in Fig. 3.10. Notice that, in comparison

with the previous example, the variations of the spring stiffness are much faster

and, therefore, the decision problem is expected to be harder. Moreover, the design
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Figure 3.8: Case #2: output of the double MSD plant.
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Figure 3.9: Case #2: posterior probabilities of each model.
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assumptions of the mixed-µ are clearly violated, which may lead to the deterioration

of the performance of the closed-loop system.
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Figure 3.10: Case #3: time-varying spring stiffness, k1(·).

The outputs of the closed-loop for each controller are depicted in Fig. 3.11.

In this case, the RMS of the output using the RMMAC/BMI is 0.0277 m, while

that of the classical RMMAC is 0.0330 m. Therefore, we have that %E = 83.9%,

indicating that the value of the RMS of the output diminishes significantly due

to the use of LPV/BMI controllers. This is in accordance with what is stated in

the previous chapter, since, unlike mixed-µ compensators, the LPV/BMI controllers

have performance guarantees against time-variations of the plant. The RMS of the

output using the GNARC is 0.0400 m, and thus %F = 69.2%.

Hence, in the present case, the improvements in terms of RMS performance

due to the use of adaptive control are not as significant as in the previous examples.

This suggests that the decision subsystem may not be weighting properly the control

signals. Indeed, Fig. 3.12 shows that the identification procedure is not sufficiently

fast to adapt itself to the changes in the dynamics of the plant.
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Figure 3.11: Case #3: output of the double MSD plant.
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Figure 3.12: Case #3: posterior probabilities of each model.
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Case # k1

RMS [m]
%E %F

RMMAC/BMI RMMAC GNARC

1 0.9 N/m 0.0123 0.0128 0.0327 96.1% 37.6%

2 Fig. 3.7 0.0159 0.0165 0.0432 96.3% 36.8%

3 Fig. 3.10 0.0277 0.0330 0.0401 83.9% 69.2%

Table 3.2: Summary of the comparisons, in terms of RMS of the output, of the

RMMAC/BMI versus the standard RMMAC

3.4 Conclusions

In this chapter, a comparison between the classical RMMAC and the RMMAC/BMI

architectures was presented, by means of an example. We used the (double) mass-

spring-dashpot testbed example to illustrate the benefits of using LPV/BMI con-

trollers within the RMMAC architecture, since it represents a challenging control

problem, due to the noncolocation of the control input with the performance vari-

able.

The results obtained after several Monte-Carlo simulations are summarized in

Table 3.2. In all the analyzed cases, the RMMAC/BMI performed better, in terms

of minimization of the RMS of the output, than the standard RMMAC. The im-

provements due to the use of the LPV/BMI controllers are particularly apparent

when the time-variations of the plant are very fast – see Case #3. As stressed in the

previous chapter, the performance of the mixed-µ controllers can deteriorate signif-

icantly when the plant is not time-invariant. This is avoided by using LPV/BMI

controllers, which can take into account the variations of the dynamics of the plant.

It is also important to notice that, in general, the use of adaptive control, in

the present case, clearly increases the performance of the closed-loop system. Nev-

ertheless, the decision subsystem may be responsible for the deterioration of the

performance of the closed-loop – see [60, 61]. Indeed, this problem is going to be

tackled in the following chapters. Nevertheless, in Case #3, due to the erroneous

behavior of the decision subsystem, the use of a non-adaptive controller does not
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deteriorate the performance of the closed-loop as much as in the previous cases.

However, this issue comes from the violation of the assumptions used to design the

KFs of the decision subsystem, rather than from the control part itself. Indeed, this

problem is going to be tackled in the following chapters.

As a final remark, this chapter presented no theoretical results. Therefore, no

guarantees in terms of robust stability/performance are provided at this point, since

the decision subsystem may not be able to select the appropriate controller. This

fact motivated the development of the decision subsystems presented in the following

chapters.





Chapter 4

The Stability Overlay

4.1 Introduction

Some adaptive control laws can lead to unstable closed-loop systems when connected

to a plant with even the slightest discrepancies from the family of admissible plant

models. This issue was first described in [39], in the so-called Rohrs et al. counterex-

ample. Very small disturbances can be responsible for destabilizing the closed-loop

because of the unavoidable unmodeled high frequency dynamics, present in every

physical system.

The previous chapters stressed that, even when the control subsystem is robust

against model uncertainty, multiple-model adaptive control strategies may not be

able to stabilize the plant, if the decision subsystem is not guaranteed to converge

to the correct model of the plant.

This chapter thus proposes a solution to the stability problem common to many

closed-loop linear and nonlinear, time-invariant and time-varying, systems with

performance-based adaptive control laws. The strategy developed herein, referred

to as Stability Overlay (SO), takes into account both stability objectives – often ro-

bust to a very wide class of disturbances and model uncertainty – and performance

requirements – that, in general, assume a stronger knowledge about the plant to

be controlled. The algorithms presented in the sequel are based upon [68, 105]

and were firstly introduced in [69, 70, 106]. They assess the “rewards” received by

85
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each controller after its most recent utilization, without any prior information on

the bounds of the exogenous disturbances and sensors noise. A control law is then

disqualified or not, based upon its rewards, in a similar way to what is done in

[50, 51, 53, 54, 107–114] and in the references therein. However, in our approach,

we suggest that the SO should only be responsible for the stability of the plant, and

thus another algorithm should run in parallel in order to satisfy the posed perfor-

mance requirements. Although the SO can be used as an adaptive control method

per se, such an approach can lead to low levels in terms of performance, as explained

in the sequel. Therefore, our methodology differs from the aforementioned ones, in

the sense that the controllers rewards are not used to decide which controller leads

to the highest closed-loop performance, but rather to guarantee that a control law

which is not able to stabilize the plant is not persistently selected. Other solutions,

such as the Lyapunov-based approach presented in [54], rely on the model of the

plant and hence require stronger assumptions than the ones presented in the sequel.

For the proposed SO methodology, it is not required to know the plant model

to be controlled nor the disturbance properties – see [115] for a model-free adap-

tive controller for linear time-invariant systems. Still, as shown in [113], it is clear

that the performance of the closed-loop can be severely affected if no knowledge is

available about the plant. Nonetheless, the model-free characteristic of the present

method ensures robustness to several types of model uncertainty. In a sense, if the

actual plant is close to a plant model in the family used to design the adaptive

control law, then the adaptation runs as usual, without (or with minor) intervention

of the SO. If, however, the actual plant or disturbances properties do not match the

ones used during the design, the closed-loop system may become unstable. There-

fore, instead of blindly continuing to use the adaptation law, we assess the norm

of the inputs and outputs of the system, and eventually switch to a controller that

is able to stabilize the plant, as long as such controller belongs to the set of legal

controllers that the SO is allowed to use.

Control strategies such as the Robust Multiple-Model Adaptive Control (RM-

MAC – see Chapter 1), the Multiple Model Adaptive Control with Mixing (MMACwM
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– see [41, 100]), and the unfalsified control (see [50, 53, 107, 108, 110]), among oth-

ers [51, 54], have successfully shown high levels of performance against complex and

real uncertainties in the plant, although they can lead the closed-loop to instability if

the uncertain parameters of the plant vary with time. This chapter, thus, proposes

the use of the SO to ensure input/output stability of this kind of methodologies

when applied to time-varying plants. We emphasize that adaptive control strategies

should be able to handle time-varying plants, since these methodologies are usu-

ally applied to plants with drifting parameters, and hence guaranteeing stability of

plants with time-frozen parameters is usually not enough.

Therefore, the SO can be seen as a safety device that can be used with many

adaptive algorithms, achieving high levels of performance while providing robust

stability guarantees for several different types of modeling errors. We show that the

applicability of the SO is very wide, in the sense that it can be used in parallel with

several adaptive control laws, as long as a few set of natural assumptions is satisfied,

in particular that at least one controller in the set of eligible controllers is able to

stabilize the plant.

The use of the SO is illustrated by a set of simulations, for both linear and

nonlinear (possibly) time-varying plants. We show how to solve the instability issues

in the well-known Rohrs et. al. counterexample [39] using the SO and how to

augment the RMMAC architecture in order to obtain robust stability guarentees.

However, we stress that the main result presented in the sequel is able to provide

stability guarantees for a much wider family of performance-based adaptive laws,

with a few changes in the original algorithms.

The problem of smoothly switching between the controllers is not addressed in

this thesis. Nevertheless, this is an important topic in any practical application, as

the transients generated during the switching of the controllers can severely dete-

riorate the performance of the closed-loop, even though stability can typically still

be achieved – see, for instance, [116]. Therefore, several approaches to the problem

of deriving the so-called bumpless transfer functions for switching controllers are

available in the literature – for further details, the reader is referred to [116–120].
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4.1.1 Main Contributions and Organization

To better understand the SO concept, we start by considering that the uncertain

plant to be controlled is linear and time-invariant. We also assume that the (non-

adaptive) local controllers are LTI. This allows us to have a deeper understanding

on the difficulties that can arise in the selection of the appropriate controller, even

though both the plant and the controllers are linear and time-invariant.

We also present an extension of the Stability Overlay, so that it can handle non-

linear and time-varying plants. Although the nonlinearities can obviously impact

on the decision system, our main concern is the time-variations of the plant. In

particular, it may happen that the correct controller at a given time instant, is a

destabilizing controller at another time instant, due to the drifting of some param-

eters of the plant.

The main contributions of this chapter are as follows:

1. The derivation of a set of properties regarding the boundedness of LTI systems;

2. The development of the Stability Overlay algorithms for LTI and time-varying

plants, presenting, for the first time, a theoretical proof that one can, at least

in some cases, detect and correct instability in adaptive control schemes, for

TV plants, without prior assumptions other than feasibility;

3. The application of the SO to the Rohrs’ et al. counterexample;

4. The integration of the SO into the RMMAC/BMI control architecture.

The remainder of this chapter is organized as follows. We start by posing the

problem in Subsection 4.1.2. In Section 4.2, some properties of LTI systems are

derived. The main result for LTI plants is presented in Section 4.3. In Section 4.4,

simulation results of the Rohrs et al. counterexample integrated with the SO are

shown. In Section 4.5, the result of Section 4.3 is extended to a class of nonlinear

time-varying plants. Simulation results of the integration of the SO with the RM-

MAC are presented in Section 4.6. Finally, in Section 4.7, some conclusions about

the SO are discussed.



4.1. INTRODUCTION 89

0 2 4 6 8 10
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [s]

 

 

t
1
 →

t
2
 →

z(t)

e−σ(t2−t)

|z(t)|
||z

[t1, t2]
σ ||

Figure 4.1: Discounted norm of signal z(·), between time instants t1 and t2.

4.1.2 Preliminaries

We define the discounted norm of signal z(·), for any σ > 0, as

∥∥z|σ[t1,t2]

∥∥ = sup
τ∈[t1, t2]

e−σ(t2−τ)|z(τ)|,

and ∥∥z|[t1,t2]

∥∥ = sup
τ∈[t1, t2]

|z(τ)|.

Figure 4.1 illustrates the discounted norm of a sinusoidal signal.

Although in the sequel we address a much more general family of plant models,

at this point, we assume that the plant can be modeled by an LTI system described

by

ẋ = Ax+Bu+ Fξ, x(0) = x0 (4.1a)

y = Cx+Gθ (4.1b)

z =

y
u

 =

Cx+Gθ

u

 (4.1c)

u = Kα(t)y =
(
Kα(t) 0

)
z (4.1d)

Kα(t) ∈ So := {K1, K2, . . . , KNc} . (4.1e)
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Uncertain Plant
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Figure 4.2: Feedback interconnection between the plant (4.1) and the controllers

Ki, selected through signal α(t).

The output variables z(·) and y(·) can include performance outputs such as the

ones obtained by filtering the plant output and the control input with the weights

Wy(s) and Wu(s), respectively – see [121] and the example in Chapter 3 for more de-

tails on using performance weights. Furthermore, x0 ∈ Rn is a fixed (but unknown)

initial condition, ξ (·) ∈ L∞ is a bounded (but unknown) exogenous disturbance,

θ (·) ∈ L∞ is the bounded (but unknown) measurement noise and u (·) is the control

input. So is the set of eligible controllers which are considered to be constant matrix

gains, without loss of generality, as explained in the sequel. N is the number of legal

control laws (and thus the number of elements in So), and Ki, for i ∈ {1, 2, ..., N},

represents a controller. We argue that the control laws of any adaptive or non-

adaptive system should be robust against model uncertainty.

Define a finitely switching control input as

ufs(t) =

 Kα(t)(y(t)), 0 ≤ t < to;

K∗(y(t)), t ≥ to.
(4.2)

Figure 4.2 depicts the output feedback interconnection between the plant and

the controllers Ki, selected through signal α(t).
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4.2 Properties of LTI Closed-Loop Systems

In this section, we derive some properties of LTI closed-loop systems that are going

to be useful in the sequel. Consider the LTI plant described by (4.1). Without

loss of generality, we assume that the N controllers in So are static output feedback

controllers, i.e., each Ki, for i ∈ {1, . . . , N}, is a constant matrix. Notice that, as

shown in [68, 105] if the controllers are dynamic and described by

ẋc = Acxc +Bcy,

u = Ccxc +Dcy,

then, for each controller, one can rewrite the closed-loop system as ẋ

ẋc

 =

A 0

0 0

 x

xc

+

B 0

0 I

uaug +

F
0

 ξ,

zaug =

C 0

0 I

 x

xc

+

G
0

 θ, uaug =

Dc Cc

Bc Ac

 zaug.

In this form, switching between dynamic controllers means switching the “static

output feedback” matrix

Dc Cc

Bc Ac

 which only depends on controller matrices.

The only restriction is that all dynamic controllers in this setup must be of the same

order, which in practice does not represent a shortcoming, since we can solve that

issue by having some controllers that use only a subset of the available states, while

forcing the remaining ones to go to zero.

We follow closely the steps in [68, 105] to show that, under mild assumptions,

the linear system (4.1) has the following properties:

Property 4.1. For any finitely switching input (4.2) and any to, ∆T, σ > 0,∥∥z|σ[0,to]∥∥ <∞⇒ ∥∥z|σ[0,to+∆T ]

∥∥ <∞,
i.e., the closed-loop does not have a finite escape time.

Property 4.2 (Input/Output Stability). There exist a control law, K∗, and positive

constants σ and l∗, such that for any 0 < γ < 1, there exists a ∆T ∗ ≥ 0 that satisfies
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the following condition. For any finitely switching control input (4.2),

∥∥z|σ[0,to+∆T ]

∥∥ ≤ γ
∥∥z|σ[0,to]∥∥+ l∗,

for all ∆T ≥ ∆T ∗ and to ≥ 0. The closed-loop system with control law K∗ is said

input/output stable.

Property 4.1 ensures there are no controllers in the legal set (referred to as

eligible controllers) that lead the output of the plant to infinity in finite time. Finally,

Property 4.2 states that there is at least one eligible controller that satisfies a desired

stabilization condition. Parameter l∗ accounts for the exogenous disturbances and

the initial conditions.

Consider the following assumption:

Assumption 4.1: The switched linear system (4.1) satisfies:

• <{λj(A+BKiC)} < 0,∀
j

for some i ∈ {1, . . . , N}.

• The pair [A, C] is observable.

• The exogenous disturbances and the measurement noise are bounded by some

(possibly unknown) constants ξ0 and θ0, respectively, i.e., |ξ(·)| ≤ ξ0 and

|θ(·)| ≤ θ0.

�

Proposition 4.1. Under Assumption 4.1, the linear system (4.1) has the Properties

4.1–4.2.

Next, the sketch of the proof of Proposition 4.1 is presented.

The pair [A, C] is observable. Therefore, we can build a state observer of the

form

˙̂x = (A− LC)x̂+
(
L B

)
z, x̂(0) = 0.

The observer gain L is such that, for some m0, λ0 > 0,

∥∥e(A−LC)t
∥∥ ≤ m0e

−λ0t.
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Remark 4.1: We can relax the assumption on the observability of the pair [A, C]

by considering that it is only detectable. In that case, however, the value of λ0 (and,

thus, of σ) is constrained by the slowest non-observable mode of the system. �

Let σ < λ0. Then, we can bound the size of the observer state, |x̂(t)|, by

|x̂(t)| ≤
∫ t

o

m0e
−λ0(t−τ)

∥∥∥(L B
)∥∥∥ |z(τ)| dτ

=

∫ t

o

m0e
−(λ0−σ)(t−τ)

∥∥∥(L B
)∥∥∥ e−σ(t−τ) |z(τ)| dτ

≤
m0

∥∥∥(L B
)∥∥∥

λ0 − σ
∥∥z|σ[0, t]∥∥ . (4.3)

Furthermore, we can write

˙̂x(t)− ẋ(t) = (A− LC)(x̂(t)− x(t)) + LGθ(t)− Fξ(t).

Hence,

|x̂(t)− x(t)| ≤ m0e
−λ0t |x(0)|+ m0

λ0

‖F‖
∥∥ξ|[0, t]∥∥+

m0

λ0

‖L‖‖G‖
∥∥θ|[0, t]∥∥ . (4.4)

Combining (4.3) with (4.4) results in

|x(t)| ≤
m0

∥∥∥(L B
)∥∥∥

λ0 − σ
∥∥z|σ[0, t]∥∥+m0e

−λ0t |x(0)|

+
m0

λ0

‖F‖
∥∥ξ|[0, t]∥∥+

m0

λ0

‖L‖‖G‖
∥∥θ|[0, t]∥∥

≤
m0

∥∥∥(L B
)∥∥∥

λ0 − σ
∥∥z|σ[0, t]∥∥+m0e

−λ0t |x(0)|+ m0

λ0

(‖F‖ξ0 + ‖L‖‖G‖θ0) . (4.5)

Let ufs(t) be a finitely switching control input as in (4.2). Let to denote the time

of the last switch, and let Ki be the final gain matrix. There exist positive constants

mfb and λfb such that, for any Ki,

a) ‖C‖ ≤ mfb,

b) ‖Ki‖ ≤ mfb,

c)
∥∥e(A+BKiC)t

∥∥ ≤ mfbe
λfbt.
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From these bounds, for any t ≥ to, we obtain,

|z(t)| =

∣∣∣∣∣∣
 Cx(t) +Gθ(t)

Kα(t)Cx(t) +Kα(t)Gθ(t)

∣∣∣∣∣∣
≤ (1 +mfb)

[
m2

fbe
λfb(t−to) |x(to)|

+

∫ t

to

m2
fbe

λfb(t−τ)‖F‖ |ξ(τ)| dτ + ‖G‖ |θ(t)|

]
(4.6)

Then,∥∥z|σ[0, to+∆T ]

∥∥ = sup
τ∈[0, to+∆T ]

e−σ(to+∆T−τ) |z(τ)|

≤ sup
τ∈[0, to+∆T ]

[
m2

fbe
−σ(to+∆T−τ)eλfb(τ−to)|x(to)|

+m2
fb

∫ τ

to

eλfb(τ−µ)e−σ(to+∆T−τ)‖F‖|ξ(µ)|dµ+ ‖G‖|θ(τ)|e−σ(to+∆T−τ)

]
(1 +mfb)

≤ sup
τ∈[0, to+∆T ]

[
m2

fbe
(λfb+σ)(τ−to)e−σ∆T |x(to)|

+m2
fb

∫ τ

to

e(λfb+σ)τe−σ(to+∆T )e−λfbµ‖F‖|ξ(µ)|dµ+ ‖G‖θ0

]
(1 +mfb)

≤
[
m2

fbe
λfb∆T |x(to)|+m2

fb

eλfb∆T

λfb

‖F‖ξ0 + ‖G‖θ0

]
(1 +mfb) . (4.7)

Using (4.5) evaluated at t = to, we obtain

∥∥z|σ[0, to+∆T ]

∥∥ ≤ {m2
fbe

λfb∆T

m0

∥∥∥(L B
)∥∥∥

λ0 − σ
∥∥z|σ[0, to]∥∥

+m0e
−λ0to |x(0)|+ m0

λ0

(‖F‖ξ0 + ‖L‖‖G‖θ0)

]
+m2

fb

eλfb∆T

λfb

‖F‖ξ + ‖G‖θ0

}
(1 +mfb).

Therefore, defining σ1 : R+ → R+ and σ2 : R+ → R+ as

σ1(∆T ) = m2
fbe

λfb∆T
m0

∥∥∥(L B
)∥∥∥

λ0 − σ
(1 +mfb),

σ2(∆T ) =

{
m2

fbe
λfb∆T

[
m0e

−λ0to |x(0)|

+
m0

λ0

(‖F‖ξ0 + ‖L‖‖G‖θ0) +
1

λfb

‖F‖ξ0

]
+ ‖G‖θ0

}
(1 +mfb),
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one concludes that

∥∥z|σ[0, to+∆T ]

∥∥ ≤ σ1(∆T )
∥∥z|σ[0, to]∥∥+ σ2(∆T ),

i.e., the closed-loop does not have a finite escape time and thus Property 4.1 is

satisfied.

Notice that the only restriction on σ is that is satisfies σ < λ0. The observability

assumption implies that the analysis can be carried out with any λ0 by appropriately

constructing L. Accordingly, σ can be arbitrarily chosen.

To show that Property 4.2 is also satisfied, let us assume that A + BK∗C is a

stability matrix, i.e., <{λj(A+BK∗C)} < 0,∀
j
, satisfying

∥∥e(A+BK∗C)t
∥∥ ≤ mse

−λst (4.8)

for some strictly positive constants ms and λs. As in (4.6), we can bound the output

magnitude (but this time using (4.8)) by

|z(t)| ≤ (1 +mfb)

(
mfbmse

−λs(t−to) |x(to)|+
mfbms

λs
‖F‖

∥∥ξ|[to, t]∥∥+ ‖G‖|θ(t)|
)
.

Hence,

∥∥z|σ[to, to+∆T ]

∥∥ ≤ sup
τ∈[to, to+∆T ]

e−σ(to+∆T−τ) (1 +mfb)

×
[
mfbmse

−λs(τ−to) |x(to)|+
mfbms

λs
‖F‖ξ0 + ‖G‖θ0

]
= sup

τ∈[0,∆T ]

e−σ(∆T−τ) (1 +mfb)

×
[
mfbmse

−λsτ |x(to)|+
mfbms

λs
‖F‖ξ0 + ‖G‖θ0

]
= sup

τ∈[0,∆T ]

(1 +mfb)

×
[
e−σ∆Tmfbmse

(σ−λs)τ |x(to)|+ e−σ(∆T−τ)

(
mfbms

λs
‖F‖ξ0 + ‖G‖θ0

)]
.

Let ζ = min {σ, λs}. Then, the previous inequality results in

∥∥z|σ[to, to+∆T ]

∥∥ ≤ (1 +mfb)

[
e−ζ∆Tmfbms |x(to)|+

mfbms

λs
‖F‖ξ0 + ‖G‖θ0

]
. (4.9)
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Moreover,

∥∥z|σ[0, to+∆T ]

∥∥ = max
(
e−σ∆T

∥∥z|σ[0, to]∥∥ , ∥∥z|σ[to, to+∆T ]

∥∥)
≤ e−σ∆T

∥∥z|σ[0, to]∥∥+
∥∥z|σ[to, to+∆T ]

∥∥ . (4.10)

Therefore, we conclude that

∥∥z|σ[0, to+∆T ]

∥∥ ≤ e−σ∆T
∥∥z|σ[0, to]∥∥+ (1 +mfb)

×
(
e−ζ∆Tmfbms |x(to)|+

mfbms

λs
‖F‖ξ0 + ‖G‖θ0

)
.

The value of |x(to)| can be bounded using (4.5), i.e.,

|x(to)| ≤
m0

∥∥∥(L B
)∥∥∥

λ0 − σ
∥∥z|σ[0, to]∥∥+m0e

−λ0to |x(0)|+ m0

λ0

(‖F‖ξ0 + ‖L‖‖G‖θ0) .

Thus,

∥∥z|σ[0, to+∆T ]

∥∥ ≤ γ
∥∥z|σ[0, to]∥∥+ l∗,

where

γ =e−σ∆T + (1 +mfb)mfbms

m0

∥∥∥(L B
)∥∥∥

λ0 − σ
e−ζ∆T (4.11a)

l∗ = (1 +mfb)

{
e−ζ∆Tmfbmsm0

[
e−λ0∆T |x(0)|

+
‖F‖ξ0 + ‖L‖‖G‖θ0

λ0

]
+
mfbms

λs
‖F‖ξ0 + ‖G‖θ0

}
. (4.11b)

We conclude that Property 4.2 is satisfied for sufficiently large ∆T .

Remark 4.2: The discounted norm
∥∥∥z|σ[0, to+∆T ]

∥∥∥ can be interpreted as a state-norm

estimator (cf. [122, 123]). Although in a different perspective, these norm estimators

are first order systems where the inputs are the discounted norms of the inputs and

outputs of the plant. Therefore, our decisions of disqualifying or not a controller,

according to this interpretation, will be based upon the estimate of the norm of the

actual state of the closed-loop system. �
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4.3 Stabilty Overlay Algorithm #1 for LTI Plants

The reward, r(n), after using controller Kp(·) during the time interval tn−1 ≤ t < tn

is defined as

r(n) =

 1,
∥∥∥z|σ[0, tn]

∥∥∥ ≤ γ
∥∥∥z|σ[0,tn−1]

∥∥∥+ l(n)

0, otherwise,
(4.12)

where γ is a fixed scalar with 0 < γ < 1 and l(n) is going to be specified next.

Remark 4.3: We recall that z(·) may be an augmented and/or filtered output. In

particular, during the design of the non-adaptive controllers, an output performance

variable is typically defined as a function of a weighted combination of states and/or

control input channels. This output performance variable can indeed be used as z(·),

i.e, the rewards of the controllers can be computed using this output performance

variable, rather than the actual output of the plant. �

Figure 4.3 describes the Stability Overlay (SO) Algorithm #1, for LTI plants.

The notation S = S\K(n) means “the exclusion of element K(n) from set S”. The

initial set of eligible control laws is denoted So, while Ko is the first control law

selected, ∆T (n) is the time-interval while the control law K(n) is used, lo is the

initial value of l(n) in (4.12), and linc and ∆Tinc are the increments for l(n) and

∆T (n), respectively, whenever all the control laws have failed in their most recent

utilization. The reasoning for the sequence of increasing dwell-times ∆T (n) – also

used in [113] to provide stability guarantees for the closed-loop system – is going to

be explained in what follows (see Remark 4.6).

As further stressed in the sequel, the selection of the control law among the

set of eligible ones, S, can be done according to any other (probably performance-

based) adaptive control algorithm, which may take into account the model of the

plant. Regarding the initializations of the SO Algorithm #1, we can summarize the

calculations suggested, based upon Section 4.2:

• choose arbitrary σ > 0;

• choose arbitrary positive γ < 1;

• choose values for ∆To, lo.
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Initialize
S=S , K(1)=K , DT(1)= T , l(1)=l , n=10 0 0 0D

Use controller K(n)
during time-interval DT(n)

r(n)=0?

S=S\K(n)

DT(n), l(n+1)=l(n)DT(n+1)=

S=Æ?

S=S , DT(n)+DT , l(n+1)=l(n)+l0 inc incDT(n+1)=

K(n+1)=any controller in S
n=n+1

y n

ny

Figure 4.3: Stability Overlay (SO) Algorithm #1, for LTI plants.

Nevertheless, the values for ∆To and lo can be arbitrarily small, without endangering

the stability of the closed-loop.

Remark 4.4: The number of controllers, N , is not relevant in terms of stability, as

long as the initial set of control laws, So, contains a stabilizing controller. However,

larger values ofN may require longer searching periods, before a stabilizing controller

is found. This obviously may deteriorate substantially the performance of the closed-

loop. �

Theorem 4.1. If Assumption 1 is satisfied, the Stability Overlay Algorithm #1, for

LTI plants, results in
∥∥∥z|σ[0,t]∥∥∥ bounded.

Proof of Theorem 4.1

We start by considering Claim 1 in [68, 105]:
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Claim 4.1. The parameters ∆T (n) and l(n) are uniformly bounded, i.e.,

∆Tmax := lim
n→∞

∆T (n) <∞

lmax := lim
n→∞

l(n) <∞
(4.13)

Proof. The parameters ∆T (n) and l(n) are increased whenever every control law,

Ki, in its most recent utilization resulted in a zero reward, i.e.,∥∥z|σ[0, tn]

∥∥ > γ
∥∥z|σ[0,tn−1]

∥∥+ l(n). (4.14)

However, by Property 4.2, there exists a ∆T ∗ ≥ 0, a positive constant l∗, and at

least one control law which satisfies the condition∥∥z|σ[0,to+∆T ]

∥∥ ≤ γ
∥∥z|σ[0,to]∥∥+ l∗, (4.15)

provided that ∆T (n) ≥ ∆T ∗. This implies that the condition (4.14) cannot be

satisfied infinitely often with ∆T (n) and l(n) increasing without bound.

According to Claim 1, there is at least one control law that is going to be used

infinitely many times. For this control law, r = 1 in (4.12). Thus, all other control

laws are going to be used at most a finite number of times. According to Proposition

4.1, the output is going to remain bounded during that (finite) time interval where

r = 0. For some to, the rewards obtained for t ≥ to are positive. Since the output

is bounded at t = to, it will remain bounded for t > to. This means that the

closed-loop system is input/output stable, which concludes the proof.

It is important to stress that we do not describe how to choose the controller

to be connected to the loop. In fact, we allow any controller in set S (see Fig.

4.3) to be selected. The choice of the controller is responsible for the performance

of the closed-loop and should be taken care of by some adaptive control law that

(probably) takes into account the model of the plant and the disturbances properties.

One example of the applicability of the SO with a model reference adaptive control

architecture is presented in the following section.

However, as shown in the sequel, the applicability of the SO is much wider. Many

types of adaptive laws are eligible to be integrated with the SO, such as the schemes



100 CHAPTER 4. THE STABILITY OVERLAY

based on the identification of the plant parameters (see, for instance, [27, 100] and

references therein), or the estimator-based methodologies in [31].

Remark 4.5: It should be noted that the choice of the parameters for the algorithm

may be very sensitive in some cases, depending upon the plant dynamics and the

disturbances intensity. In fact, if the norm of the output of the closed-loop system

grows very fast whenever a destabilizing controller is picked, and if the time required

to disqualify a controller is very large, one may not get “practical stability”. This

means that, although a stabilizing controller is eventually selected, the transients

may not be reasonable from a practical point of view. Furthermore, this effect

may be exacerbated if we randomly pick the controllers in S, instead of using a

performance-based algorithm to select among the eligible control laws. �

Remark 4.6: The reason for increasing ∆T can be explained in a very intuitive

manner, that relates it to the classical performance/robustness tradeoffs. If ∆T is

large enough, stabilizing controllers are not going to be disqualified. However, we

may also be using destabilizing controllers for a long time, since we only switch to

another one after at least a time interval ∆T . In case ∆T is very small, we may

find the right controller faster, but we may also disqualify stabilizing controllers just

because they were not used long enough. Therefore, large values of ∆T guarantee

stability at the cost of large transients, while smaller values of ∆T can lead to smaller

transients (higher performance) at the cost of reduced robustness. �

Remark 4.7: The SO can also be interpreted in light of the so-called safe adaptive

control considered in [53, 108–112], all of which are based on the application of

the Morse-Mayne-Goodwin [114] hysteresis switching algorithm with cost-detectable

cost functions. In fact, what we call here disqualified controllers is called falsified

controllers in [108], while the eligible/legal controllers correspond to the candidate

controllers. The fact that a controller in So is able to stabilize the plant (Property

4.2) is referred to as the feasibilty condition in [108]. Finally, if we use the number of

times the pair (∆T (n), l(n)) has been incremented, as a cost function, then it would

be cost-detectable in the sense of [108], since this cost function would tend to infinity

if the closed-loop is not stable – see Claim 4.1. �
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4.4 Rohrs et al. Counterexample

To illustrate the usefulness of the SO for LTI plants, we use the so-called Rohrs et

al. counterexample – see [39], where the concept of “robustness” was introduced to

the then existing literature. We use the reference model adaptation law referred to

as Continuous-Time Algorithm 1 and the same terminology as in [39]. Figure 4.4

depicts the architecture of this methodology.

Reference
Closed-loop

Model

True
Plant

+ +

+

-
e(t)

d(t)

y(t)

r(t)

k (t)r

k (t)u k (t)y

y (t)M

w (t)u w (t)y

u(t)

Figure 4.4: Continuous-Time Algorithm 1

The reference input is denoted by r(t), the control input by u(t), the distur-

bances by d(t), and the output by y(t). Signal yM(t) is the output of the ref-

erence model. The adaptive gains are denoted by kr(t), ku(t) and ky(t). Let

k(t) =
[
kTr (t) kTu (t) kTy (t)

]T
and w(t) =

[
rT (t) wTu (t) wTy (t)

]T
, where wu(t)

and wy(t) are defined in the sequel. The adaptation law evolves according to

k̇(t) = −Γw(t)e(t),

where Γ = ΓT > 0 and

e(t) = y(t)− yM(t).

We use the example in [39] where the plant model is given by

Y (s) =

(
2

s+ 1

)
229

s2 + 30s+ 229
U(s), (4.16)

the reference model is described by

YM(s) =
3

s+ 3
R(s), (4.17)
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and

ky(0) = −0.65 and kr(0) = 1.14. (4.18)

Notice that, according to the design procedure, ku(t) = 0. Moreover, wu(t) =

u(t) and wy(t) = y(t). Let the reference be given by

r(t) = 2

and the output additive disturbance by

d(t) =
1

2
sin (8t) .

The first step in order to apply the SO is to discretize and bound the gains ky

and kr, so that we have a finite number of controllers. Each pair (ky, kr) defines a

controller. Therefore, if ky is divided into ny bins and kr is divided into nr bins, the

set So will have nrny controllers.

Another design decision has to be made regarding what to do when the adaptive

control law choses a controller that was previously disqualified, because it received

a zero reward. A simple approach is to use the controller closest to that one, in

a geometric sense, although it may not be very effective in terms of performance.

Another strategy is to decrease the gain if it was increasing before a disqualified

controller was obtained, and vice-versa. We stress that a specific strategy need not be

used to guarantee stability. The boundedness of the output y(t) is guaranteed a priori

by the use of the SO, no matter how we schedule the controllers in the SO algorithm,

so the only aspect the control engineer has to account for is the performance.

4.4.1 Simulation without the Stability Overlay

In this subsection, we replicate the results in [39], just for comparison purposes.

Figures 4.5 and 4.6 illustrate that the closed-loop system becomes unstable as time

goes by, due to the unmodeled dynamics, excited by the disturbances, that were

not accounted for during the design of the adaptive control law. The infinite gain

operators [39] from e(t) to u(t) and from e(t) to k(t), inherently present in the

Continuous-Time Algorithm (CA) 1, are responsible for the instability of the closed-

loop.
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Figure 4.5: Output y(t) of the closed-loop system using the continuous-time algo-

rithm 1, without the stability overlay. Note that the system seems to work for a

long period of time, while suddenly instability is observed.
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Figure 4.6: Time-evolution of the adaptive gains for the continuous-time algorithm

1, without the stability overlay. Note that the gains go to infinity in a sudden

manner.
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4.4.2 Simulation with the Stability Overlay

We now analyze the continuous-time algorithm supervised by the SO. The contin-

uous gains kr and ky are discretized and bounded, in order to have a finite set of

eligible controllers. For this simulation, we use bins of width 2 and the limits are

defined as ±50. In other words, we only allow the gains to take values in the set

Kr ×Ky, i.e.,

(kr, ky) ∈ Kr ×Ky,

where

Kr := Ky := {−50,−48, · · · ,−2, 0, 2, · · · , 48, 50}.

Figure 4.7 shows that the closed-loop is now stable, although some transients are

also experienced, as explained in the sequel. The time instants when a controller

is disqualified are also represented. If a disqualified controller is selected by the

adaptive algorithm, the values of the adaptive gains kr and ky are updated to the

legal ones closest to those obtained by the adaptive law.

The bursting phenomenon observed in Fig. 4.7 is due to the switching among

the controllers and to the use (during a certain amount of time) of controllers that

are not able to stabilize the plant. This can be avoided, for instance, resorting to

fictitious signal cost-functions (c.f., [50, 51, 54, 108, 109, 111, 112]), which can be

used to disqualify control laws without inserting them into the feedback loop.

Figure 4.8 depicts the time-evolution of the adaptive gains. It should be noticed

that, as soon as the instability is detected, the SO disqualifies the currently used

controller and switches to another one. After only two switches, a controller is

selected that stabilizes the plant. Due to the exogenous disturbances, the output

error of the plant is not zero1.

We stress that the adaptive gains in Fig. 4.8 are the ones effectively used in the

feedback loop, and that they can differ from those obtained with the adaptive law,

since we use discretized versions of these gains. The latter are only reset by the SO

after a failure on the adaptive control law.

1The time-scale in Fig. 4.8 does not allow one to discern the time-variations of the output for

t > 1600 s.
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Figure 4.7: Output y(t) of the closed-loop system using the continuous-time algo-

rithm 1, with the stability overlay. The red dashed lines indicate the time instants

when the currently scheduled controller fails.

Remark 4.8: Figure 4.8 indicates that one could simply saturate the adaptive gains

and still get the stability result. However, if we do so, and use very large limits for

the saturation, we can get an unstable system. On the other hand, if the limits are

very small, we can get poor performance. The SO obtains those limits in a natural

way, as shown in these simulations. �

4.5 Stability Overlay for Nonlinear TV Plants

In what follows, the results presented in Section 4.3 are extended to a class of

nonlinear time-varying plants. Although the key ideas of the Stability Overlay for

the LTI case naturally arise in this more general framework, we must also take into

account other factors that can affect stability, such as the time-variations of the

plant.



106 CHAPTER 4. THE STABILITY OVERLAY

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−20

−15

−10

−5

0

5

10

15

20

Time [s]

k(
t)

 

 
kr
ky

Figure 4.8: Time-evolution of the adaptive gains for the continuous-time algorithm

1, with the stability overlay. The red dashed lines indicate the time instants when

the currently scheduled controller fails.

Let us consider a time-varying plant described by

P(ρ(t)) :=


ẋ = f(x, u, w, ρ), x(0) = x0,

y = g(x, u, w, ρ),

z = h(x, u, w, ρ),

(4.19)

where x0 ∈ Rn is a bounded and fixed (but unknown) initial condition, w (·) ∈ L∞ is

a bounded (but unknown) exogenous disturbance, ρ(·) is a vector of (possibly time-

varying) parameters, u (·) is the control input and t ∈ R+
0 explicitly denotes the time-

dependence of the plant dynamics. We also define x(·) as the state of the plant and

y(·) and z(·) as the measurement and the performance outputs, respectively. As for

the LTI case, the variable z(·) can include performance outputs. Notice that (4.19)

can describe a broad class of dynamic systems acted by exogenous disturbances.

We assume that ρ can be time-dependent and that it cannot be measured or

estimated with the desired accuracy. For instance, let us consider the case where

the process model has one parametric uncertainty, ρ ∈ [ρmin, ρmax]. Although several

switching MMAC methodologies are available in the literature to solve this kind of
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problems, they all share the same principles: in terms of design, we divide the (large)

set of parametric uncertainty, Ω, into N (small) subregions, Ωj, j = {1, · · · , N}

– see Fig. 4.9 – and synthesize a non-adaptive controller for them; in terms of

implementation, we try to identify which region the uncertain parameter, ρ, belongs

to, and then use the controller designed for that region.

#2#1 #N

0 rmin rmaxW1 W2 WN

...

W

r

Figure 4.9: Uncertainty region, Ω, for the parameter ρ, split into N subsets.

In order to prove the stability of the closed-loop with the SO, we are going to

posit the following assumptions throughout the remainder of this chapter.

Assumption 4.2: There exist continuous strictly increasing functions σ1 : R+ →

R+ and σ2 : R+ → R+ and constant σ > 0, such that, for any finitely switching

input (4.2), any ∆T > 0, any to ≥ 0, and any (possibly time-varying) ρ(·),∥∥z|σ[0,to+∆T ]

∥∥ ≤ σ1(∆T )
∥∥z|σ[0,to]∥∥+ σ2(∆T ).

�

Remark 4.9: Notice that a system complying with Assumption 4.2 cannot have

a finite escape time. This is required since otherwise the stability of the system

could be endangered by switching to a destabilizing controller, even for a very short

period. �

Consider that ρ(t) ∈ Ω ∈ Rnρ for all t ≥ 0. The set Ω is the uncertainty region

of the vector of parameters, ρ, as illustrated in Fig. 4.9. Let Ωj denote a subset of

Ω. Then, we posit the following assumption, which is concerned to the existence of

a stabilizing controller as explained later.

Assumption 4.3: Let Ωj ⊂ Rnρ , j = 1, 2, ..., N satisfy Ω ⊂
⋃
j Ωj. There exist

strictly positive constants l∗, ∆T ∗, ν and γ, with γ < 1, such that, for any finitely

switching input (4.2) with K∗ = Kj, if for all t ≥ to, i) ρ(t) ∈ Ωj and ii) |ρ̇(t)| ≤ ν,

then ∥∥z|σ[0,to+∆T ]

∥∥ ≤ γ
∥∥z|σ[0,to]∥∥+ l∗,
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for all ∆T ≥ ∆T ∗ and for σ as in Assumption 4.2. �

Remark 4.10: The value of ν is dictated by each controller and is referred to as the

allowable time-rate of variation of the vector of parameters, ρ(·). �

The following definition is important when taking into account the allowable

time-rate of variation of the dynamics of a plant.

Definition 4.1. Suppose that ρ(tA) ∈ Ωj. We say that the plant dynamics drifted

at time instant t = tA if there exists δ∗ > 0 such that, for every 0 < δ ≤ δ∗, we have

ρ(tA + δ) /∈ Ωj. Furthermore, t = tA is referred to as a drifting time instant.

Assumption 4.4: There exists Tmin > 0 such that, if ρ(t) ∈ Ωj, then there exist t1

and t2 such that

a) |t2 − t1| ≥ Tmin;

b) t1 ≤ t ≤ t2;

c) ρ(τ) ∈ Ωj for all τ ∈ [t1, t2].

�

This last assumption guarantees that the plant dynamics remain in the same

“region” for a time interval of at least Tmin. In other words, it means that if tA and

tB are drifting time instants with tA 6= tB, then |tA − tB| ≥ Tmin.

Remark 4.11: Assumptions 2–4 are not stringent, since they arise naturally from

the control problem at hands. Namely,

• Assumption 4.2 ensures that, even if we select the wrong controller during a

finite amount of time, the norm of the output of the plant does not increase to

infinity in finite time – this is valid, for instance, for every linear time-invariant

system [69];

• Assumption 4.3 simply states that, at each time instant to, at least one of

the eligible controllers must be able to stabilize the plant with parameters

ρ(t) ≡ ρ(to), ∀
t≥to

;
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• Assumption 4.4 will guarantee that the adaptive control algorithm has enough

time to adapt itself to the changes in the plant.

�

The reward after using controller Kp(·) is defined as in (4.12), with σ > 0 as in

Assumption 4.2.

4.5.1 SO Algorithm #2 for Known ∆T ∗ and l∗

The Stability Overlay Algorithm #2, depicted in Fig. 4.10, for time-varying plants,

with known ∆T ∗ and l∗, is described next. Contrary to the SO Algorithm #1, in

this case we need not increase ∆T and l, since they are assumed known a priori.

Therefore, if all the controllers have received non-positive rewards, then the dynam-

ics of the plant have drifted. Hence, a previously disqualified controller is the one

which is able to stabilize the plant, and therefore we set S = So. We note that, in

the next subsection, we are going to relax the assumption on the knowledge of ∆T ∗

and l∗.

Theorem 4.2. Under Assumptions 2–4, for sufficiently large Tmin, the Stability

Overlay Algorithm #2 for Time-Varying Plants with known ∆T ∗ and l∗ results in∥∥∥z|σ[0,t]∥∥∥ bounded.

The proof for sufficiently large Tmin is similar to the LTI case. In the sequel, an

upper bound for Tmin is derived.

In the algorithm depicted in Fig. 4.10, we suppose that ∆T ∗ and l∗ are known

(these can actually be upper bounds for ∆T ∗ and l∗, respectively). This assumption

is going to be relaxed in subsection 4.5.2. The difference between the algorithms for

time-invariant and for time-varying plants, is that in the later we never increase ∆T

and l, since we know ∆T ∗ and l∗, and these are the values used for every controller.

Suppose that Tmin > 2N∆T ∗. Then, during any time-interval ∆T such that

∆T ≥ Tmin, at least one controller receives a positive reward, even if the controllers

are selected in a non-sequential fashion. To see this, consider that all the rewards

we get during that time-interval are zero rewards. Then, all the N controllers have
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Initialize
S=S , K(1)=K , n=10 0

Use controller K(n)
during time-interval DT*

r(n)=0?

S=S\K(n)

S=Æ?

S=S0

K(n+1)=any controller in S
n=n+1

y n

ny

Figure 4.10: Stability Overlay (SO) Algorithm #2, for time-varying plants, with

known ∆T ∗ and l∗. The notation S = S\K(n) means “the exclusion of element

K(n) from set S”.
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failed in a row, and, when connected again to the loop, they all failed once more.

Since the plant dynamics can only drift once during the time-interval 2N∆T ∗ (see

Definition 1), this is a contradiction.

According to Assumption 4.2, whenever a controller receives a zero reward, we

have ∥∥z|σ[0,(i+1)∆T ∗]

∥∥ ≤ Γ
∥∥z|σ[0,i∆T ∗]

∥∥+ L,

where Γ = σ1(∆T ∗) and L = σ2(∆T ∗). On the other hand, and according to

Assumption 4.3, whenever a controller receives a positive reward, we have∥∥z|σ[0,(i+1)∆T ∗]

∥∥ ≤ γ
∥∥z|σ[0,i∆T ∗]

∥∥+ l∗.

Then, if for given integer n∗, we have Tmin > (2N + n∗)∆T ∗, we conclude that∥∥z|σ[0,to+Tmin]

∥∥ ≤ a
∥∥z|σ[0,to]∥∥+ b,

where a ≤ Γ2Nγn
∗

and b is a function of L, l∗, Γ, γ, N and n∗, since in every Tmin

interval, a correct controller must be used at least n∗ times. Notice that, if a < 1,

then

∃
z0≥0

:
∥∥z|σ[0,to]∥∥ ≤ z0 ⇒

∥∥z|σ[0,to+Tmin]

∥∥ ≤ z0.

Thus, if

γn
∗
<

1

Γ2N

the system is input/output stable. Therefore, a sufficient condition for Tmin is

Tmin > (2N + logγ
(
Γ−2N

)
)∆T ∗.

This means that, the faster the stabilizing controllers are capable of reducing

the norm of the output, i.e., the smaller the value of γ is, the smaller Tmin can be.

However, the larger the value of Γ and the larger the number of controllers, N , the

larger the interval Tmin must be. Notice that Γ > 1, otherwise the solution is trivial.

4.5.2 SO Algorithm #3 for Unknown ∆T ∗ and l∗

Define

z (l, ε) =
l

1− γ
+ ε,
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for γ as in Assumption 2 and ε > 0. Notice that, if

∥∥z|σ[0,t]∥∥ ≥ z∗ :=
l∗

1− γ
,

and a controller that receives a positive reward (4.12) is selected, then, for ∆T ≥

∆T ∗, ∥∥z|σ[0,t+∆T ]

∥∥ ≤ ∥∥z|σ[0,t]∥∥ .
In other words, for all ε > 0, if a controller that only receives positive rewards (4.12)

is used long enough, then, ∥∥z|σ[0,t+∆T ]

∥∥ ≤ z∗ + ε.

Let So denote the set of available controllers for the SO. The Stability Overlay

Algorithm #3, for time-varying plants with unknown ∆T ∗ and l∗, is shown in Fig.

4.11.

This algorithm has two differences when compared to the time-invariant case:

a) The sets of eligible controllers, S and Q, are “reset” (S = So and Q =

So) whenever the discounted norm of the output is below a given threshold,

z (l(n), ε);

b) A controller can only be disqualified if it fails twice in between “resets” and∥∥∥z|σ[0,t]∥∥∥ ≥ z (l(n), ε).

As explained in the sequel, these modifications guarantee the boundedness of

∆T and l, while keeping the input/output stability of the closed-loop. Similarly to

what happened with the SO Algorithm #1, the initializations ∆To and lo can be

performed arbitrarily, without affecting the stability of the closed-loop.

Remark 4.12: The reasoning behind the use of set Q is as follows. Suppose that a

given controller is not able to stabilize the plant and, hence, is disqualified. Then,

suppose that the plant dynamics change and that the formerly disqualified controller

is now the only eligible controller able to stabilize the plant. Using the architecture

without set Q, we could only re-use previously disqualified controllers whenever we

increased ∆T (n) and l(n). Therefore, the set Q accounts for time-variations of the
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Figure 4.11: Stability Overlay (SO) Algorithm #3, for time-varying plants with

unknown ∆T ∗ and l∗.
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plant dynamics, since ∆T (n) and l(n) are only increased whenever both sets, S and

Q, are empty. �

Remark 4.13: The parameters l(n) and ∆T (n) can also be re-initialized, whenever

the condition
∥∥∥z|σ[0,t]∥∥∥ ≤ z̄(l(n), ε) is satisfied. On one hand, this prevents the loss

in terms of performance that can arise from the use of large values of ∆T (n) and

l(n), which in turn can be caused by occasional adverse disturbances. On the other,

longer periods may be required to select a stabilizing controller whenever the plant

parameters drift, since the values of ∆T (n) and l(n) might have to be increased

every time the condition
∥∥∥z|σ[0,t]∥∥∥ ≤ z̄(l(n), ε) is satisfied. �

The following theorem summarizes the main result of this section.

Theorem 4.3. Under Assumptions 2–4, for sufficiently large Tmin, the Stability

Overlay Algorithm #3 for Time-Varying Plants results in
∥∥∥z|σ[0,t]∥∥∥ bounded.

Proof. For the sake of simplicity, we divide the proof of Theorem 4.3 into several

small steps. We start by showing that bounded ∆T (n) and l(n) imply bounded∥∥∥z|σ[0,t]∥∥∥, and finally we show that ∆T (n) and l(n) are bounded.

Claim 4.2. If lim
n→∞

∆T (n) <∞ and lim
n→∞

l(n) <∞, then lim
t→∞

sup
∥∥z|σ[0,t]∥∥ <∞.

Proof. In words, this means that if
∥∥∥z|σ[0,t]∥∥∥ is unbounded, then ∆T (n) (and, conse-

quently, l(n)) is also unbounded. For the sake of simplicity of the proof, we consider

the following cases separately: i) ∃
to

: ∀
t≥to

,
∥∥∥z|σ[0,t]∥∥∥ > z (l(n), ε); ii) ∀

t1
: ∃
t≥t1

,
∥∥∥z|σ[0,t]∥∥∥ ≤

z (l(n), ε).

We prove case i) by contradiction. Indeed, consider that
∥∥∥z|σ[0,t]∥∥∥ satisfies i) and

is unbounded, but that ∆T (n) (and, consequently, l(n)) is bounded. In that case,

we have that: a) none of the controllers is persistently receiving positive rewards

(4.12), since the norm of the output is not bounded, and b) sets S and Q are never

being reset, since
∥∥∥z|σ[0,t]∥∥∥ > z (l(n), ε) for all t ≥ to. Hence, at some point, S∪Q = ∅.

Thus, ∆T (n) is increased according to ∆T (n + 1) = ∆T (n) + ∆Tinc. If ∆T (n) is

increased infinitely many times using this law, then lim
n→∞

∆T (n) → ∞, which is a

contradiction. The same conclusion applies to l(n).
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In case ii), we assume that the norm of the output decreases below z (l(n), ε) from

time to time. In the sequel, we are going to show that, if ∆T (n) (and, consequently,

l(n)) is bounded, then
∥∥∥z|σ[0,t]∥∥∥ is also bounded.

If ∆T (n) is bounded, then, for some t2 ≥ 0, the update law ∆T (n+1) = ∆T (n)+

∆Tinc is not used for any t ≥ t2. Let t̃ ≥ t2 be defined such that
∥∥∥z|σ[0,t̃]∥∥∥ > z (l(n), ε).

Further let t and t be successive times such that t < t,
∥∥∥z|σ[0,t]∥∥∥ ≤ z(l(n), ε),

∥∥∥z|σ[0,t]∥∥∥ ≤
z(l(n), ε), and

∀
t∈]t, t̄[

:
∥∥z|σ[0,t]∥∥ > z (l(n), ε) .

Again, according to Assumption 4.2, for t ≥ t2, whenever a controller receives a

zero reward, we have ∥∥z|σ[0,t+∆T ]

∥∥ ≤ Γ
∥∥z|σ[0,t]∥∥+ L,

where Γ = σ1(∆T ) and L = σ2(∆T ), and according to Assumption 4.3, whenever a

controller receives a positive reward, we have∥∥z|σ[0,t+∆T ]

∥∥ ≤ γ
∥∥z|σ[0,t]∥∥+ l∗.

Since we are assuming t ≥ t2, we conclude that we cannot receive non-positive

rewards (4.12) more than 2N −1 times in the interval [t, t̄] (otherwise ∆T (n) would

be increased, which would be a contradiction). Therefore, the norm of the output

at time t < t < t̄ is bounded by∥∥z|σ[0,t]∥∥ ≤ a
∥∥z|σ[0,t]∥∥+ b = az (l(n), ε) + b,

where a = Γ2N−1γñ, for some ñ ≥ 1, and b is a positive constant (see the proof

of Theorem 4.2). Since a ≤ Γ2N−1, we conclude that
∥∥∥z|σ[0,t]∥∥∥ can be bounded by

a constant which is independent of the choice of t and t̄. Therefore,
∥∥∥z|σ[0,t]∥∥∥ is

uniformly bounded, which concludes the proof.

Claim 4.3. Suppose that tA is a drifting time instant (see Definition 4.1) and that∥∥∥z|σ[0,tA]

∥∥∥ ≤ θ. Then, for sufficiently large Tmin, ∆T and l,∥∥z|σ[0,tA+to]

∥∥ ≤ z(l, ε),

for some to ∈ [0, Tmin].
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Proof. (by contradiction) Suppose Claim 4.3 is not true. Then,

∀
to∈[0, Tmin]

:
∥∥z|σ[0, tA+to]

∥∥ > z(l, ε),

which means that the “reset” S = So and Q = So will never occur. Hence, the

algorithm behaves as the SO for time-invariant plants – see Section 4.3. However,

the SO for time-invariant plants guarantees that, for sufficiently large to,∥∥z|σ[0, tA+to]

∥∥ ≤ z(l, ε),

which is a contradiction.

Claim 4.4. Suppose that ρ(tA) ∈ Ωj, where tA is a drifting time instant, and that,

at t = tA, the selected control law is Kj(·). Then, for sufficiently large Tmin, ∆T and

l, and for sufficiently small δ > 0, we have S = So at time instant t = tA +Tmin− δ.

Proof. Claim 4.4 states that before every drifting time instant and assuming Tmin,

∆T and l large enough, we have S = So, where So is the set of all available controllers

for the adaptive law. Using Claim 4.3, for large Tmin,

∃
to∈[0,Tmin]

:
∥∥z|σ[0,tA+to]

∥∥ ≤ z(l, ε),

we conclude that, for t = tA + to, we have S = So and Q = So. Since, for ∆T ≥

∆T ∗, there is at least one controller that receives a positive reward (4.12), for every

bounded (but unknown) exogenous disturbance, w (·) ∈ L∞, the set Q is never

empty for t ∈ [tA + to, tA + Tmin]. Thus, S = So at time instant t = tA + Tmin − δ,

for sufficiently small δ > 0.

Claim 4.5. The parameters ∆T (n) and l(n) are uniformly bounded.

Proof. Using Claim 4.4, we conclude that, for sufficiently large Tmin, ∆T and l,

Q = So at the drifting time instants and hence all the controllers are allowed to

be connected to the loop. Since we are assuming Tmin, ∆T and l are large enough,

at least one of the controllers is going to receive a positive reward (4.12), for any

w (·) ∈ L∞. Given that ∆T and l can only be increased if all the controllers fail,

these parameters are uniformly bounded.
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Using Claim 4.2 and Claim 4.5, we conclude that the output of the time-varying

closed-loop system is bounded.

4.5.3 Computation of an Upper Bound for Tmin

This subsection suggests a method to compute an upper bound Tmin, when the

SO Algorithm #3 is used. Let tA, tB and tC be drifting time instants, satisfying

Assumption 3, i.e., min {|tA − tB|, |tA − tC|, |tB − tC|} ≥ Tmin.

Also, consider ∆T ≥ ∆T ∗ and l ≥ l∗. According to Claim 4.3,∥∥∥z|σ[0,tA0 ]

∥∥∥ ≤ z(l, ε),

for some tA0 ∈ [tA, tB]. Hence, similarly to what was derived in subsection 4.5.1, we

have ∥∥∥z|σ[0,tB]

∥∥∥ ≤ γm
∗
Γ2Nz(l, ε) + ψ =: z1,

where N is the number of controllers, ψ is a continuous function of l∗, L, Γ, γ

and m∗, and where m∗ is the number of time-intervals ∆T needed for a controller

receiving positive rewards (4.12) to reduce the discounted norm of the output from

z1 to z (l, ε). Tmin is some time interval large enough so that the stability of the SO

Algorithm #3 is guaranteed. Thus, Tmin ≥ tB0 − tB, where tB0 ∈ [tB, tC] is such that∥∥∥z|σ[0,tB0 ]

∥∥∥ ≤ z(l, ε).

Therefore,

Tmin ≥
(

2N + logγ

(
1

γ2N

))
∆T.

Notice that this result is similar to that of the SO algorithm #2, except that ∆T is

in general larger than ∆T ∗, which means that Tmin has also to be larger, as expected.

An interpretation of this result is as follows: the larger the number of controllers

we have to test, N , the larger the amount of time the plant dynamics must remain

in the same region; moreover, if m∗ is small, we can switch to another region sooner

than if the time to recover from the use of a wrong controller is large; finally, the
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faster we can exclude a controller and the faster the good controllers decrease the

output norm, the smaller the time the parameters must stay in the same region.

This result shows the compromise between performance for time-varying and for

time-invariant systems. For instance, it is well known that the performance of the

multiple-model adaptive control architectures, for time-invariant plants, increases

with the number of eligible non-adaptive controllers. However, this new result shows

that, the more controllers we have, the larger the transients are going to be.

4.6 Integration of the SO with the RMMAC/BMI

We recall that the time-rate of variation of the uncertain dynamics of the plant to

be controlled is constrained by

a) Tmin (in order to satisfy the assumptions of the SO);

b) the maximum rate of variation allowed by each of the (local) non-adaptive

controllers.

In what follows, we assume that the plant to be controlled can be described or

approximated by a (possibly time-varying) linear model.

In reference to Fig. 4.2, if, for instance, mixed-µ controllers are used, the plant

must be time-invariant. Otherwise, the stability of the closed-loop system cannot be

guaranteed. Another possible approach is to use the LPV/BMI controllers presented

in Chapter 2.

The SO does not describe how one should choose among the set of eligible con-

trollers, when there is more than a single element. The appropriate choice of such

controllers is going to be responsible for the performance of the closed-loop system.

As an example, we are going to use the identification part of the Robust Multiple-

Model Adaptive Control (RMMAC) methodology. Figure 4.12 depicts the switching

RMMAC architecture, for the case where N regions are used. At this point, it is

not our intention to give an in-depth explanation of the RMMAC – the interested

reader is referred to [57–59] – but rather to use the SO to endow the RMMAC with

input/output stability capabilities.
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Figure 4.12: The RMMAC architecture with N models

4.6.1 The Double Mass-Spring-Dashpot Plant

We are going to use the (double) Mass-Spring-Dashpot (MSD) testbed example of

Fig. 4.13, interconnected with the RMMAC/BMI scheme of Chapter 3, to illustrate

the use of the SO for a time-varying plant. The detailed description of the MSD

plant can be found in Section 3.2. For the sake of comprehension, we recall that the

unknown parameters are the time-varying spring stiffness

k1 ∈ K := [0.25 1.75] N/m

and the constant input time-delay

0 < τ < 0.05 s.

The disturbance force d(t) shown in Fig. 3.3 is a stationary first-order (col-

ored) stochastic process generated by driving a low-pass filter, with transfer function

Wd(s), with continuous-time white noise ξ(t), with zero mean and intensity β(t)Ξ,

according to

d(s) =
α

s+ α
ξ(s) = Wd(s)ξ(s).

The sensor noise considered is continuous-time white noise θ(t), with zero mean and

intensity β(t)Θ. β(·) is a time-varying unknown positive scalar, that is going to be
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Figure 4.13: MSD system with uncertain spring constant, k1, and disturbances

denoted by d(t). u(t) is the control input and z(t) is the system output.

described next. The KFs of the RMMAC/BMI were designed using β(·) = β = 1.

This design assumption is going to be violated in the following simulation, in order

to evaluate the behavior of the SO.

Following the RMMAC synthesis methodology and using the same design choices

as the ones described in [58, 59], we obtain N = 4 local non-adaptive robust con-

trollers (LNARCs) – which are mixed-µ controllers in the original RMMAC design

– in order to achieve at least 70% of the performance we would have obtained had

we known the value of the uncertain parameter, k1.

The mixed-µ controllers are thereafter replaced by LPV/BMI controllers with

similar specifications, but assuming nonzero bounds on the rate of variation of the

parameter, k1. In this design, we assume a bound of 0.001 (N/m)/s for the slope

(time-variation) of the parameter k1. The state of the plant is augmented by the

D-scales obtained from the µ-analysis, increasing the state up to 16 variables. For

the LPV realization, we have adopted a polytopic description for the system, since,

for each region, the plant dynamics can be naturally described as the convex com-

bination of the dynamics on the boundaries of that region.

The RMMAC/BMI architecture is finally modified by the SO for time-varying

plants, that serves as a supervisor to guarantee input/output stability of the closed-

loop. The SO constrains the set of eligible controllers that the RMMAC/BMI can

select, resorting to the control residuals, and should only act if the RMMAC/BMI

is persistently choosing controllers that are not capable of stabilizing the plant.
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Figure 4.14: Uncertain spring stiffness, k1(t), time-evolution.

4.6.2 Simulation Results

Figure 4.14 depicts the time-evolution of the spring constant considered for simula-

tion purposes. It is important to notice that |k̇1(t)| is within the predefined bounds.

Hence, every time instant, there is at least one controller that is able to stabilize

the plant.

The disturbance and noise intensities used during the design of the KFs were

multiplied by the variable β(t), depicted in Fig. 4.15.

The simulation results are illustrated in Figs. 4.16 and 4.17, where a time-delay

of τ = 10 ms was considered in the control input. The standard switching RMMAC

is used for comparison purposes.

During the first 3000 secs, the switching RMMAC/BMI with and without the SO

behave approximately the same way. This happens because β(t) = 1 for t ∈ [0, 3000]

secs, which means that the design assumptions of the KFs are not violated (except

for the time-variations of the plant), and hence the identification subsystem of the

RMMAC/BMI converges to the correct parameter region. Therefore, the SO does

not interfere in the selection of the controllers, since none of them has failed. The

same comments are valid for t ∈ [4200, 6000] secs.
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Figure 4.15: Disturbance and noise intensities factor, β(t).
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Figure 4.16: Mass 2 position, x2(t), time-evolution for the closed-loop, using the

switching RMMAC/BMI integrated with the Stability Overlay for time-varying

plants.
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Figure 4.17: Controller selection for the switching RMMAC/BMI with and without

the Stability Overlay.

For t ∈ [3000, 4200] secs, the KFs do not converge. Therefore, the standard

switching RMMAC/BMI selects almost arbitrarily the controllers at each sampling

time, as illustrated in Fig. 4.17. This leads to a severe deterioration in terms of

performance of the closed-loop. The SO, however, is able to disqualify controllers

#1 and #2 after a few seconds, since they are not being able to stabilize the plant.

Hence, we get the performance improvements depicted in Fig. 4.16. In terms of

RMS, during that slice of time, we obtained

RMS for the Sw. RMMAC = 0.0178 m,

RMS for the Sw. RMMAC integrated with the SO= 0.0128 m.

Using Theorem 4.3, we conclude that, if the time interval between any two

drifting time-instants is always greater than Tmin and if
∣∣∣k̇1

∣∣∣ < 0.001 (N/m)/s, the

closed-loop of the overall system with the RMMAC/BMI integrated with the SO

for TV plants is stable, while no guarantees are available for the standard switching

RMMAC/BMI.

Remark 4.14: Assumptions 2–4 can easily be verified resorting to arguments similar

to the ones used for LTI systems. �

It should be noticed that, for t ∈ [3000, 4200] secs, the SO is able to disqualify the
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two controllers that are not able to stabilize the plant. Therefore, besides guarantee-

ing stability, it also improves the performance, since the destabilizing controllers are

not connected to the loop. Nevertheless, for a controller to be excluded from the set

of eligible controllers, it has to be tested for a given period of time. In the present

case, the intervention of the SO was only needed during a small time-interval, where

the spring constant was small. We stress that the MSD plant with a soft spring can

be considered as a slow system, since the magnitude of the output does not increase

very fast when a destabilizing controller is connected.

If, however, the spring constant is large, we may not get practical stability, as

stressed in Remark 4.5. For that case, using a destabilizing controller even for a

short period can increase very significantly the magnitude of the output. Notwith-

standing, a controller cannot be disqualified unless it has been used for a given

time-interval. This means that, for stiff springs, the MSD plant with the SO can

have very large transients and hence there can happen a severe deterioration in

terms of performance.

An example of this issue is illustrated in Fig. 4.18, where a constant spring

stiffness is used, with k1 = 0.8 N/m. The disturbances are multiplied by a factor of

100, for t ≥ 500 secs, instead of t ∈ [3000, 4200] secs – see Fig. 4.15 –, leading to

the aforementioned problems in the identification subsystem of the RMMAC/BMI.

Indeed, the transients observed for t ∈ [500, 600] secs are considerably large, when

compared to the steady state output error. Although the SO eventually selects the

correct controller – which is not the case, as seen in Fig. 4.18, for this example,

when the standard switching RMMAC/BMI is used –, the transients observed may

not be acceptable in practical applications.

This shortcoming arises from the fact that the SO only provides stability guar-

antees. In other words, the SO can only guarantee that a stabilizing controller is

eventually selected. We emphasize that this problem is common to every stability-

based algorithms.

Nevertheless, heuristics such as the one proposed in [124], that do not provide

stability guarantees by themselves, can be used in parallel with the RMMAC to
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Figure 4.18: Mass 2 position, x2(t), time-evolution for the closed-loop, using the

switching RMMAC/BMI integrated with the Stability Overlay for time-varying

plants, with a constant spring stiffness, k1 = 0.8 N/m.

potentially overcome this problem. In particular, the approach in [124] uses the

norm of the state estimates of the KFs to discard controllers that are not being able

to stabilize the plant.

In summary, these simulations illustrated the usefulness of the SO for time-

varying plants, whenever the assumptions of the high-performance adaptive algo-

rithm (the RMMAC/BMI, in the present case) are not satisfied in practice, while

highlighting the practical problems that can arise in stability-based algorithms.

4.7 Conclusions

This chapter presented a strategy, referred to as Stability Overlay (SO), that pro-

vides input/output stability guarantees for a wide set of adaptive control schemes,

when applied to both linear and nonlinear (possibly) time-varying plants. We take

advantage of the on-line evaluation of the selected control law to disqualify those

that do not comply with the stability requirements. Unlike other adaptive control

strategies, we take into account both stability objectives – often robust to a very
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wide class of disturbances and model uncertainty – and performance requirements

– that, in general, assume a stronger knowledge about the plant to be controlled.

For LTI plants, this approach only requires that at least one of the eligible con-

trollers is able to stabilize the plant. For nonlinear plants, however, a bound on the

rate-of-growth of the output of the plant is also assumed, whenever a destabilizing

control law is connected to the loop.

The SO is responsible for disqualifying controllers that are not able to stabilize

the plant, while some other adaptive control law, that (possibly) takes into account

the plant model and the disturbances properties, is responsible for selecting the best

controller, i.e., the controller in set So that leads to the highest performance.

The theory was illustrated with two examples. We used the Rohrs et al. coun-

terexample to show how to endow an adaptive control law for LTI plants with robust

stability properties. These stability guarantees were obtained by first discretizing

and bounding the adaptive gains, and then by using the same principles as in the

previous example. Simulation results were presented, illustrating the benefits of

using the SO with the Continuous-time Algorithm 1 of [39]. As an example to

illustrate the applicability of the algorithm for TV plants, the SO was used to en-

dow the “Robust Multiple-Model Adaptive Control with LPV/BMI Controllers”

(RMMAC/BMI) architecture of Chapter 3 with robust stability properties when

the plant to be controlled is uncertain and time-varying.

The proposed method can be applied to a much wider class of adaptive con-

trollers, with little effort, guaranteeing stability properties otherwise not available.

We claim that adaptive control strategies must somehow resort to control resid-

uals to guarantee stability of the closed-loop, while they should also rely on the

identification residuals (typically faster than the control residuals) to enhance per-

formance. Therefore, strategies such as the RMMAC/BMI with the SO for time-

varying plants ensure stability of the closed-loop for a wide class of disturbances and

model uncertainty, while providing high performance capabilities when the process

model matches closely the actual plant.

As a caveat of the SO, the choice of the parameters for the algorithm may be
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very sensitive if the norm of the output of the closed-loop system grows very fast,

whenever a destabilizing controller is picked, and if the time required to disqualify

a controller is very large. In those situations, although a stabilizing controller is

eventually selected, the transients may not be reasonable from a practical point of

view. The solutions available in the literature for this type of problems are in general

based upon the falsification of control laws without inserting them in the feedback

loop (c.f., [50, 51, 54, 108, 109, 111, 112]). However, these approaches require the

estimation of a fictitious reference signal, which may be a difficult task in many

applications.





Chapter 5

The Decision Subsystem

5.1 Introduction

In the previous chapter, a methodology, referred to as Stability Overlay (SO), that

can provide input/output stability guarantees for several types of adaptive control

laws was introduced. The SO, however, does not endow these adaptive control

laws with any guarantees in terms of performance. This is due to the fact that

only a small number of assumptions is made regarding the plant to be controlled.

Since performance requirements are, in general, key in practical applications, a more

sophisticated decision subsystem must be developed, by taking into account a deeper

knowledge regarding the plant. A general decision subsystem is depicted in Fig. 5.1.

u
d

+ yPlant

n

Decision
Subsystem

Controller
selection

Figure 5.1: The decision subsystem.

There are several solutions available in the literature to the problem of designing

adaptive controllers with performance optimization objectives. As previously men-

129
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tioned, the Multiple-Model Adaptive Control (MMAC) architecture uses a divide-

and-conquer strategy to stabilize/control an uncertain plant. Instead of designing

a compensator for a largely uncertain plant, the family of admissible plants to be

controlled is split into several subsets. For each uncertainty subset, a non-adaptive

controller is synthesized. Then, the on-line model identification/estimation subsys-

tem blends or switches the control signals that are applied to the plant, depending

on the significance of each model [27, 32–38].

We address, in particular, the case where the process model has one or more

parametric uncertainties, ρ ∈ Ω. As previously mentioned, although several switch-

ing MMAC methodologies are available to solve this problem, they all share the

same principles: in terms of design, we divide the (large) set of parametric uncer-

tainty, Ω, into N (small) subregions, Ωi, i = {1, · · · , N} – see Fig. 5.2, for a single

uncertain parameter case – and synthesize a non-adaptive compensator for them; in

terms of implementation, we try to identify which region the uncertain parameters

vector, ρ, belongs to, and then select the controller designed for that region.

#2#1 #N

0 rmin rmaxW1 W2 WN

...

W

r

Figure 5.2: Uncertainty region, Ω, for one parameter, ρ, split into N subsets.

Figure 5.3 depicts a multiple-model decision subsystem. The estimates of each

model are used by the Logic block, to decide which controller should be connected

into the loop. The way these models and this Logic block are designed is what

differentiates each approach. In some circumstances, a convex combination of the

outputs of more than one controller can lead to smaller transients. In such cases, the

controller selection signal in Fig. 5.3 is used to weight the outputs of each controller.

The classical MMAC [25, 29, 30] approaches use Multiple-Model Adaptive Esti-

mation (MMAE) schemes [33, 35] as decision subsystems.

The Robust Multiple-Model Adaptive Control (RMMAC, [57–59]), which was

also mentioned in the previous chapters, also resorts to MMAE techniques. In this
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Figure 5.3: Multiple-model decision subsystem.

case, the decision subsystem is composed of a set of Kalman filters (KFs), synthesized

for given nominal models, and by a posterior probability evaluator (PPE), which

uses the residuals of the KFs to compute an estimation of the posterior probabilities

of a given uncertain parameter being in a specific interval. Therefore, the nominal

model of the plant and the intensity of the disturbances, as well as their spectral

properties, are required to properly design the KFs and the PPE. The behavior of

this decision subsystem under several violations of the aforementioned assumptions

was presented in [60, 61]. A large number of Monte-Carlo simulations was performed,

illustrating the advantages and shortcomings of this method. On the one hand, when

the intensity of the disturbances (and measurement noise) are close to the one used

to design the KFs, the decision subsystem is able to correctly identify the model of

the plant, requiring only a few seconds in the cases presented in [60, 61]. On the

other hand, if the intensity of the disturbances (and measurement noise) is much

larger than the one used to design the KFs, an incorrect model of the plant may be

selected, and a large transient may be observed.

The so-called supervisory control strategies in [31, 36, 37, 55] rely on the output

(control or estimation) error to select, at each time instant, the controller that
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yields the smallest output error, while avoiding fast switchings in the control signals.

Thus, the decision subsystem uses this error signal to evaluate the performance of

the currently selected controller and to decide which of the eligible models of the

plant is, most likely, the correct one. As mentioned in Chapter 4, relying on control

residuals to select the controllers may lead to very large transients and, hence, to

the deterioration of the performance of the closed-loop system.

The decision subsystem of the so-called Multiple Model Adaptive Control with

Mixing (MMACwM – see [41, 100]) is composed of a parameter estimator, which is

used to select the region to which the uncertain parameters belong. In reference to

Fig. 5.2, the decision subsystem estimates the value of ρ, and determines the integer

i ∈ {1, · · · , N} such that ρ ∈ Ωi.

A different approach to model selection is denoted Model Falsification or Model

Invalidation – see [71] and references therein. Instead of identifying the model of

the plant with the highest posterior probability, the idea in model falsification is

to eliminate models that are not compatible with the input/output observations.

Thus, by discarding those models, this technique aims to eventually disqualify all

but one model. This model, in turn, is the correct model of the plant, since it is the

only one which is compatible with all the input/output data sets. We are going to

explain in further detail this approach in the following sections.

The Unfalsified Control theory (c.f., [50, 51, 54, 108, 109, 111, 112]) indeed uses

model falsification to select the appropriate controller for a given uncertain plant.

Moreover, it allows for the falsification of control laws without inserting them into

the feedback loop (c.f., [50, 51, 54, 108, 109, 111, 112]). However, these approaches

require the estimation of a fictitious reference signal, which may be a difficult task.

5.1.1 Main Contributions and Organization

The main goal of this chapter is to properly define the concept of model falsification,

and to provide necessary and sufficient conditions for the falsification of all but one

model, in a given set of eligible ones. The results are also going to be illustrated

through a few examples.
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The main contributions of this chapter are as follows:

a) The development of a new distinguishability concept, referred to as absolute

input distinguishability ;

b) The derivation of necessary and sufficient conditions for absolute input dis-

tinguishability of Linear Time-Invariant (LTI) and Linear Parameter-Varying

(LPV) systems;

c) The derivation of a persistence type of condition on the disturbances that

suffices for absolute input distinguishability;

d) The application of the aforementioned technique to a set of examples.

The remainder of this chapter is organized as follows. We start by describing the

concept of model falsification in Section 5.2. The concept of absolute input distin-

guishability is introduced in Section 5.3. Several necessary and sufficient conditions

for absolute input distinguishability of linear systems are also derived, and the ap-

plicability of the methods is illustrated in simulation. Finally, some conclusions

regarding model falsification and absolute input distinguishability are provided in

Section 5.5.

5.2 Model Falsification

The problem of model falsification appears in several areas where we are interested

in distinguishing among an eligible set of dynamic systems. The simplest model

falsification problem one can think of is that of stating whether or not a given

dynamic model is compatible with the current observed input/output data. However,

it is important to notice that a model can never be validated in practice. Indeed,

if the model is compatible with the input/output data up to time t, it need not be

compatible at time t + δ, where δ > 0. Therefore, one can only say that a given

model is not falsified (or invalidated) by the current input/output data. On the

other hand, a model is obviously invalidated or falsified once it is not compatible
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with the observations. Hence, we usually refer to model falsification rather than

model validation, since the latter is not achievable in practice.

As an example, suppose that there are four possible models, M#1, M#2, M#3,

and M#4, for a given plant. We are interested in deciding which model (if any)

is able to explain the input/output data sequence that we are obtaining from the

sensors and actuators’ commands. Therefore, assume that, at a given initial time,

to, all the four models are plausible, as depicted in Fig. 5.4. Further suppose that,

at time t1, model M#4 is invalidated, i.e., the sensors readings cannot be explained

by model M#4. Moreover, consider that, at time t2, model M#2 is invalidated and

that, finally, model M#1 is invalidated at time t3. Then, at time t3, we conclude

that the only model capable of explaining the input/output time-series generated

by the plant is model M#3.

Figure 5.4: Example of the time-evolution of a set of models that are able to describe

the input/output behavior of a given plant.

A natural assumption on the plant is that it is observable and, moreover, that

it is controllable from the disturbances and control input. This guarantees that

there are disturbances and/or control input signals that allow for the identification

of the dynamic system at hand. Indeed, for LTI systems, the observability assures

the ability to measure all the modes of the system, while controllability from the

exogenous disturbances/control input guarantees that we are able to excite all the

modes of the system.

5.2.1 Model Falsification in the Literature

Unmodeled dynamics (present in virtually every physical system) and adverse exoge-

nous disturbances, can result in erroneous model falsification. Therefore, worst-case
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approaches, rather than stochastic approaches, are more suitable to address this type

of problems. In fact, the solution proposed in [71] for uncertain LTI systems, and

later on extended to LPV systems in [125], assumes that the system is described

by an LTI nominal model interconnected with an LTI or LTV unknown system,

denoted by ∆. This uncertain system ∆ can be used, for instance, to describe un-

modeled dynamics and parametric uncertainty. However, the methods provided in

[71, 125] are not recursive, which means that, after a given amount of input/output

data is obtained, we check whether or not the data is compatible with our model

of the system. Hence, the complexity of the algorithms grows with the number of

iterations.

A different approach to model falsification can be found in the Fault Detection

and Isolation (FDI) literature. The main idea in such architectures stems from the

designing of filters that are more sensitive to faults than to disturbances and model

uncertainty. This can be achieved, for instance, by using geometric considerations

regarding the plant [126–129], or by optimizing a particular norm minimization

objective, such as the H∞- or l1-norm [130–134]. The latter approach provides, in

general, important robustness properties, as stressed in [130, 135–137], by explicitly

accounting for model uncertainty. After designing the filters, a set of residuals is

then generated by comparing the actual output of the plant with the one estimated

by each filter – see Fig. 5.5 for an example where one residual is generated from the

difference between the actual plant output and the expected output for a non-faulty

plant. A model is then invalidated if the corresponding residual is greater than a

given threshold, which may be time-varying and that, in general, depends on the

model uncertainty and on the amplitude of the disturbances. As a caveat, these

methodologies are, in general, conservative or can only be applied to a restrictive

class of systems.

The model falsification strategy presented in this thesis uses a philosophy similar

to that of [71, 125], but proposes a recursive algorithm which can be used to run

in real-time. As shown in the sequel, this method guarantees that valid models of

the plant are never falsified. Moreover, under certain distinguishability conditions



136 CHAPTER 5. THE DECISION SUBSYSTEM

Uncertain Plant

Model of the
Non-faulty Plant

u(k)

d(k)
+

n(k)

y(k)

+ r(k)

y(k)~
-

Figure 5.5: Residual generation in a classical Fault Detection (FD) architecture.

discussed in this chapter, it is also shown that the correct model of the plant is

selected.

5.3 The (In)Distinguishability Problem

The identifiability of dynamic systems plays an important role in certain areas,

where it is fundamental to ensure that the model of the plant can be inferred from

input/output data. In particular, model estimation methods require the system

to be identifiable. Otherwise, the estimation problem may not be well-posed and

lead to erroneous results. Such methods also require, in general, a persistence of

excitation type of condition in the exogenous inputs, in order to avoid the issues

related to the indistinguishability due to the small amplitude of the disturbances.

In applications such as Fault Detection and Isolation (FDI) [131, 133, 136, 138,

139], identification of hybrid systems [140, 141], and Multiple-Model Adaptive Con-

trol (MMAC) [41, 58, 142], it suffices to guarantee that we can identify the family

of systems to which the true plant belongs, among a finite set of families of dynamic

systems. If we indeed can identify those families, we say that they are distinguish-

able. In particular, the FDI strategy presented in [143] “discards” models that are

not compatible with the observations. This method guarantees that there will not be

false alarms, as long as the model of the non-faulty plant remains valid. Moreover,

we need not address the difficult problem of computing the decision threshold used

to declare whether or not a fault has occurred. Nonetheless, we can only guarantee

that a certain fault is going to be detected and isolated if certain assumptions on
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the distinguishability of the models is posed.

Therefore, the distinguishability analysis should be seen as a tool for the design

of multiple-model systems, providing guarantees in terms of model selection.

An example of the (in)distinguishability problem is illustrated in Fig. 5.6. Let

n̄ denote the maximum amplitude of the measurement noise for a given dynamic

system, and let SA and SB denote the dynamics of two plausible models describing

this system. For small values of the measurement noise, i.e., in this example, for

n̄ < n̄3, the output sequences generated by systems SA and SB do not intersect each

other. However, for n̄ > n̄3, there are output sequences that can be generated by

either system SA or system SB.

Output sequences
described by SA

Output sequences
described by SB

n4 > n3

n3 > n2

n2 > n1

n1

Figure 5.6: Output sequences described by two systems as a function of the maxi-

mum amplitude of the measurement noise.

The notion of distinguishability was firstly introduced in [144], where in fact the

authors relate the concept of identifiability with that of distinguishability. Indeed,

these two concepts (see, for instance, [144–146]) are naturally related to each other.

If a system can be identified by using a certain input signal, then it can be distin-

guished from any other system with the same structure. A discussion on this topic

can be found in [147].

However, most of the results on system identifiability are not enough for system

absolute distinguishability. In particular, for two absolutely distinguishable systems

we require, for all the admissible input signals, the corresponding outputs to be

different from one another, unlike the most common definition of (structurally)
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identifiable system, which only demands that the unknown parameters of the plant

can be estimated for some input signal.

The most common notion of (in)distinguishability [144, 147] states that two sys-

tems are indistinguishable only if there are neither initial conditions nor exogenous

inputs that can generate different outputs for the systems. This definition, however,

is not useful in applications where the distinguishability of the systems must be

guaranteed from a worst-case perspective.

This section introduces a new definition of system distinguishability, referred to

as absolute distinguishability, as detailed in the sequel. We also provide necessary

and sufficient conditions for the absolute distinguishability of two dynamic LTI or

LPV systems under different scenarios.

We are going to start by considering the broad class of time-varying discrete-time

dynamic systems described by

y(k) = Fk (xo, φo, φ1, φ2, · · · , φk, p) , (5.1)

where Fk : Rn ×
k+1 times︷ ︸︸ ︷

Φ× · · · × Φ×Ω → Rny , φi ∈ W × U := (Wd × Wn) × U =:

Φ ⊆ Rnu+nd+nn for i = 0, 1, · · · , k, and p ∈ Ω ⊆ Rnp is a vector of parameters.

The sequence (φo, φ1, · · · , φk), where φi = [dT
i , n

T
i , u

T
i ]T, denotes the exogenous

disturbances, di ∈ Wd ⊆ Rnd , measurement noise, ni ∈ Wn ⊆ Rnn , and control

input signals, ui ∈ U ⊆ Rnu , at time instant i, and y(k) is the output of the system

at time k. The initial state is represented by xo := x(0) ∈ X(0) ⊆ Rn.

The notion of distinguishability in [144, 147] states that two realizations of Fk,

parametrized by the pair of parameter vectors (pA, pB), are indistinguishable in N

measurements only if there are neither initial conditions nor exogenous inputs that

can generate different outputs for the systems parametrized by pA and pB. Hence,

this definition is not useful in some applications, namely to provide guarantees that,

regardless the input signals, the pair of parameter values is distinguishable.

Thus, a new definition of distinguishability, referred to as U -input distinguisha-

bility, was presented in [141]. Consider the dynamic systems SA and SB, which

correspond to realizations of (5.1), for p = pA and p = pB and with outputs at
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time k denoted by yA(k) and yB(k), respectively. The definition in [141] states that,

unless all the initial conditions and inputs are zero, if two systems are U -input dis-

tinguishable in N measurements, then the corresponding outputs must be different

at some time instant k smaller than or equal to N . This guarantees that we can

distinguish two such systems in, at most, N measurements, just by measuring the

outputs. Nevertheless, exogenous disturbances, d(k) ∈ Wd, and measurement noise,

n(k) ∈ Wn, are not taken into account in this definition of distinguishability.

Therefore, this motivated the introduction of the following definitions, which are

going to be used extensively throughout this and the following chapters:

Definition 5.1. Systems SA and SB are said absolutely distinguishable in N mea-

surements if, for any non-zero

(
xAo , x

B
o , φo, · · · , φN

)
∈ Rn × Rn ×

N+1 times︷ ︸︸ ︷
Rnd+nn+nu × · · · × Rnd+nn+nu ,

there exists k ∈ {0, 1, · · · , N} such that

yA(k) 6= yB(k).

Moreover, two systems are said absolutely distinguishable if there exists N ≥ 0 such

that they are absolutely distinguishable in N measurements.

Definition 5.2. Systems SA and SB are said absolutely (Xo, U,W )-input distin-

guishable in N measurements if, for any non-zero

(
xAo , x

B
o , φ1, φ2, · · · , φN

)
∈ Xo ×Xo ×

N times︷ ︸︸ ︷
Φ× · · · × Φ,

where Φ := U ×W = U × (Wn ×Wd), there exists k ∈ {0, 1, · · · , N} such that

yA(k) 6= yB(k).

Moreover, two systems are said absolutely (Xo, U,W )-input distinguishable if there

exists N ≥ 0 such that they are absolutely (Xo, U,W )-input distinguishable in N

measurements.

These two definitions are important when we want to guarantee that, regard-

less of the input signals, two systems can be distinguished in a given number of

measurements. This fact is going to be further stressed in the sequel.
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5.3.1 Absolute Input-Distinguishability of LTI Systems

In this subsection, we are going to specialize the concept of absolute input-distinguishability

for linear time-invariant (LTI) models and discuss some of the properties of this class

of dynamic systems.

Let Si be a discrete-time LTI dynamic system described by

Si :

 xi(k + 1) = Aixi(k) +Biu(k) + Lidi(k),

yi(k) = Cixi(k) +Nini(k),
(5.2)

where xi(0) = xio, xi(k) ∈ Rn, ui(k) ∈ U ⊆ Rnu , di(k) ∈ Wd ⊆ Rnd , yi(k) ∈ Rny and

ni(k) ∈ Wn ⊆ Rnn . We assume that Si is observable and that it is controllable from

[uT(·), dT(·)]T.

Notice that, according to Definition 5.2, two systems are absolutely (Xo, U,W )-

input distinguishable in N measurements if, for all the input signals in U , the

corresponding outputs are different at least at some time instant k ≤ N . This is

obviously a stronger constraint than simply saying that the two systems are distin-

guishable whenever the corresponding outputs are different for a particular input

sequence, as in [144, 147].

Remark 5.1: In the remainder of this chapter, we are going to use the terms distin-

guishable and absolutely distinguishable interchangeably, as we are only interested

in assessing absolute distinguishability of systems. �

For the sake of simplicity, let us consider, for the time being, that U = Rnu ,

Wd = Rnd and Wn = Rnn . The following theorem can be used to test whether or

not two systems, denoted by SA and SB, i.e., two systems described by (5.2) with

i ∈ {A,B}, are absolutely distinguishable (in the sense of Definition 5.1).

Theorem 5.1. Let

MN =



CA −CB

CAAA −CBAB

CAA
2
A −CBA2

B

...
...

CAA
N
A −CBANB

Q̄ R̄ J̄


,
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where Q̄ = diag(Q,Q, · · · , Q), Q =
[
NA −NB

]
,

R̄ =



0 0 · · · 0

R1
1 0 · · · 0

R2
1 R2

2 · · · 0
...

...
. . .

...

RN
1 RN

2 · · · RN
N


,

Rk
i =

[
CAA

k−i
A LA −CBAk−iB LB

]
,

J̄ =



0 0 · · · 0

J1
1 0 · · · 0

J2
1 J2

2 · · · 0
...

...
. . .

...

JN1 JN2 · · · JNN


,

Jki =
[
CAA

k−i
A BA − CBAk−iB BB

]
.

Systems SA and SB are absolutely distinguishable in N measurements if and

only if there does not exist a non-zero vector v ∈ R2n+2(N+1)nn+N(nu+2nd) such that

MNv = 0, i.e., if and only if,

rank(MN) = 2n+ 2(N + 1)nn +N(nu + 2nd).

Proof. Systems SA and SB are indistinguishable on {0, 1, · · · , N} if and only if there

exist initial conditions, and valid disturbance and noise signals such that

yA(0) = yB(0),

yA(1) = yB(1),
...

yA(N) = yB(N).
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Notice that

yi(0) = Cixi(0) +Nini(0),

yi(1) = Cixi(1) +Nini(1) =

= Ci [Aixi(0) +Biu(0) + Lidi(0)] +Nini(1),
...

yi(N) = Cixi(N) +Nini(N) =

= Ci

[
ANi xi(0) +AN−1

i Biu(0)+

AN−1
i Lidi(0) + · · ·+Biu(N − 1) +Lidi(N − 1)] +Nini(N),

for i = {A,B}, which is equivalent to MNv = 0, where

vT = [xA(0)T, xB(0)T, nA(0)T, nB(0)T · · · , nA(N)T, nB(N)T, dA(0)T,

dB(0)T · · · , dA(N − 1)T, dB(N − 1)T, u(0)T, u(1)T · · · , u(N − 1)T].

Moreover, stating that MNv = 0 if and only if v = 0, is equivalent to stating that

matrix MN has full column rank.

The importance of this theorem is twofold: on the one hand, it provides necessary

and sufficient conditions for the absolute distinguishability of two systems; on the

other hand, it shows that we can solve the distinguishability problem using linear

programming.

As remarked in [141] for continuous-time systems, the distinguishability of two

systems implies their observability. Nevertheless, there are also results available in

the literature that provide sufficient conditions for absolute distinguishability. For

instance, the authors of [148] show that, if J̄ has full column rank and the sets Xo

and W are compact, then the systems can be distinguished for sufficiently large

input control signals, regardless of their direction.

Indeed, we are going to pose the following assumptions throughout the remainder

of this chapter, in order to derive several results that can be useful in practice.

Assumption 5.1: The set of admissible initial states, Xo, i.e., the minimum set

containing all the possible initial states xo of the systems, is a convex polytope. �

Under Assumption 5.1, the set of initial states can be represented by

Xo = Set(MXo ,mXo) := {x : MXox ≤ mXo} .
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Analogously, suppose that:

Assumption 5.2: The set of admissible exogenous disturbances, Wd, is a convex

polytope, i.e.,

Wd = Set(Md,md).

�

Assumption 5.3: The set of admissible measurement noise, Wn, is a convex

polytope, i.e.,

Wn = Set(Mn,mn).

�

Then, we can state the following theorem, which is an extension of Theorem 5.1

for convex and compact Xo and W :

Theorem 5.2. Suppose that Assumptions 5.1–5.3 are satisfied. Then, systems SA

and SB are absolutely (Xo,Rnu ,W )-input distinguishable if and only if

∀
v ∈ G

: v 6= 0⇒


MN

−MN

M̃Xo

M̃W

 v 6≤


0

0

m̃Xo

mW

 , (5.3)

where

M̃Xo =
[
diag(MXo ,MXo) 0 0 0

]
, m̃Xo =

mXo

mXo

 ,
M̃W =

0 diag(Mn, · · · ,Mn) 0 0

0 0 diag(Md, · · · ,Md) 0

 ,
mW =

[
mT
n · · · mT

n mT
d · · · mT

d

]T
,

and G = R2n × R2nn×(N+1) × R2ndN × Rnu×N .

Proof. Systems SA and SB are not absolutely (Xo,Rnu ,W )-input distinguishable if

and only if there exist

a) two vectors xio ∈ Set(MXo ,mXo), i = A,B,
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b) two sequences of disturbances vectors {di(0), di(1), · · · , di(N − 1)}, i = A,B,

with di(k) ∈ Wd,

c) two sequences of measurement noise vectors {ni(0), ni(1), · · · , ni(N)}, i =

A,B, with ni(k) ∈ Wn,

d) and a sequence of control input vectors {u(0), u(1), · · · , u(N−1)}, with u(k) ∈

U ,

such that

MN [xT
Ao
, xT

Bo
, nT

A(0), · · · , nT
A(N), nT

B(0), · · · , nT
B(N),

dT
A(1), · · · , dT

B(N), uT(1), · · · , uT(N)]T = 0,
(5.4)

with

[xT
Ao
, xT

Bo
, nT

A(0), · · · , nT
A(N), nT

B(0), · · · , nT
B(N),

dT
A(1), · · · , dT

B(N), uT(1), · · · , uT(N)]T 6= 0

Otherwise, we cannot find a non-zero solution to (5.4), which concludes the proof.

Although Theorem 5.2 provides necessary and sufficient conditions for distin-

guishability of systems with polytopic constraints on the disturbances and initial

states, the condition in (5.3) is seldom satisfied in practice. To see this, consider

that indeed there exists v 6= 0 satisfying MNv = 0, but thatM̃Xo

M̃W

 v 6≤
m̃Xo

mW

 ,
with m̃Xo > 0 and mW > 0. Then, for sufficiently small α > 0, we haveM̃Xo

M̃W

αv ≤
m̃Xo

mW

 .
Moreover, MNαv = αMNv = 0, and thus vector ṽ = αv 6= 0 voids the distinguisha-

bility of the two systems.

Therefore, we add the following constraint on the disturbances intensity, which

can be interpreted as a persistence of excitation type of condition

1

N

N∑
k=0

‖w(k)‖2 ≥ γ. (5.5)
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where wT(k) = [dT(k), nT(k)]T, and d(N) := 0. Such a condition can be easily

merged with (5.3), as explained in the sequel.

We start by introducing the Fourier-Motzkin elimination method, described in

[149]. This method can be used to project polyhedral convex sets on to subspaces.

Indeed, we are interested in projecting a polytope described by {x ∈ Rnx : Ax ≤ b}

on to Rñx , where ñx < nx.

Let

(ALFM, bLFM) := LFM(A, b, n),

and

(ARFM, bRFM) := RFM(A, b, n),

where LFM and RFM stand for the left- and right-Fourier Motzkin elimination

methods, respectively, n = nx − ñx > 0, and where ALFM, bLFM, ARFM and bRFM,

satisfy, for all x̃ ∈ Rñx ,

ALFMx̃ ≤ bLFM ⇔ ∃x∈Rn : A

x
x̃

 ≤ b,

and

ARFMx̃ ≤ bRFM ⇔ ∃x∈Rn : A

x̃
x

 ≤ b.

At this point, we can state the following theorem:

Theorem 5.3. Let

(AN , bN ) = RFM


LFM




MN

−MN

M̃Xo

M̃W

 ,


0

0

m̃Xo

mW

 , 2n
 , nu


.

Further define

PA =
1

N
diag(Inn , 0nn , Ind , 0nd , Inn , 0nn , · · · , Ind , 0nd),

and

PB =
1

N
diag(0nn , Inn , 0nd , Ind , 0nn , Inn , · · · , 0nd , Ind),
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and let γmin ≥ 0 be such that

γmin ≥ max
ANx≤bN

xTPAx, and γmin ≥ max
ANx≤bN

xTPBx. (5.6)

Then, systems SA and SB are (Xo, U,W )-input distinguishable in N measurements

if

1

N

N∑
k=0

‖w(k)‖2 > γmin. (5.7)

Proof. Suppose that (5.7) is indeed satisfied. Then, for all w∗i ∈ R2(N+1)nn+2Nnd ,

i = {A,B}, such that

(w∗A)T PAw
∗
A =

1

N

N∑
k=0

‖w(k)‖2,

and

(w∗B)T PBw
∗
B =

1

N

N∑
k=0

‖w(k)‖2,

we have

(w∗A)T PAw
∗
A > γmin ≥ max

ANx≤bN
xTPAx,

and

(w∗B)T PBw
∗
B > γmin ≥ max

ANx≤bN
xTPBx.

Thus ANw
∗
A 6≤ bN . and ANw

∗
B 6≤ bN .

Notice that 5.6 can be interpreted as a concave quadratic programming problem,

which can be solved, for instance, by testing the solution at the vertices of the

polytope S = {x : ANx ≤ bN} (cf. [150]).

Remark 5.2: The Fourier-Motzkin elimination method removes the dependence of

the distinguishability of systems SA and SB on the initial state and control inputs.

Hence, it reduces the number of variables in the optimization procedure. �

The constraint in (5.5) can be replaced by a similar condition on the intensity

of the output, y(.). To see this, we rewrite the output sequence as

y(k) = Cx(k) +Nn(k), k = 0, 1, · · · , N

=
[
C N

]x(k)

n(k)

 , k = 0, 1, · · · , N

= C̄x̄(k), k = 0, 1, · · · , N,
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where

x(1) = Ax(0) +Bu(0) + Ld(0),

x(2) = A2x(0) + ABu(0) + ALd(0) +Bu(1) + Ld(1),

x(3) = A3x(0) + A2Bu(0) + A2Ld(0) + ABu(1) + ALd(1) +Bu(2) + Ld(2),
...

x(N) = ANx(0) + AN−1Bu(0) + AN−1Ld(0) + · · ·+Bu(N − 1) + Ld(N − 1).

Hence,

x̄(0) = ĪvN ,

x̄(1) = Ā(0)vN ,
...

x̄(N) = Ā(N − 1)vN ,

where

vT
N = [xT(0), nT(0), · · · , nT(N), dT(0), · · · , dT(N − 1), uT(0), · · · uT(N − 1)]T

and

Ī =

 I 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0

0 I 0 · · · 0 0 0 · · · 0 0 0 · · · 0

 ,
Ā(0) =

 A 0 0 · · · 0 L 0 · · · 0

0 0 I · · · 0 0 0 · · · 0
· · ·

B 0 · · · 0

0 0 · · · 0

 ,
Ā(N − 1) =

 AN 0 · · · 0

0 0 · · · I

AN−1L · · · L

0 · · · 0
· · ·

AN−1B · · · B

0 · · · 0

 .
Then, we have that

θ := 1
N

N∑
k=0

‖y(k)‖2

= 1
N

[
x̄T(0)C̄TC̄x̄(0) + x̄T(1)C̄TC̄x̄(1) + · · ·+ x̄T(N)C̄TC̄x̄(N)

]
= 1

N
(vN)T

(
ṼN

)T

C(N)ṼNvN

where

ṼN =



Ī

Ā(0)

Ā(1)
...

Ā(N − 1)


,
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and

C(N) =


C̄TC̄ 0 · · · 0

0 C̄TC̄ · · · 0
...

...
. . .

...

0 0 · · · C̄TC̄

 .

Therefore, we are now in conditions of stating the following result, which allows

us to assess distinguishability by measuring the intensity of the output of the plant.

Corollary 5.1. Define P̃A = 1
N
C̃N
A and P̃B = 1

N
C̃N
B , and let θmin ≥ 0 be such that

θmin ≥ max
ÃNx≤b̃N

xTP̃Ax, and θmin ≥ max
ÃNx≤b̃N

xTP̃Bx, (5.8)

where

ÃN =



[
M̃N

A −M̃N
B

]
[
−M̃N

A M̃N
B

]
M∗

Xo

M∗
W

Iu


, b̃N =



0

0

m∗Xo

m∗W

0


,

M∗
Xo =

 MXo 0 0 0 0 0 0 0

0 0 0 0 MXo 0 0 0

 , m∗Xo =

mXo

mXo

 ,

M∗
W =


0 D(Mn) 0 0 0 0 0 0

0 0 0 0 0 D(Mn) 0 0

0 0 D(Md) 0 0 0 0 0

0 0 0 0 0 0 D(Md) 0

 ,

D(Mn) = diag(Mn), D(Md) = diag(Md),

m∗W =
[
mT
n · · · mT

n mT
d · · · mT

d

]T
,

Iu =

 0 0 0 I 0 0 0 −I

0 0 0 −I 0 0 0 I

 ,
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and, for i ∈ {A,B},

M̃N
i =


Ci

CiAi
...

CiA
N
i

diag(Ni) L̃Ni B̃N
i

 ,

L̃Ni =



0 0 · · · 0

CiLi 0 · · · 0

CiAiLi CiLi · · · 0
...

...
. . .

...

CiA
N−1
i Li CiA

N−2
i Li · · · CiLi


,

B̃N
i =



0 0 · · · 0

CiBi 0 · · · 0

CiAiBi CiBi · · · 0
...

...
. . .

...

CiA
N−1
i Bi CiA

N−2
i Bi · · · CiBi


,

C̃N
i =

(
Ṽ N
i

)T
Ci(N)Ṽ N

i ,

Ṽ N
A =



Ī

Ā0
B

Ā1
B

...

ĀN−1
B

0


, Ṽ N

B =


0

Ī

Ā0
B

Ā1
B

...

ĀN−1
B


.

Then, systems SA and SB are (Xo, U,W )-input distinguishable in N measure-

ments if

1

N

N∑
k=0

‖y(k)‖2 > θmin. (5.9)

Proof. Similarly to what was done in the proof of Theorem 5.3, if (5.9) is verified,

then, for all x such that

xT P̃Ax =
1

N

N∑
k=0

‖y(k)‖2
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or

xT P̃Bx =
1

N

N∑
k=0

‖y(k)‖2,

we have

ÃNx 6≤ b̃N .

5.3.2 Absolute Input-Distinguishability of Uncertain Sys-

tems

In the previous subsection, we presented a series of results that can be used to

assess the distinguishability of a pair of dynamic LTI systems. However, in most

applications, the models of these systems are known only up to a certain level of

accuracy. Hence, uncertain models are, in general, more suitable to describe these

dynamic systems. Therefore, this section describes a series of methods that allow us

to decide whether or not a pair of dynamic uncertain LTI systems is distinguishable

or not. Computationally efficient solutions are also provided whenever possible.

Uncertainty in the A Matrix

Consider the class of dynamic systems, Si, described by

Si :


xi(k + 1) =

(
Ai0 +

n∆∑
j=1

∆i
j(k)Aij

)
xi(k) +Biu(k) + Lidi(k),

yi(k) = Cixi(k) +Nini(k),

(5.10)

where xi(0) = xio, xi(k) ∈ Rn, ui(k) ∈ U ⊆ Rnu , di(k) ∈ Wd ⊆ Rnd , yi(k) ∈ Rny ,

ni(k) ∈ Wn ⊆ Rnn , and ∆ ∈ Rn∆ . We assume that Si is observable and that it

is controllable from [uT(·), dT(·)]T. Moreover, we assume that |∆i
j(k)| ≤ 1. The

uncertainty vector,
[
∆i

1(k) · · · ∆i
n∆

(k)
]T

, represents uncertainty in the dynamics

of the plant, and can appear, for instance, in the modeling of several types of physical

systems.

Posing the problem of absolute input-distinguishability of systems SA and SB,

described by (5.10) with i = A and i = B, respectively, can be done in a similar
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way as in the previous subsection, with the exception that in this case we have the

product between some of the variables, namely xi(k) and ∆i
j(k), for j = 1, · · · , n∆.

Thus, the distinguishability problem can no longer be posed as a linear program.

Nevertheless, in the case where rank(Aij) = 1 for all i = A,B and j = 1, · · · , n∆,

the problem can be rewritten in such a way that the aforementioned bilinearity can

be avoided. For the sake of comprehension, let us consider that n∆ = 1, although

the results presented in the sequel can be readily extended for the general case.

Assuming rank(Ai1) = 1, there exist vectors ei1 and f i1 such that

Ai1 = ei1(f i1)T.

Moreover, define zi(k) := (f i1)Txi(k)∆i(k). Then, system Si in (5.10), for n∆ = 1,

can be rewritten as

Si :

 xi(k + 1) = Ai0xi(k) + eizi(k) +Biu(k) + Lidi(k),

yi(k) = Cixi(k) +Nini(k),
(5.11)

with the additional constraint

|zi(k)| ≤
∣∣(f i1)Txi(k)

∣∣. (5.12)

Notice that (5.11), for arbitrary zi(k), provides a description of yi(N) which

is linear in the variables xi(k), zi(k), u(k), di(k) and ni(k), for k = 0, · · · , N . The

constraint in (5.12) is nonlinear regarding xi(k). However, for given k, the constraint

|zi(k)| ≤
∣∣(f i1)Txi(k)

∣∣
can be rewritten as 

−(f i1)Txi(k) ≤ zi(k) ≤ (f i1)Txi(k)

or

(f i1)Txi(k) ≤ zi(k) ≤ −(f i1)Txi(k).

(5.13)

We recall that two systems SA and SB are absolutely (Xo, U,W )-input distin-

guishable in N measurements, if there do not exist vectors xi(k), zi(k), u(k), di(k)

and ni(k), for k = 0, · · · , N and i = A,B, such that

yA(k) = yB(k), (5.14)
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for all k ∈ {0, · · · , N}. Thus, the distinguishability problem can be solved through

several linear programs, each designed for a specific region of zi(k). As an example,

for N = 1, we would check whether or not there exist vectors xi(k), zi(k), u(k), di(k)

and ni(k), for k = 0, 1 and i = A,B, such that (5.14) is satisfied for all k ∈ {0, 1},

and for zA(0) satisfying one of the conditions in (5.13) with i = A, and for zB(0)

satisfying one of the conditions in (5.14) with i = B. In the present case, this leads

to at most
(
2(N + 1)

)2
linear programs to be solved.

If rank(Ai1) > 1, then Ai1 can be written as the sum of several matrices with

unitary ranks, as follows

Ai1 = ei1,1(f i1,1)T + ei1,2(f i1,2)T + · · ·+ ei1,m(f i1,m)T,

for some integer m ≥ 0. Thereafter, define

zij(k) := (f i1,j)
Txi(k)∆i(k),

for each j ∈ {1, · · · ,m}. Then, each zij(k) can be treated as an independent uncer-

tainty, and the previously described method can be applied. However, this approach

can add conservatism to the solution, since we assume no relation between each zij(k).

Uncertainty in the B Matrix

In the sequel, the problem of accounting for uncertainty in the input matrix is

analyzed. Consider a dynamic system, Si, described by

Si :


xi(k + 1) = Aixi(k) +

(
Bi

0 +

n∆∑
j=1

∆i
j(k)Bi

j

)
u(k) + Lidi(k),

yi(k) = Cixi(k) +Nini(k),

(5.15)

where xi(0) = xio, xi(k) ∈ Rn, ui(k) ∈ U ⊆ Rnu , di(k) ∈ Wd ⊆ Rnd , yi(k) ∈ Rny ,

ni(k) ∈ Wn ⊆ Rnn , and ∆ ∈ Rn∆ . It is also assumed that

|∆i
j(k)| ≤ 1.

In this case, the uncertainty vector,
[
∆i

1(k) · · · ∆i
n∆

(k)
]T

, represents uncertainty

in the input of the plant.
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Define

F i
j (k) := F i

j (u(k)) := Bi
ju(k), (5.16)

for j ∈ {1, · · · , n∆}. Then, by substituting (5.16) in (5.15), we obtain the following

equivalent description for the system

Si :


xi(k + 1) = Aixi(k) +Bi

0u(k) +

n∆∑
j=1

F i
j (k)∆i

j(k) + Lidi(k),

yi(k) = Cixi(k) +Nini(k),

(5.17)

where |∆i
j(k)| ≤ 1. Therefore, each ∆i

j(·) can be seen as a bounded exogenous

disturbance, acting upon the system.

Uncertainty in the C Matrix

Finally, let us consider that the matrix C is also uncertain. Consider a dynamic

system, Si, described by

Si :


xi(k + 1) = Aixi(k) +Biu(k) + Lidi(k),

yi(k) =

(
Ci

0 +

n∆∑
j=1

∆i
j(k)Ci

j

)
xi(k) +Nini(k),

(5.18)

where xi(0) = xio, xi(k) ∈ Rn, ui(k) ∈ U ⊆ Rnu , di(k) ∈ Wd ⊆ Rnd , yi(k) ∈ Rny ,

ni(k) ∈ Wn ⊆ Rnn , and ∆ ∈ Rn∆ . It is also assumed that |∆i
j(k)| ≤ 1. In this

case, the uncertainty vector,
[
∆i

1(k) · · · ∆i
n∆

(k)
]T

, represents uncertainty in the

output of the plant.

Notice that Si is equivalent to

Si ≡
(
S̄ij +Nin̄i

)
+

n∆∑
j=1

(
∆i
jS̄

i
j +Nin̄i

)
, (5.19)

where

S̄i0 :

 xi0(k + 1) = Aix
i
0(k) +Biu(k) + Lidi(k),

yi0(k) = Ci
0x

i
0(k),

and, for j ∈ {1, · · · , n∆},

S̄ij :

 xij(k + 1) = Aix
i
j(k) +Biu(k) + Lidi(k),

yij(k) = Ci
jx
i
j(k),
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iS0

Ni

iy0u

di

ni

+

iSn

iDn

Ni

i
yn

+

...... ... ...

iS1

iD1

Ni

i
y1

+

D D

D

+ yi

...
Figure 5.7: Block diagram of an LTI system with uncertainties in the output.

with xij(0) = xi(0) for all j ∈ {0, · · · , n∆}, and n̄i = ni
n∆+1

. The block diagram of

(5.19) is depicted in Fig. 5.7.

Since each S̄ij, for j ∈ {0, · · · , n∆}, is a linear system, and each ∆i
j(k), for

j ∈ {1, · · · , n∆} and k ≥ 0, is an uncertain scalar, we obtain

Si ≡
(
S̄ij +Nin̄i

)
+

n∆∑
j=1

(
S̃ij +Nin̄i

)
, (5.20)

where

S̃ij :

 xij(k + 1) = Aix
i
j(k) +Bi∆

i
j(k)u(k) + Li∆

i
j(k)di(k),

yij(k) = Cijx
i
j(k).

Notice that (5.20) describes an LTI system with uncertain input. Nevertheless,

the exogenous disturbances are now multiplied by the uncertainties ∆i
j(k), and hence

S̃ij depends upon ∆i
j(k) and di(k) in a bilinear fashion. However, this can be avoided

by introducing the following relaxation. Since |∆i
j(k)| ≤ 1, we have that

d̃ij(k) := ∆i
j(k)di(k)⇒ ‖d̃ij(k)‖ ≤ ‖di(k)‖. (5.21)

Thus, by substituting ∆i
j(k)di(k) in (5.20) by d̃ij(k) as in (5.21), we obtain a
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description of the system which is linear in the unknown variables, at the cost of

some conservatism due to the implication in (5.21).

5.3.3 Absolute Input-Distinguishability of LPV Systems

As shown in the sequel, the methods presented in the previous subsections can

also be used to assess distinguishability of linear time-varying plants. In particular,

we are going to extend the aforementioned results to Linear Parameter-Varying

(LPV) models. As mentioned in Chapter 2, these LPV (see [62]) models represent

nowadays a compromise between the global accuracy of nonlinear models and the

straightforward controller synthesis and system analysis techniques available for LTI

representations.

We start by extending Theorem 5.1 to LPV plants and present a systematic

method to extend the remaining results of the previous subsection to LPV plants.

Consider an LPV dynamic system described by

Si :

 xi(k + 1) = Ai
(
ρ(k)

)
xi(k) +Bi

(
ρ(k)

)
u(k) + Li

(
ρ(k)

)
di(k),

yi(k) = Ci
(
ρ(k)

)
xi(k) +Ni

(
ρ(k)

)
ni(k),

(5.22)

where xi(0) = xio, xi(k) ∈ Rn, ui(k) ∈ U ⊆ Rnu , di(k) ∈ Wd ⊆ Rnd , yi(k) ∈ Rny

and ni(k) ∈ Wn ⊆ Rnn . Moreover, we assume that ρ : Z+
o → Ω ⊂ Rnρ , and that

ρ(k) is a vector of parameters for each k ∈ {0, 1, · · · }. We denote by Ω the space of

parameters. It is also assumed that this LPV system is observable and controllable

from the disturbances and control input, for all admissible ρ(·). For the sake of

simplicity of the notation, we redefine

Ai
(
ρ(k)

)
:= Aik,

Bi

(
ρ(k)

)
:= Bi

k,

Li
(
ρ(k)

)
:= Lik,

Ci
(
ρ(k)

)
:= Ci

k,

Ni

(
ρ(k)

)
:= N i

k.

We are now in conditions of stating the following theorem, which is an extension

of Theorem 5.1 to LPV plants.
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Theorem 5.4. Let

MN =

CA
0 −CB

0

CA
1 A

A
0 −CB

1 A
0
B

CA
2 A

A
1 A

A
0 −CB

2 A
B
1 A

B
0

...
...

CA
NA

A
N−1 · · ·AA0 −CB

NA
B
N−1 · · ·AB0

Q̄N R̄N J̄N


,

where

Q̄N = diag(Q0,Q1, · · · ,QN), Qj =
[
NA
j −NB

j

]
,

R̄N =



0 0 · · · 0

R1
1 0 · · · 0

R2
1 R2

2 · · · 0
...

...
. . .

...

RN
1 RN

2 · · · RN
N


,

Rk
i =

[
CA
k A

A
k−i−1 · · ·AA0 LAk−i−1 −CB

k A
B
k−i−1 · · ·AB0 LBk−i−1

]
,

J̄N =



0 0 · · · 0

J 1
1 0 · · · 0

J 2
1 J 2

2 · · · 0
...

...
. . .

...

J N
1 J N

2 · · · J N
N


,

J k
i =

[
CA
k A

A
k−i−1 · · ·AA0 BA

k−i−1 − CB
k A

B
k−i−1 · · ·AB0 BB

k−i−1

]
.

Systems SA and SB are absolutely distinguishable in N measurements if and only

if there does not exist a non-zero vector v ∈ R2n+2(N+1)nn+N(nu+2nd) such that

MNv = 0,

i.e., if and only if,

rank(MN) = 2n+ 2(N + 1)nn +N(nu + 2nd).
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Proof. The proof is similar to that of Theorem 5.1 and thus is omitted here.

The same line of thought used to extend Theorem 5.1 to Theorem 5.4 can be

used to obtain generalizations of the aforementioned results to LPV plants. Indeed,

if instead of considering time-invariant matrices for the dynamics of the system, we

assume that they can vary with time, then all the results follow naturally.

5.4 Simulations

In this section, we illustrate the concepts introduced in this chapter with a series

of examples. The idea is to obtain the value of the minimum intensity of the dis-

turbances that guarantees the distinguishability of a pair of dynamic systems, in a

given number of measurements.

Example I: Different C Matrices – Case 1

Consider the LTI discrete-time systems described by

SA :


x(k + 1) =

0.1 1

0 0.2

x(k) +

1

1

 d(k),

y(k) =

1 0

0 1

x(k) + n(k),

SB :


x(k + 1) =

0.1 1

0 0.2

x(k) +

1

1

 d(k),

y(k) =

1 0

0 0.6

x(k) + n(k),

(5.23)

where |d| ≤ 1 and |n| ≤ 0.001. Notice that system SB can be seen as system SA

with a sensor failure. Further suppose that the only information regarding the initial

state of the systems is ‖x(0)‖ ≤ 1. Moreover, let

γ =
N∑
k=0

|d(k)|
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denote the intensity of the disturbances.

Our goal is to obtain the value of the minimum intensity of the disturbances,

γmin, such that systems SA and SB are absolutely distinguishable for a given number

of measurements. The solution to this problem can be obtained using Theorem

5.3 and is illustrated in Fig. 5.8. Notice that in this case we only considered the

disturbances intensity, while no assumptions have been posed regarding the intensity

of the measurement noise. As expected, the value of γmin decreases with the number

of measurements, N .

1 2 3 4 5 6 7 8
0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of iterations (N)

γ m
in

Figure 5.8: Minimum disturbances intensity that guarantee the distinguishability

between systems SA and SB in Example I.

As an example, if γmin > 0.15, then we can be sure that it is possible to distinguish

between SA and SB.
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Example II: Different C Matrices – Case 2

In this second example we consider a harder distinguishability problem. Indeed, let

us define

SA


x(k + 1) =

0.1 1

0 0.2

x(k) +

1

1

 d(k),

y(k) =

1 0

0 1

x(k) + n(k),

SB


x(k + 1) =

0.1 1

0 0.2

x(k) +

1

1

 d(k),

y(k) =

1 0

0 0.9

x(k) + n(k),

where |d| ≤ 1 and |n| ≤ 0.001. In comparison with Example I, the C matrices of

systems SA and SB are much closer. In fact, while Example I can illustrate a sensor

loss-of-effectiveness of 40%, Example II can represent a sensor loss-of-effectiveness

of only 10%. Repeating the design procedures as in Example I, we obtain the

minimum intensity of the disturbances, depicted in Fig. 5.9, such that the absolute

distinguishability of the two systems is guaranteed.

As expected, for the same intensity of the disturbances, we require a higher num-

ber of measurements to guarantee the distinguishability between the two systems,

when compared to Example I. Alternatively, for the same number of measurements,

we require a higher intensity of the disturbances to guarantee the distinguishability.
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Figure 5.9: Minimum disturbances intensity that guarantee the distinguishability

between systems SA and SB in Examples I and II. The results from Example I are

also shown for comparison purposes.



5.4. SIMULATIONS 161

Example III: Different A Matrices

The distinguishability problem can become even much harder when the differences

between the systems lay in the dynamics matrix, A. For instance, consider that

SA


x(k + 1) =

0.1 1

0 0.2

x(k) +

1

1

 d(k),

y(k) =

1 0

0 1

x(k) + n(k),

SB


x(k + 1) =

0.1 1

0 0.3

x(k) +

1

1

 d(k),

y(k) =

1 0

0 1

x(k) + n(k),

where |d| ≤ 1 and |n| ≤ 0.001. In comparison with the former examples, the C

matrices of systems SA and SB are the same, but the Amatrices differ in one element.

This example can illustrate a change in the dynamics of the system. Repeating the

design procedures as in Examples I and II, we obtain the minimum intensity of the

disturbances, depicted in Fig. 5.10, such that the absolute distinguishability of the

two systems is guaranteed.

As seen in Fig. 5.10, the distinguishability of systems SA and SB is not guar-

anteed for a number of measurements smaller than 2, despite of the intensity of

the disturbances. However, for N ≥ 2, the systems are absolutely distinguishable

if the intensity of the disturbances is higher than 0.5. This can be explained by

the fact that the A matrices of SA and SB have a common eigenvalue. Therefore,

if the intensity of the disturbances is small, we might be exciting only one of the

modes of the systems. If, however, the intensity of the disturbances is large enough

(and since they are constrained by a bound on the amplitude), we guarantee that

we are exciting all the modes of the system and, thus, we can ensure the absolute

distinguishability of SA and SB.
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Figure 5.10: Minimum disturbances intensity that guarantee the distinguishability

between systems SA and SB in Example III.

5.5 Conclusions

In this chapter, we dealt with the problem of model falsification and stated that

its wide applicability ranges from Fault Detection and Isolation (FDI), to Multiple-

Model Adaptive Control (MMAC). Guaranteeing that all except the “correct” model

of the plant are falsified naturally led to the concept of absolutely distinguishable sys-

tems. We introduced the notion of absolutely distinguishable discrete-time dynamic

systems, highlighting its applicability to Linear Time-Invariant (LTI) and to Lin-

ear Parameter-Varying (LPV) models. We further demonstrated that, in general, a

persistence type of excitation condition is required on the exogenous disturbances.

It turned out that this condition can be written as a lower bound on the intensity

of the perturbations. Necessary and sufficient conditions for the distinguishability

of two systems were also derived. The theory was illustrated with a set of examples

that demonstrate the applicability of the results presented.

We argue that the concept of absolute distinguishability can be used as a tool

for the design of model falsification schemes, in an analogous manner to the use of
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the concepts of observability and controllability for the synthesis of observers and

controllers, respectively.





Chapter 6

Set-Valued Observers

6.1 Introduction

The previous chapter introduced the decision problem, which is common to all

Multiple-Model Adaptive Control (MMAC) methodologies, and suggested the model

falsification concept as one possible solution. This approach stems, on the one hand,

from the premise that a dynamic model can never be validated in practice, which

means that a model describing the plant up to a given time instant, may not be

able to describe the subsequent input/output behavior. On the other hand, if a

dynamic model is not able to explain the output of the actual system, given the

applied control inputs and bounds on the exogenous disturbances, it is straightfor-

ward to conclude that such model is not compatible with the actual dynamics of the

plant. Moreover, the previous chapter also introduced the notion of absolute input

distinguishability, which is key in order to guarantee that a given dynamic model

is falsified. Nevertheless, it was neither described how to falsify (or invalidate) dy-

namic models, nor how to design filters that can falsify models once the system is

absolutely input distinguishable.

Therefore, this chapter is devoted to the description of a technique that is able

to systematically design filters, which, in turn, are going to be used, in this thesis,

for model falsification. These filters – which were suggested by Professor Jeff S.

Shamma as an alternative decision subsystem – are referred to as Set-Valued Ob-

165
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servers (SVOs) – see [151–154] and references therein for an overview on SVOs –, as

they are able to provide set-valued estimates of the state of the plant, based upon

• the dynamic model of the system (which may be uncertain);

• the output measurements;

• the control inputs;

• and the bounds on the exogenous disturbances and measurement noise.

This type of observers, jointly with the model falsification paradigm described

in Chapter 5, naturally arises as a solution to distinguish among models of dynamic

systems. In particular, it is going to be shown in Chapter 7 that, under certain

conditions, two systems can be distinguished using SVOs if they are absolutely

distinguishable in the sense of Chapter 5.

The problem of designing set-valued observers – also referred to as set-membership

filtering design – has been extensively studied in the literature. One of the first al-

gorithms developed to compute (ellipsoidal) set-valued estimates of the state of a

system was introduced in [152] and [153]. In [155], an approach to the synthesis

problem of SVOs for LTV plants with nonlinear equality constraints is described. A

method for active mode observation of switching systems, based on SVOs, has been

recently proposed in [148].

Nevertheless, the problem of deriving the set of all the admissible states of a plant

with an uncertain model has not been addressed, to the best of our knowledge, from

a worst-case perspective. In other words, we would like to be able to compute,

at each sampling time, the set that contains all the possible states of the plant,

regardless of the sequence of exogenous disturbances and sensor noise.

The set-valued observers developed in this thesis are an extension of the work

in [76, ShammaTu]. In fact, the results in [142, 143, 156] are a generalization of

the set-valued state estimation for LPV systems (see [62]), which is able to handle

model uncertainty. Indeed, this chapter describes how to design SVOs which are

able to provide set-valued estimates of the state, under different scenarios, namely
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X(k) X(k+1)

X(k+1)

Y(k+1)

~

Figure 6.1: Predict and update cycles.

parametric uncertainty in the input, output or dynamics matrices of the state-space

representation of the plant.

As illustrated in Fig. 6.1, the SVOs predict cycle consists in estimating the set

of possible states, X̃(k + 1), at time k + 1, based upon the model of the system

and the set-valued estimate of the state at time k. The update cycle comprises the

computation of the states, Y (k+1), which are compatible with the measured output

of the plant, and the intersection of this set with X̃(k + 1). In this chapter, it is

demonstrated how to compute all these steps at once.

This chapter also addresses some of the computational and numerical issues

related to the use of SVOs. Indeed, this type of observers may require several cum-

bersome computations, such as the union of convex polytopes and the application

of the Fourier-Motzkin elimination method [149]. Therefore, as discussed in the

sequel, the use of SVOs in many applications is not viable due to these large on-line

computational requirements.

As a final remark, we assume discrete time-domain descriptions of the dynamic

systems throughout this chapter, since the intersection of sets X̃(k+1) and Y (k+1),

depicted in Fig. 6.1, cannot be performed continuously.

6.1.1 Main Contributions and Organization

This chapter thoroughly describes a technique to systematically synthesize set-

valued observers for uncertain linear parameter-varying systems.

The main contributions of this chapter are as follows:

a) The extension of the work on set-valued observers to uncertain LPV plants;



168 CHAPTER 6. SET-VALUED OBSERVERS

b) The description of solutions to the main numerical and computational issues

related to the SVOs;

c) The derivation of sufficient conditions for the convergence of the SVOs.

The remainder of this chapter is organized as follows. We start by introducing

the notation used in this chapter and describing some of the techniques available in

the literature for the design of SVOs in Section 6.2. An extension of the SVOs for

uncertain models is presented in Section 6.3. In Section 6.4, several computational

and numerical issues related to the SVOs are addressed. The theory is illustrated

by means of an example, in Section 6.5. Finally, some conclusions regarding this

chapter are discussed in Section 6.6.

6.2 Preliminaries and Notation

We represent the elements of v(k) ∈ Rm, for some m, k ∈ Z,m > 0, as vi(k), so that

v(k) = [v1(k), v2(k), · · · , vm(k)]T.

The concatenation of vectors v(k), v(k−1), · · · , v(k−N+1), for N ∈ Z+ is denoted

as

vN =


v(k)

...

v(k −N + 1)

 .
For the sake of simplicity, v is used instead of vN whenever N can be inferred from

the context.

We assume that the available input/output dataset can be obtained through a

Linear Parameter-Varying (LPV) system, described by x(k + 1) = A
(
ρ(k)

)
x(k) +B

(
ρ(k)

)
u(k) + L

(
ρ(k)

)
d(k),

y(k) = C
(
ρ(k)

)
x(k) +N

(
ρ(k)

)
n(k),

(6.1)

with bounded exogenous disturbances, d(·), uncertain initial state, x(0) ∈ X(0),

control input, u(·), and measurement output, y(·), corrupted by additive noise, n(·).

The system is assumed observable and controllable from the exogenous disturbances
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and control inputs, for all admissible ρ(·). The matrices of the system may be

uncertain and are assumed to depend upon a time-varying vector of parameters,

ρ(·). It is also assumed that

|d(k)| := max
i
|di(k)| ≤ 1,

and

|n(k)| := max
i
|ni(k)| ≤ n̄.

At each sampling time, k, the vector of states is denoted by x(k), and we define

X(0) := Set(M0,m0),

where

Set(M,m) := {q : Mq ≤ m} (6.2)

represents a convex polytope. Moreover, let x(k) ∈ Rn, d(k) ∈ Rnd , u(k) ∈ Rnu ,

and y(k) ∈ Rny , for k ≥ 0. For the sake of simplicity, we redefine

A(k) := A
(
ρ(k)

)
,

B(k) := B
(
ρ(k)

)
,

L(k) := L
(
ρ(k)

)
,

C(k) := C
(
ρ(k)

)
,

N(k) := N
(
ρ(k)

)
.

Let X(k + 1) represent the set of possible states at time k + 1, i.e., the state

x(k + 1) verifies (6.1) with x(k) ∈ X(k) if and only if x(k + 1) ∈ X(k + 1). An

SVO aims to find X(k + 1), based upon (6.1) and with the additional knowledge

that x(k) ∈ X(k), x(k − 1) ∈ X(k − 1), · · · , x(k − N) ∈ X(k − N) for some finite

N . We further require that for all x ∈ X(k + 1), there exists x? ∈ X(k) such that,

for x(k) = x?, the observations are compatible with (6.1). In other words, we want

X(k+1) to be the smallest set containing all the solutions to (6.1). A procedure for

time-varying discrete-time linear systems was introduced in [76, ShammaTu], and a

preliminary extension to uncertain plants is presented in [142].

The computation of X(k + 1) based upon X(k) for systems with no model

uncertainty can be performed using the technique described in [76, ShammaTu].
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Indeed, let the system be described by (6.1), and assume that the matrices of the

dynamics are exactly known. For the sake of simplicity, assume that N
(
ρ(k)

)
= I

for all ρ(k), k ≥ 0.1 Then, as shown in [76, ShammaTu], x(k + 1) ∈ X(k + 1) if

and only there exist x(k), n(k) and d(k), such that, for the current measurement,

y(k + 1), we have

P (k)


x(k + 1)

x(k)

d(k)

 ≤



B(k)u(k)

−B(k)u(k)

1

1

m̃(k)

m(k − 1)


=: p(k) (6.3)

where

P (k) :=



I −A(k) −Ld(k)

−I A(k) Ld(k)

0 0 I

0 0 −I

M̃(k) 0 0

0 M(k − 1)


, M̃(k) =

 C(k + 1)

−C(k + 1)

 ,

m̃(k) =

n̄+ y(k + 1)

n̄− y(k + 1)

 ,
and whereM(k−1) andm(k−1) are defined such thatX(k) = Set (M(k − 1),m(k − 1)).

The inequality in (6.3) provides a description of a set in R2n+nd , denoted by

Γ(k + 1) = Set (P (k), p(k)) .

1The case N
(
ρ(·)
)
6= I can also be handled, by redefining the measurement noise as

n∗(k) := N
(
ρ(k)

)
n(k), for each k ≥ 0, with bounds for the i-th component given by n̄∗i (k) =

max
|n|≤n̄

(
N
(
ρ(k)

)
n
)
i
.
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n
R

(n+n )NdR
Set(P(k),p(k))

X(k+1)

Figure 6.2: Projection of the set Γ(k + 1) onto Rn.

Therefore, it is straightforward to conclude that

x̂ ∈ X(k + 1)⇔ ∃
x∈Rn,d∈Rnd

:


x̂

x

d

 ∈ Γ(k + 1)

Hence, the set X(k + 1) can be obtained by projecting Γ(k + 1) onto the subspace

of the first n coordinates, as illustrated in Fig. 6.2.

The projection of Γ(k+1) onto Rn can be done resorting to the Fourier-Motzkin

elimination method (see [76, 149]), also described in Chapter 5. Therefore, we obtain

a description of all the admissible x(k + 1), which does not depend upon specific

x(k) nor d(k).

Notice that X(k + 1) is, in general, a set with a large (or infinite) number of

elements, rather than a singleton. Moreover, it can be obtained by the intersection

of two sets, namely X̃(k + 1) and Y (k + 1) (see Fig. 6.1), which are defined as

follows:

X̃(k + 1) := {x̃ : x̃ = A(k)x+ Ld(k)d+B(k)u(k), x ∈ X(k), |d| ≤ 1} , (6.4)

Y (k) := {x : y(k) = C(k)x+ n, |n| ≤ n̄.} (6.5)

Therefore, we have that

X(k + 1) = X̃(k + 1) ∩ Y (k + 1).
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Hence, (6.4) can be interpreted as a predictor, which estimates where the state

of the system is going to take value in the next sampling time, while (6.5) can be

used to update the predicted set-valued estimate of the state, based on the most

recent observations. Figure 6.1 illustrates these steps.

The formulation in (6.3) can be easily extended, in case it is convenient to com-

pute X(k + 1) not only based upon X(k), but also upon X(k − 1), · · · , X(k −N).

Indeed, x(k + 1) ∈ X(k + 1) if and only if there exist x(k + 1), · · · , x(k − N + 1),

y(k), and d(k), · · · , d(k −N + 1), such that,

PN(k)



x(k + 1)

x(k)

x(k − 1)
...

x(k −N + 1)

d(k)

d(k − 1)
...

d(k −N + 1)



≤



B(k)u(k)

−B(k)u(k)

Ãk1B(k-1)u(k-1) +B(k)u(k)

−Ãk1B(k-1)u(k-1)−B(k)u(k)
...

ÃkN -1B(k-N)u(k-N) + · · ·+B(k)u(k)

−ÃkN -1B(k-N)u(k-N)− · · · −B(k)u(k)

1
...

1

m̃(k)
...

m(k-N)



=: pN(k)

(6.6)
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where

PN(k) :=

I -Ãk0 · · · 0 -Lkd 0 · · · 0

-I Ãk0 · · · 0 Lkd 0 · · · 0

I 0 · · · 0 -Lkd -Ãk1L
k-1
d · · · 0

-I 0 · · · 0 Lkd Ãk1L
k-1
d · · · 0

...
...

. . .
...

...
... · · · ...

I 0 · · · -ÃkN -1 -Lkd · · · · · · -ÃkN -2L
k-N+1
d

-I 0 · · · ÃkN -1 Lkd · · · · · · ÃkN -2L
k-N+1
d

0 · · · · · · 0 I 0 · · · 0

0 · · · · · · 0 -I 0 · · · 0
...

...
...

...
...

...
...

...

0 · · · · · · 0 0 · · · · · · I

0 · · · · · · 0 0 · · · · · · -I

M̃(k) 0 · · · 0 0 · · · · · · 0

0 M(k-1) · · · 0 0 · · · · · · 0
...

...
. . .

...
...

...
...

...

0 · · · 0 M(k-N) 0 · · · · · · 0


with

Ãkm = A(k)A(k − 1) · · ·A(k −m).

6.3 Set-Valued Observers for Uncertain Plants

For plants with uncertainties, the set X(k + 1) is, in general, non-convex, even if

X(k) is convex. Thus, it cannot be represented by a linear inequality as in (6.2).

For instance, consider a dynamic system described by the following equations:
x(k + 1) =

2 0

0 1

+ ∆

−2 0

4 0

x(k),

y(k) = x(k),
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with ∆ ∈ [−1, 1], x(0) ∈ X(0) := {−1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1}. Clearly, X(0) is a

convex set. Nevertheless, X(1), depicted in Fig. 6.3, is a non-convex set.
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Figure 6.3: In the example, the set X(1) is non-convex, despite the fact that X(0)

is convex.

Therefore, the set X(k + 1) cannot be represented, in general, by (6.2).

The formulation presented in the previous section is not able to cope with model

uncertainty. We are particularly interested in explicitly taking into account para-

metric uncertainty in the dynamic models of the systems. This type of uncertainty

arises naturally from the modeling of physical systems, such as flexible structures

and vehicles moving through fluids, among others.

An implementable solution to the set-valued estimation of the state of an un-

certain LPV system is presented in [75]. In the suggested approach, a set-valued

state estimate is provided at each time, through the vertices of a polytope, P(k).

However, it is not guaranteed that the true state, xtrue, is contained in P(k), though

the distance between xtrue and P(k) is guaranteed to be bounded.

Implementable SVOs for LTV systems driven by exogenous disturbances were

presented in [76, ShammaTu]. One of the main advantages of this solution is that

it is non-conservative. In other words, this means that, given X(k) as previously

defined, the set-valued estimate of the state in the next sampling time, X(k + 1),

contains only points that are feasible. Thus, if x(k+ 1) ∈ X(k+ 1), then there exist
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d(k) and x(k) ∈ X(k), such that (6.3) is satisfied. Moreover, the method guarantees

that X(k + 1) contains all the states that are achievable at sampling time k + 1.

Preliminary results of the extension of the work in [76, ShammaTu] to uncertain

LPV plants were presented in [142]. In this section, we further extend these results,

so that different types of model uncertainty can be handled.

6.3.1 Parametric Uncertainty in the Input Matrix

We start by considering uncertainty in the input matrix B, i.e., we assume that the

system can be described by
x(k + 1) = A(k)x(k) + L(k)d(k) +

(
B0(k) +

n∆∑
j=1

∆j(k)Bj(k)

)
u(k),

y(k) = C(k)x(k) +N(k)n(k),

(6.7)

where x(0) ∈ X(0), x(k) ∈ Rn, u(k) ∈ U ⊆ Rnu , d(k) ∈ Wd ⊆ Rnd , y(k) ∈ Rny ,

n(k) ∈ Wn ⊆ Rnn , and ∆(k) ∈ Rn∆ . As happened previously, the system is assumed

observable and controllable from the exogenous disturbances and control inputs, for

all admissible ρ(·). It is also assumed that

|∆j(k)| ≤ 1.

In this case, the uncertainty vector, ∆(k) =
[
∆1(k) · · · ∆n∆

(k)
]T

, represents

uncertainty in the input of the plant. Define

Fj(k) := Fj(u(k)) := Bj(k)u(k), (6.8)

for j ∈ {1, · · · , n∆}. Then, by substituting (6.8) in (6.7), we obtain the following

equivalent description for the system
x(k + 1) = A(k)x(k) +B0(k)u(k) +

n∆∑
j=1

Fj(k)∆j(k) + L(k)d(k),

y(k) = C(k)x(k) +N(k)n(k),

(6.9)

where |∆j(k)| ≤ 1. Therefore, each ∆j(·) can be seen as a bounded exogenous

disturbance, acting upon the system. Hence, we recover the formulation in [76,

ShammaTu], which means that the methodology described in the previous section

can be used to obtain X(k + 1) based on X(k).
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6.3.2 Parametric Uncertainty in the Output Matrix

Consider a dynamic system, S, described by

S :


x(k + 1) = A(k)x(k) +B(k)u(k) + L(k)d(k),

y(k) =

(
C(k) +

n∆∑
j=1

∆j(k)Cj(k)

)
x(k) +N(k)n(k),

(6.10)

where x(0) ∈ X(0), x(k) ∈ Rn, u(k) ∈ U ⊆ Rnu , d(k) ∈ Wd ⊆ Rnd , y(k) ∈ Rny ,

n(k) ∈ Wn ⊆ Rnn , and ∆ ∈ Rn∆ . The system is assumed observable and controllable

from the exogenous disturbances and control inputs, for all admissible ρ(·). It is also

assumed that

|∆j(k)| ≤ 1.

In this case, the uncertainty vector, ∆(k), represents uncertainty in the output of

the plant. Notice that S is equivalent to

S ≡
(
S̄j +N(k)n̄

)
+

n∆∑
j=1

(
∆jS̄j +N(k)n̄

)
, (6.11)

where, for j ∈ {1, · · · , n∆},

S̄j :

 xj(k + 1) = A(k)xj(k) +B(k)u(k) + L(k)di(k),

yj(k) = Cj(k)xj(k),

with xj(0) = x(0) for all j ∈ {0, · · · , n∆}, and n̄i = ni
n∆+1

. The block diagram of

(6.11) is depicted in Fig. 6.4.

Since each S̄j, for j ∈ {0, · · · , n∆}, is a linear system, and each ∆j(k), for

j ∈ {1, · · · , n∆} and k ≥ 0, is an uncertain scalar, we obtain

S ≡
(
S̄j +N(k)n̄i

)
+

n∆∑
j=1

(
S̃j +N(k)n̄

)
, (6.12)

where

S̃j :

 xj(k + 1) = A(k)xj(k) +B(k)∆j(k)u(k) + L(k)∆j(k)d(k),

yj(k) = Cj(k)xj(k).

Notice that (6.12) describes an LPV system with uncertain input. Nevertheless,

the exogenous disturbances are now multiplied by the uncertainties ∆j(k), and hence
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Figure 6.4: Block diagram of an LPV system with uncertainties in the output.

S̃j depends upon ∆j(k) and d(k) in a bilinear fashion. However, this can be avoided

by introducing the following relaxation. Since |∆j(k)| ≤ 1, we have that

d̃j(k) := ∆j(k)d(k)⇒ ‖d̃j(k)‖ ≤ ‖d(k)‖. (6.13)

Thus, by substituting ∆j(k)d(k) in (6.12) by d̃j(k) as in (6.13), we obtain a

description of the system which is linear in the unknown variables, at the cost of

some conservatism due to the implication in (6.13). Once again, the method in the

previous section can be used to compute the set-valued estimate of the state.

6.3.3 Parametric Uncertainty in the Dynamics

We finally consider the problem of designing SVOs for LPV plants with uncertainty

in the A matrix. Let S be described by

S :


x(k + 1) =

(
A0(k) +

n∆∑
j=1

∆j(k)Aj(k)

)
x(k) +B(k)u(k) + L(k)d(k),

y(k) = C(k)x(k) +N(k)n(k),

(6.14)
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where x(0) ∈ X(0), x(k) ∈ Rn, u(k) ∈ U ⊆ Rnu , d(k) ∈ Wd ⊆ Rnd , y(k) ∈ Rny ,

n(k) ∈ Wn ⊆ Rnn , and ∆(k) ∈ Rn∆ . The system is assumed observable and

controllable from the exogenous disturbances and control inputs, for all admissible

ρ(·). Moreover, we assume that

|∆j(k)| ≤ 1.

The uncertainty vector, ∆(k), represents uncertainty in the dynamics of the plant,

and can appear, for instance, in the modeling of several types of physical systems.

Uncertainty Matrices with Rank 1

For the sake of simplicity, let us consider that n∆ = 1, although the results presented

in the sequel can be readily extended to the case n∆ > 1. Further assume that

rank (A1(k)) = 1 for all k ≥ 0. Thus, there exist vectors e1(k) and f1(k), for each

k ≥ 0, such that

A1(k) = e1(k) (f1(k))T .

Moreover, define

g1(k) := (f1(k))T x(k)∆(k).

Then, system S in (6.14), for n∆ = 1, can be rewritten as

S :

 x(k + 1) = A0(k)xi(k) + e1(k)g1(k) +B(k)u(k) + L(k)d(k),

y(k) = C(k)x(k) +N(k)n(k),
(6.15)

with the additional constraint

|g1(k)| ≤
∣∣ (f1(k))T x(k)

∣∣. (6.16)

Notice that (6.15), for arbitrary g1(k), provides a description of y(k) which is

linear in the variables x(k), g1(k), u(k), d(k) and n(k). Nevertheless, the constraint

in (6.16) is nonlinear regarding x(k). However, for given k, the aforementioned

constraint in (6.16) can be rewritten as
− (f1(k))T x(k) ≤ g1(k) ≤ (f1(k))T x(k)

or

(f1(k))T x(k) ≤ g1(k) ≤ − (f1(k))T x(k).

(6.17)
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Therefore, if, at time k, the set of possible states X(k) is a convex polytope,

it may happen that at iteration k + 1 the set X(k + 1) will be the union of two

convex polytopes. Hence, the description of X(k + j), for j > 0, may require an

arbitrarily large number of unions of convex polytopes. One way of dealing with

this issue is to convexify the estimated set of possible states, by computing the

smallest convex set that contains all the possible states. The shortcoming with this

approach is that states which are not compatible with (6.1) may be included, thus

adding conservatism to the solution.

General Case

If rank (A1(k)) > 1, then A1(k) can be written as the sum of several matrices with

unitary ranks, as follows

A1(k) = e1,1(k) (f1,1(k))T + · · ·+ e1,m(k) (f1,m(k))T ,

for some integer m ≥ 0. Thereafter, define

gj(k) := (f1,j(k))T x(k)∆(k),

for each j ∈ {1, · · · ,m}. Then, each gj(k) can be treated as an independent uncer-

tainty, and the previously described method can be applied. However, this approach

can add conservatism to the solution, since we assume no relation between each gj(k).

Convex Approach

A different method to handle uncertainty in the A matrix was presented in [156],

and is going to be described herein for the sake of completeness. The proposed

solution is to overbound set X(k+ 1) by a convex one, denoted by X̂(k+ 1), which

is going to be described as follows.

Let vi, i = 1, . . . , 2(Nn∆), for some positive scalar N , denote a vertex of the

hyper-cube

C :=
{
δ ∈ RNn∆ : |δ| ≤ 1

}
, (6.18)
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where vi = vj ⇔ i = j. Then, we denote by X̂vi(k + 1) the set of points x(k + 1)

that satisfy (6.14) with [∆(k)T, · · · , ∆(k −N + 1)T]T = vi and with x(k) ∈ X̂(k),

· · · , x(k −N + 1) ∈ X̂(k −N + 1). Further define

X̂(k + 1) := co
{
X̂v1(k + 1), · · · , X̂v

2(Nn∆)
(k + 1)

}
,

where co {p1, . . . , pm} is the smallest convex set containing the points p1, . . . , pm,

also known as the convex hull of p1, . . . , pm.

Since, as previously mentioned, X(k+ 1) is, in general, non-convex even if X(k)

is convex, we are going to use X̂(k+1) to overbound the set X(k+1). An illustration

for the case n∆ = 1, N = 1, is depicted in Fig. 6.5.

X(k)
^X (k)D=1

X (k)D=-1

Figure 6.5: Convex hull, X̂(k), of the sets generated by the solutions to (6.1) with

n∆ = 1, N = 1 and for ∆ = 1 and ∆ = −1.

The set X̂(k + 1) contains X(k + 1), as demonstrated next.

Proposition 6.1. Consider a system described by (6.14) and assume that X(0) ⊆

X̂(0). Then X(k) ⊆ X̂(k) for all k ∈ {0, 1, 2, · · · }.

Proof. Denote by Xvi(k + 1) the set of points x(k + 1) that satisfy (6.14) with

[∆(k)T, · · · , ∆(k − N + 1)T]T = vi and with x(k) ∈ X(k), · · · , x(k − N + 1) ∈

X(k −N + 1). Further define

X∗(k + 1) := co
{
Xv1(k + 1), Xv2(k + 1), · · · , Xv

2(Nn∆)
(k + 1)

}
.

Then, it is clear that X∗(k + 1) ⊆ X̂(k + 1) if X̂(j) ⊆ X(j), for 0 ≤ j ≤ k. By in-

duction, it is straightforward to conclude that X∗(i) ⊆ X̂(i) for all i ∈ {0, 1, 2, · · · },

since it was assumed that X(0) ∈ X̂(0).
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Hence, we only have to prove that X(k) ⊆ X∗(k). To see this, note that the

disturbances and control input in (6.14) do not add any non-convexities to the

set-valued estimate of the state at each sampling time. Therefore, without loss of

generality, assume that d(·) ≡ 0 and u(·) ≡ 0 in (6.14). Let x? ∈ X(k) be obtained

by using a vector ∆ ∈ C in (6.18). Thus, it can be defined by

x? :=

[
N∏
i=1

(
Ao(k − i) + αiA1(k − i)− (1− αi)A1(k − i)

)]
x,

where x ∈ X(k −N),

0 ≤ αi ≤ 1,

for i ∈ {1, · · · , N}, and assuming a single uncertainty, |∆(i)| ≤ 1, i ≥ 0, for the sake

of simplicity. (Recall that, in this scenario, ∆ =
[
∆(k − 1) · · · ∆(k −N)

]T

.)

We now show that x? can be obtained as a convex combination of points satisfying

(6.14), with d(·) ≡ 0, u(·) ≡ 0, x(k −N) ∈ X(k −N), and for ∆ in the vertices of

C. Define  A+(k) = A(k) + A1(k),

A−(k) = A(k)− A1(k),

and let 

x1
1 = A+(k − 1)A+(k − 2) · · ·A+(k −N)x,

x1
2 = A−(k − 1)A+(k − 2) · · ·A+(k −N)x,

x1
3 = A+(k − 1)A−(k − 2) · · ·A+(k −N)x,

x1
4 = A−(k − 1)A−(k − 2) · · ·A+(k −N)x,

...

x1
2N−1 = A+(k − 1)A−(k − 2) · · ·A−(k −N)x,

x1
2N = A−(k − 1)A−(k − 2) · · ·A−(k −N)x,

where x ∈ X(k −N). Now let
x2

1(γ1) =
[(
Ao(k − 1) + γ1A1(k − 1)− (1− γ1)A1(k − 1)

)
A+(k − 2) · · ·A+(k −N)

]
x,

x2
2(γ1) =

[(
Ao(k − 1) + γ1A1(k − 1)− (1− γ1)A1(k − 1)

)
A−(k − 2) · · ·A+(k −N)

]
x,

...

x2
2N−1(γ1) =

[(
Ao(k − 1) + γ1A1(k − 1)− (1− γ1)A1(k − 1)

)
A−(k − 2) · · ·A−(k −N)

]
x.

Proceeding with this method, we obtain

xN+1
1 (γ1, · · · , γN) =

[
N∏
i=1

(
Ao(k − i) + γiA1(k − i)− (1− γi)A1(k − i)

)]
x.
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Hence, we get

xN+1
1 (γ1, · · · , γN) = x?,

for γi = αi, for all i ∈ {1, · · · , N}. A similar procedure can be used for the case

where more than one uncertainty is considered, thus concluding the proof.

Although this approach adds some conservatism to the solution, it possesses the

valuable property summarized in Proposition 6.2.

Proposition 6.2. Suppose that a system described by (6.14) with x(0) = X(0) and

u(k) = 0,∀k, verifies, for sufficiently large N∗,

γN := max

∆(k), · · · ,∆(k +N)

|∆(m)| ≤ 1,∀m
k ≥ 0

∥∥Πk+N
j=k A(j)

∥∥ < 1,

for all N ≥ N∗, and where

A(j) :=

[
A(j) +

n∆∑
i=1

Ai(j)∆i(j)

]
.

Then, X̂(k) cannot grow without bound.

Proof. Consider the smallest hyper-cubes, denoted by Ψ(1),Ψ(2), · · · ,Ψ(m), that

contain the sets X̂(1), X̂(2), · · · , X̂(m), respectively. Let N ≥ N∗. Then, an SVO

can be synthesized to generate the sets Ψ(1), Ψ(2), · · · , Ψ(m), using the following

inequality:

|x(k +N)| ≤ γN |x(k)|+ δN , (6.19)

where

δN = max
d(k),··· ,d(k+N−1)

|AN−1Ld(k) + · · ·+ Ld(k +N − 1)|.

Notice that, to prove this proposition, it suffices to show that the sequence Ψ(1),

Ψ(2), · · · , Ψ(m) does not grow without bound, since it contains X̂(1), X̂(2), · · · , X̂(m).

Given that γN < 1 by assumption and that |δN | <∞ since |d| <∞, the sets defined

by (6.19) cannot grow without bound, which concludes the proof.
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Notice that, in order to guarantee that X̂ does not grow without bound, an SVO

should use the N most recent estimates. In other words, the estimation of X̂(k+N)

should take into account the fact that x(k) ∈ X̂(k), x(k + 1) ∈ X̂(k + 1), · · · , x(k +

N − 1) ∈ X̂(k +N − 1).

In summary, this subsection proposed two methods, with different properties,

to handle uncertainty in the A matrix. In the first case, no conservatism is added

whenever the ranks of the uncertainty matrices, Aj(k), are unitary. Nevertheless,

it may require an arbitrarily large number of unions of convex polytopes. The

solution proposed to overcome this problem, at the cost of some conservatism, was

to compute, at each time k, the convex hull of the admissible sets, and use it as an

estimate of X(k). The second method proposed is, in general, less computationally

demanding, but can also be conservative.

6.4 Computational and Numerical Issues

This section presents a discussion on some of the most important computational and

numerical shortcomings of the SVOs. These limitations constraint the maximum

number of states of the dynamic model of an SVO, and must be taken into account

during design. It is also provided, in this section, a few tools to address some of the

problems related to the implementation of the SVOs.

6.4.1 Fourier-Motzkin Elimination Method

The first issue in the computations performed by the SVOs is related to the imple-

mentation of the so-called Fourier-Motzkin elimination method, described in [149],

that projects polyhedral convex sets on to subspaces, as illustrated in Fig. 6.2.

The Fourier-Motzkin algorithm leads to a set of linear inequalities, where some

of them might be linearly dependent. This may be problematic, since the size of

M(k) and m(k) (see (6.3)) could be increasing very fast with time. To overcome this

problem, one has to eliminate the linearly dependent constraints. This can be done

by solving several small linear programming problems at each sampling time, making
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the practical implementation of this type of observers somewhat computationally

complex.

6.4.2 Union of Convex Polytopes

If the dynamic model of the plant in (6.1) is uncertain, it may be convenient to

implement the union of several polytopes, as noted in Section 6.3.3. In one- or two-

dimensional spaces, this can be easily implemented. For higher dimensional spaces,

one can resort, for instance, to the algorithm in [157]. Nevertheless, as happened

with the Fourier-Motzkin elimination method, the computational burden that arises

from these calculations may be significant for plants with a large number of states.

Hence, in many applications, it may be more convenient to use the convex hull of

the set-valued estimate of the state, though this may add some conservatism.

6.4.3 Numerical Approximation of Convex Polytopes

Another possible shortcoming of the SVOs is related to the numerical approxima-

tions used during the computation of the set-valued estimates. In other words, since

we do not have infinite precision in the computations that have to be carried out

every sampling time to obtain the set-valued estimate X̂(k), the actual set where

the state can take value, X(k), need not be entirely contained inside X̂(k) – see

Fig. 6.6. Therefore, it may happen that the true state does not belong to X̂(k),

and hence we may end up by discarding the region which the parameter actually

belongs to.

Thus, a very simple solution is to “robustify” the algorithm by slightly enlarging

the set X̂(k), as illustrated in Fig. 6.6. As long as the maximum error in the

computation of the set X(k) is known, we have, for every time, k, a vector ε∗(k)

such that X(k) ⊆ Set (M(k),m(k) + ε∗(k)) .

Moreover, it may happen that, from time-step to time-step, the number of faces

of the polytope containing the set-valued estimate of the state of the system increases

exponentially. Hence, it is useful to overbound, in such circumstances, that polytope

by another one, with a constrained number of faces.
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X(k)
X(k)

Set(M(k), m(k)+ε*(k))

^

Xi

Xj

Figure 6.6: Overbound of set X̂(k) to include X(k).

Nonetheless, as stressed in [142], using an overbound to guarantee that we do

not discard valid states of the plant also has its shortcomings. Besides adding

conservatism to the solution, it may be responsible for the unbounded increase with

time of the area of the polytope of the set-valued estimate.

Remark 6.1: As stressed in the Introduction of this chapter, one of the first al-

gorithms developed to compute (ellipsoidal) set-valued estimates of the state of

a system was presented in [152] and [153]. Using ellipsoids to describe the set-

valued estimates of the state is an alternative method to the one presented in this

thesis, with the advantage of having less computationally demanding calculations.

However, unlike the convex polytope-based approach presented in this chapter, the

ellipsoid-based approach does not guarantee convergence of the set of state esti-

mates, even if the system at hand is stable. Therefore, the SVOs described in this

thesis should only be seen as an alternative to the ellipsoid-based approach. �

The remainder of this subsection is, therefore, devoted to the derivation of suffi-

cient conditions that guarantee that, if X(k) is bounded, so does the estimated set,

X̂(k).

Consider a time-invariant plant described by (6.1) with no model uncertainty
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and with 

A(ρ(k)) = A

B(ρ(k)) = B

L(ρ(k)) = L

C(ρ(k)) = C

N(ρ(k)) = N

for all k ≥ 0. Furthermore, let X(0) be bounded. Throughout this subsection, we

suppose that the eigenvalues of A belong to the unit circle. In that case, we can

guarantee that X(k) is bounded. However, we are not constraining the applicability

of the SVOs. As shown in the previous section, the SVOs can be used to compute

the set-valued estimate of the states of plant with a state-space realization as in

(6.1), and, therefore, unstable plants can be handled.

Let Ψ(k) denote the smallest hyper-cube centered at the origin, that contains

the set X(k), as depicted in Fig. 6.7. Define ε(k) as the maximum distance between

a face of Ψ(k) and the corresponding face of the estimate Ψ̂(k), as depicted in Fig.

6.7. Next, we try to derive sufficient conditions to guarantee that Ψ̂(k) is bounded.

It should be noticed that Ψ̂(k) can be interpreted as a rough approximation of X̂(k),

in the sense that X̂(k) ⊆ Ψ̂(k), which means that if Ψ̂(k) is bounded, so does X̂(k).

e(k)

Y(k)

Y(k)

X(k)

Xi

Xj

Figure 6.7: Bounding set Ψ(k), corresponding estimate Ψ̂(k), and maximum numer-

ical error ε(k).

Proposition 6.3. Consider an asymptotically stable plant described by (6.1) with

the aforementioned constraints. Suppose that the maximum numerical error (pre-
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viously defined) at every sampling time is ε(k), with ε(k) ≤ ε∗|xi(k)|, for some

0 ≤ ε∗ <∞ and for every x(k) ∈ X(k). Further suppose that ε∗ < 1− ρ(A), where

ρ(A) denotes the spectral radius of A. Then, Ψ̂(k) is bounded.

Proof. For given N , define

δ := sup
d(k),··· ,d(k+N−1)

|AN−1Ld(k) + · · ·+ Ld(k +N − 1)|.

Notice that δ is bounded, since d(·) is also bounded. Then,

|x(k +N)| ≤ ‖AN‖|x(k)|+ δ.

Since the eigenvalues of A are inside the unit circle, we can find γ > 0 and N > 0

such that ‖AN‖ ≤ 1− γ. Hence

|x(k +N)| ≤ (1− γ)|x(k)|+ δ =

[
1−

(
j − 1

j

)
γ

]
|x(k)| − γ

j
|x(k)|+ δ,

for any j 6= 0. Thus, for any j > 0, and sufficiently large |x(k)|, we have

−γ
j
|x(k)|+ δ ≤ 0,

which leads to

|x(k +N)| ≤
[
1−

(
j − 1

j

)
γ

]
|x(k)|.

However, to overcome the aforementioned numerical issues, we overbound this set

by

|x(k +N)| ≤
[
1−

(
j − 1

j

)
γ + ε∗

]
|x(k)|.

If ε∗ < j−1
j
γ, then |x(k +N)| < |x(k)|. Taking the limit as j tends to infinity leads

to the desired result.

Remark 6.2: In an intuitive manner, the above result implies that systems driving

their states to zero rapidly can have larger overbounds for the sets X(·) than slower

systems. �

Corollary 6.1. Consider a stable plant described by (6.1) with the aforementioned

constraints. Suppose that the maximum numerical error at every sampling time is

ε, with 0 ≤ ε <∞. Then, Ψ̂(k) is bounded.
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Proof. Using a similar approach to that in the previous proposition, we get

|x(k +N)| ≤
[
1−

(
j − 1

j

)
γ

]
|x(k)|+ |ε|,

for any j > 0 and sufficiently large |x(k)| and N . Thus, also for sufficiently large

|x(k)|, [
1−

(
j − 1

j

)
γ

]
|x(k)|+ |ε| ≤ (1− ρ) |x(k)|,

with 0 < ρ < 1, which concludes the proof.

Remark 6.3: We stress that this type of errors can be modeled as an exogenous

disturbance. This fact is in agreement with Corollary 6.1, since the only requirement

is for the system dynamics matrix to have a spectral radius smaller than one. �

These shortcomings of the SVOs do not jeopardize the implementability of the

algorithms. In fact, although some of the constraints may seem very stringent from

a practical point of view, they may not be relevant when used to discard dynamic

models in a Multiple-Model Adaptive Control (MMAC) architecture, as shown in

Chapter 7.

6.4.4 Bounding Ellipsoids

One of the most widespread approaches to the design of set-valued observers was

introduced in [152] and [153]. Instead of considering convex polytopes to overbound

the set-valued estimates of the state, the authors in [152] and [153] resort to the use

of bounding ellipsoids. This is indeed an interesting an alternative method to the

SVOs developed in this thesis, due to its reduced computational requirements.

Nevertheless, the bounding ellipsoids also have their shortcomings. Let X(k)

denote the set where the state of the system can actually take values at time k,

and let X̂(k) be the corresponding ellipsoid overbound. As stressed in [152], “it

cannot be concluded that the boundary of X̂(k) will necessarily touch X(k) at any

point”, which means that the conservatism added by the bounding ellipsoid can be

arbitrarily large.
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As an example, Fig. 6.8 depicts the time-evolution of the set X(k), for a given

dynamic system. In this case, the volume of the set where the states of the plant

can take value is decreased every iteration.

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

X(0)

Y(0) X(0)

~

Y(0)

X(0)
~

X(0)
^

Figure 6.8: Time-evolution of set X(k).

However, if we use bounding ellipsoids, the results obtained are illustrated in

Fig. 6.9. In this example, we assume that the states added due to the conservatism

of the bounding ellipsoids are responsible for the increase, in terms of volume, of

the set-valued estimate of the state. Hence, it may happen that the volume of the

bounding ellipsoid grows arbitrarily, although the actual set to which the state of

the system belongs is bounded.
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x1

x2

x1

x2

x1

x2

X(0)

Y(0) X(0)

~

Y(0)

X(0)
~

X(0)
^

Figure 6.9: Time-evolution of the bounding ellipsoid, X̂(k), to the set X(k).

As further stressed in Chapter 9, an insightful comparison between the bounding

ellipsoids and the SVOs developed in this thesis is a possible direction of future

research.

6.4.5 Discretization Issues

This subsection is devoted to an important topic when dealing with models of real-

istic (physical) systems. Several plants, like the Mass-Spring-Dashpot (MSD) plant
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described in Chapter 2, are naturally modeled in continuous-time. Nonetheless, the

aforementioned SVOs can only be used with discrete-time dynamic models. The

classical methods for discretizing LTI systems cannot be readily applied to uncer-

tain models. Therefore, we start this subsection by deriving discrete-time uncertain

models for continuous-time uncertain plants.

Another important discretization issue is related to the fact that the SVOs typ-

ically entail heavy computations, when compared to the dynamics of the plant. In

other words, it is required, in general, different sampling frequencies for the control

and decision subsystems of the multiple-model adaptive control methodology pre-

sented in the following chapter. Hence, the second part of this subsection tackles

the problem of having different sampling rates for the same plant – the interested

reader is also referred to [158].

Discretization of Continuous-Time Uncertain Models

Consider a continuous-time LTI stable plant described by ẋ(t) = Ax(t) +Bu(t) + Ld(t),

y(t) = Cx(t) + n(t).
(6.20)

Let T be the desired sampling period and assume that u(·) and, for the sake of

simplicity, d(·), are constant during each sampling interval. Then, for t = kT , we

can rewrite (6.20) as x((k + 1)T ) = Adx(kT ) +Bdu(kT ) + Ldd(kT ),

y(kT ) = Cx(kT ) + n(kT ),

where Ad := eAT , Bd :=
∫ T

0
eAτBdτ. In the sequel, we use k instead of kT , for the

sake of notational simplicity.

Next, we suppose that A is uncertain, with a single uncertainty. Redefine A :=

Ā+ A1∆, where |∆| ≤ 1. Then, for small T ,

Ad = eAT ≈ eĀT
(
I + A1T∆ +

(A1T∆)2

2
+ · · ·

)
. (6.21)
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We recall that if A1 is nilpotent, then (6.21) becomes much simpler. In particular,

suppose that A2
1 = 0. Then

Ad = eAT ≈ eĀT (I + A1T∆) = Ād + Ad1∆,

where Ād := eĀT , Ad1 := eĀTA1T. In case the approximation in (6.21) does not hold,

numerical methods can be employed to approximate Ad.

Now let us consider the discretized B matrix. The calculations for the L matrix

are similar, and hence are not presented here. We have that

Bd =

∫ T

0

eAτdτB =

∫ T

0

eĀτeA1∆τdτB. (6.22)

As seen in (6.22), Bd is also uncertain. Describing Bd as a function of ∆ can lead

to cumbersome calculations. However, in some practical problems, it is possible to

bound the integral in (6.22) resorting to numerical methods. In such circumstances,

we can rewrite Bd as Bd = B̃d + db, where db represents a fictitious disturbance.

Sampling of Discrete-Time Models

As mentioned before, due to the computational requirements associated with the

set-valued observers (in particular, requiring the on-line elimination of several linear

inequalities), different sampling rates should be used for the control and for the

estimation part of the multiple-model adaptive control algorithm presented in the

next chapter. Therefore, let Ts be the sampling period for the SVOs, and Tc << Ts

be the sampling period for the controllers. Assume that Ts = mTc, where m is a

positive integer. We further define

As = eATs ,

and

Ac = eATc .

We consider that the model used for control is described by (omitting the distur-

bances)  x(k + 1) = Acx(k) +Bcu(k),

y(k) = Cx(k) + n(k).
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Hence, x(k +m) = Asx(k) + B̄ū(k), where

B̄ =
[
Am−1
c Bc Am−2

c Bc · · · AcBc Bc

]
,

ū(k) =
[
u(k) u(k − 1) · · · u(k +m− 1)

]T
.

Thus, by augmenting the control input, u(·), and using n̄(k) = n(mk), the model

used by the SVOs, that is, the model with sampling period Ts, can be described by x̄(k + 1) = Asx̄(k) + B̄ū(k),

ȳ(k) = Cx̄(k) + n̄(k).

Hence, the SVOs can run at a much lower sampling rate than that of the control

system, thus avoiding the deterioration of the performance of the closed-loop system.

6.5 Simulation

In this section, the applicability of the set-valued observers introduced in this chapter

is illustrated in simulation. The example selected is the same as in [76, ShammaTu],

although in the following simulations we also consider model uncertainty.

Let
x(k + 1) =

 0.7 0.7

−0.7 0.7

+ c∆

1 0

1 0

x(k) +

1

1

 d(k)

y(k) =
[
1 1

]
x(k) + n(k),

(6.23)

where c is a known constant and ∆, with |∆| ≤ 1, is a surrogate for model uncer-

tainty. Moreover, the exogenous disturbance and measurement noise are known to

be bounded by |d| ≤ 1 and |n| ≤ 1, respectively, and the initial state is assumed to

be contained inside the set defined as

x(0) ∈
{
x ∈ R2 : |x| ≤ 1

}
= Set




1 0

−1 0

0 1

0 −1

 ,


1

1

1

1




Our goal is to design an observer that provides set-valued estimates for the state of

the plant at each sampling time, based on the aforementioned information only.
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The horizon of the simulation is k = 0, 1, 2, 3, and the disturbance and noise

histories used are

d(0, 1, 2, 3) = (1,−1,−1, 1),

n(0, 1, 2, 3) = (1,−1, 1,−1).

The true initial condition for the simulations was defined as x(0) = 0.

The sets of admissible states, for c = 0 in (6.23), at times k = 2, 3, are depicted

in Fig. 6.10 and Fig. 6.11, respectively. In this case, there is no model uncertainty,

which means that these sets are not conservative, i.e., for each state, x?, inside these

sets, there exists a sequence of disturbances and measurement noise that drives the

true state of the plant to x?.

−1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

 

 

Estimate
State

Figure 6.10: True state of the system and estimated set of admissible states, at time

k = 2 and for c = 0 in (6.23).

Now let us consider that c 6= 0, i.e., the model of the plant is uncertain. For the

simulations, we let ∆ = 0 in (6.23). The sets of admissible states, for several values

of c, at time k = 3, are depicted in Fig. 6.12. The SVOs were designed using the

Convex Approach in Section 6.3. As expected, the size of these sets increases with

c. Moreover, if we denote by Xc̄(k) the set of admissible states at time k and with
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Figure 6.11: True state of the system and estimated set of admissible states, at time

k = 3 and for c = 0 in (6.23).

c = c̄, then we conclude that

X0(k) ⊆ X0.01(k) ⊆ X0.1(k) ⊆ X0.2(k).

6.6 Conclusions

This chapter was devoted to the development of Set-Valued Observers (SVOs), that

are able to estimate the set of admissible states of dynamic Linear-Parameter Vary-

ing (LPV) uncertain systems, and that can ultimately be used to invalidate models

of a plant.

Notwithstanding the rich literature available on the subject of SVOs design,

not much attention was devoted to the synthesis of SVOs which provide, at each

sampling time, the set that contains all the possible states of the plant, regardless of

the sequence of exogenous disturbances and sensor noise, and assuming an uncertain

dynamic model for the system.

This motivated the extension of the SVOs presented in [76, ShammaTu] to uncer-

tain plants. However, it was shown that, for uncertain models, the sets of admissible
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Figure 6.12: True state of the system and estimated set of admissible states, at time

k = 3 and for several values of c in (6.23).

states of the plant may be non-convex, which typically results in an increased com-

putational burden. Several solutions to this problem were proposed, although they

all entail some conservativeness issues.

Some of the most important numerical and computational shortcomings of the

SVOs were also addressed in this chapter. Despite the fact that a few constraints

may seem very stringent from a practical point of view, they may not be relevant

when used to invalidate models in a Multiple-Model Adaptive Control (MMAC)

architecture, as shown in Chapter 7.

As an illustration of the capabilities of the SVOs in set-valued state estimation,

an example taken from [76, ShammaTu] was used. As expected, the size of the sets

of admissible states of the plant increased with the “amount” of uncertainty on the

model of the system.

In the following chapter, the SVOs are going to be used for the falsification of

uncertain dynamic models.





Chapter 7

Model Falsification Using SVOs

7.1 Introduction

In Chapter 5, it was stated that unmodeled dynamics and adverse exogenous distur-

bances, can result in erroneous model falsification. Therefore, worst-case approaches,

rather than stochastic approaches, are more suitable to address this type of problem.

Indeed, in Chapter 6, a type of robust filters, referred to as Set-Valued Observers

(SVOs), was used to compute the set of admissible states of a given plant.

Hence, we are now able to integrate the ideas of Chapter 5 with the SVOs

developed in Chapter 6. Using such an approach, we are able to construct recursive

algorithms – unlike those proposed in [71, 125] – to falsify models.

The main idea in model falsification using set-valued observers consists in invali-

dating dynamic models associated with SVOs whose state estimate, at a given time

instant, is the empty set. Thus, as long as a given SVO is providing non-empty set-

valued estimates for the state of the plant, the corresponding dynamic model cannot

be discarded. Using this line-of-thought, and since the SVOs developed in Chapter

6 are able to cope with model uncertainty, several architectures and algorithms are

going to be proposed in this chapter, in order to achieve robust model falsification,

i.e., in order to falsify uncertain dynamic models.

As stressed in Chapter 5, model falsification strategies have a wide applicability.

Indeed, there are several areas of research where we are interested in distinguishing

197
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among a set of eligible dynamic models. Therefore, this chapter is also devoted

to the application of this model falsification strategy to Multiple-Model Adaptive

Control (MMAC) and to Fault Detection and Isolation (FDI). In the former case,

the advantage of using SVOs as a tool for model invalidation has the advantage, over

other MMAC schemes, such as [34], of guaranteeing that the “correct” model of the

plant is eventually selected, under mild assumptions on the exogenous disturbances.

These constraints on the exogenous disturbances are naturally connected to the

concept of absolute input distinguishability, introduced in Chapter 5. In terms of

FDI, the architectures proposed in this chapter guarantee that, also under mild

assumptions on the exogenous disturbances, a fault is always detected and isolated

after a given number of measurements. Both applications of the model falsification

approach using SVOs are illustrated with several numerical examples.

7.1.1 Main Contributions and Organization

This chapter introduces several architectures and algorithms for model falsification

using set-valued observers. As stressed, the aforementioned approaches have ap-

plicability, for instance, in multiple-model adaptive control and in fault detection

and isolation. Moreover, they can be used with uncertain linear parameter-varying

systems.

The main contributions of this chapter are as follows:

a) The development of a model falsification strategy using SVOs;

b) The derivation of sufficient conditions for the eventual falsification of all but

the “correct” dynamic model of the plant;

c) The application of this model falsification strategy to MMAC, providing sta-

bility and performance guarantees;

d) The application of this model falsification strategy to FDI, providing guaran-

tees in terms of fault detection and isolation in finite time, and avoiding false

alarms;
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e) The illustration of the aforementioned strategies with several numerical exam-

ples.

The remainder of this chapter is organized as follows. We start by introducing

the main architecture and algorithm for model falsification using SVOs in Section

7.2. In Section 7.3, conditions guaranteeing the selection of a single dynamic model

are derived. A numerical example, illustrating the applicability of the technique,

is provided in Section 7.4. In Section 7.5, an MMAC architecture using SVOs is

presented, while in Section 7.6, a method for FDI using SVOs is introduced. Finally,

some conclusions regarding this chapter are discussed in Section 7.7.

7.2 Main Architecture

We assume that the reader is familiar with the model falsification paradigm of

Chapter 5. In summary, consider the set of dynamic models depicted in Fig. 7.1.

Further suppose that the actual plant can be described by model S5 in Fig. 7.1.

Then, our goal is to invalidate or falsify all except model S5, using Set-Valued

Observers (SVOs).

S6

S1

S4

S7

S5

S3

S2

S8

Figure 7.1: Set of models for a dynamic system. Model S5 denotes the true plant.

Let us suppose that the plant whose dynamic model we are trying to identify is
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described by x(k + 1) = A
(
ρ(k)

)
x(k) +B

(
ρ(k)

)
u(k) + L

(
ρ(k)

)
d(k),

y(k) = C
(
ρ(k)

)
x(k) +N

(
ρ(k)

)
n(k),

(7.1)

where x(·) ∈ Rn is the state of the plant, y(·) ∈ Rny is the measurement output,

corrupted with noise, n(·) ∈ Rnn , and where u(·) ∈ Rnu is the control input, and

d(·) ∈ Rnd denotes the exogenous disturbances. The vector of parameters, ρ(k), for

k ≥ 0, might be completely or partially known, although it is assumed a priori that

|ρ(·)| ≤ ρ̄, for some known finite ρ̄ ∈ R. Similarly to Chapter 6, the exogenous

disturbances and sensor noise are also assumed to be bounded by known finite

constants.

For an SVO as in Chapter 6, designed for the dynamic system in (7.1), we denote

by X̂(k) the set-valued estimate of the state, provided by that SVO, at time k.

The following lemma is required in what follows to guarantee that the correct

model of the plant can never be invalidated.

Lemma 7.1. Consider a Set-Valued Observer (SVO) as in Chapter 6, for the plant

in (7.1). Then, if X̂(k) = ∅ for some k ≥ 0, the input/output data cannot be

described by (7.1).

Proof. By construction of the SVOs in Chapter 6, if X̂(k) is empty for some k, then

the observations are not compatible with the model of the plant.

The architecture depicted in Fig. 7.2, together with the result in Lemma 7.1, can

be used to address the problem of invalidating a given discrete-time LPV system.

In reference to Fig. 7.2, the model invalidation block is composed of an SVO and a

Logic block, which decides whether or not the input/output sequence is compatible

with the LPV model of the plant, according to the emptiness or not of the set-valued

estimate of the state, at each sampling time.

Therefore, while a given model is not invalidated (or falsified), it can be seen as

a plausible description of the input/output behavior of the plant. This strategy can

be readily extended to the case where several models are tested at each sampling

time. Indeed, let S denote the set of plausible or admissible models of the plant.
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Unknown Plant
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^

X(k)=    ?
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Model
Invalidated

Input/Output Invalidation
using an SVO

Figure 7.2: Falsification of a dynamic model using a set-valued observer (SVO).

We assume that S is a finite set, with cardinality NS , and that each Si ∈ S can be

described by

Si :

 xi(k + 1) = Ai
(
ρ(k)

)
xi(k) +Bi

(
ρ(k)

)
u(k) + Li

(
ρ(k)

)
di(k),

yi(k) = Ci
(
ρ(k)

)
xi(k) +Ni

(
ρ(k)

)
ni(k),

(7.2)

for each i ∈ {1, · · · , nS}, and using a nomenclature similar to that of (7.1).

Hence, we are now in conditions of proposing the architecture depicted in Fig.

7.3, for model falsification using SVOs.

Each SVO provides the Logic block in Fig. 7.3 with set-valued estimates of the

state, according to their corresponding a priori information regarding the dynamic

model of the plant, the initial condition, the exogenous disturbances and measure-

ment noise, and the model uncertainty.

Different approaches can be used in the implementation of this Logic block.

Nevertheless, in this thesis we restrict ourselves to the algorithm depicted in Fig.

7.4. This algorithm takes advantage of Lemma 7.1 to guarantee that the correct

dynamic model is not invalidated.

Therefore, the architecture in Fig. 7.3, jointly with the algorithm in Fig. 7.4,

selects the first dynamic model whose corresponding SVO did not yet provide an
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Uncertain Plant

SVO #1

SVO #2

SVO #N

...
Logic

... ...
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^
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Figure 7.3: Architecture for model falsification using SVOs.

Initialization
k = 1; i(0) = 1

i(k+1) = i(k)
Select model i(k+1)

Is X      (k)
empty?

i(k+1)

k = k + 1

i(k+1) = i(k+1) + 1
Yes

No

Figure 7.4: Algorithm proposed to select a model at each sampling time.
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empty-valued estimate for the state of the plant. This heuristic can obviously be

substituted by any other, as long as the select dynamic model has a corresponding

SVO which provides non-empty set-valued estimates for the state of the plant.

7.3 Guarantees of Model Selection

In the previous section, an architecture was developed for model falsifications, using

SVOs, that guarantee that, by construction, the “correct” dynamic model of the

plant can never be invalidated. The main goal in this section is to provide sufficient

conditions assuring that all except one single dynamic model (or one single family of

dynamic models) are falsified after a given number, N , of measurements. Moreover,

we would also like to estimate a lower bound for N .

In order to do that, we use the notion of absolute input distinguishability, intro-

duced in Chapter 5. Indeed, let N be a given constant and suppose the following

assumption is satisfied.

Assumption 7.1: Let S be the (finite) set of admissible models of the plant. If

Si ∈ S and Sj ∈ S, with i 6= j, then Si and Sj are absolutely (Xo, U,W )-input

distinguishable in N sampling times. �

Testing whether or not two given LPV uncertain models are absolutely (Xo, U,W )-

input distinguishable in N sampling times can be done using the methods described

in Chapter 5. In particular, it is important to notice that a persistence of excita-

tion condition is required on the exogenous disturbances. Indeed, it was shown in

Chapter 5 that this condition can be written as a lower bound on the intensity of

the perturbations. We recall that the theory in Chapter 5 can be seen as a tool to

aid the design of model falsification schemes.

In addition to Assumption 7.1, let us also posit the following one.

Assumption 7.2:

a) The initial state of the plant satisfies x(0) ∈ Xo;

b) The control input sequence satisfies u(j) ∈ U for all j ≥ 0;
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c) The sequence of disturbances satisfies (d(j), n(j)) ∈ W for all j ≥ 0.

�

Lemma 7.2. Let S be the (finite) set of admissible models of the plant and suppose

that Assumptions 7.1 and 7.2 are satisfied. Further suppose that we use the algorithm

in Fig. 7.4, and that the Set-Valued Observers (SVOs) are non-conservative. Then,

at any time k such that k ≥ N , there is, at most, a single SVO whose state estimate

is not the empty set.

Proof. Since Assumptions 7.1 and 7.2 are satisfied, we have that, at any time k

such that k ≥ N , no more than a single dynamic model in S is compatible with the

input/output dataset. Moreover, the SVOs are assumed non-conservative, which

means that every single element in the corresponding set-valued state estimate is

compatible with the input/output dataset. Therefore, there cannot be two or more

SVOs with non-empty state estimates.

Hence, we are now in conditions of guaranteeing that the correct model of the

plant is selected using the proposed architecture and algorithm.

Theorem 7.1. Consider a dynamic system, Sr, described by (7.2) with i = r,

and suppose that Sr ∈ S. Further suppose that we use the algorithm in Fig. 7.4

with system Sr, and that the Set-Valued Observers (SVOs) are non-conservative. If

Assumptions 7.1 and 7.2 are satisfied, then, at any time k such that k ≥ N , there

is exactly a single SVO whose state estimate is not the empty set.

Proof. The proof is straightforward from Lemmas 7.1 and 7.2.

Remark 7.1: Another interpretation of the result in Theorem 7.1 is as follows:

If only a single model in S is able to explain the input/output dataset, then the

algorithm in Fig. 7.4 guarantees that this model is the only one which will not

be invalidated, as long as Assumptions 7.1 and 7.2 are satisfied and the SVOs are

non-conservative. �
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7.3.1 Uncertain Dynamic Models

Notice that Lemma 7.2 (and, consequently, Theorem 7.1) can only be applied if the

SVOs are non-conservative. For the case of uncertainty in matrix C, however, it was

shown in Chapter 6 that a relaxation was needed to compute the set-valued estimate

of the state at the next sampling time. Thus, the distinguishability condition in

Assumption 7.1 is no longer sufficient to guarantee the invalidation of all but the

correct model of the plant.

Indeed, in Section 6.3, it was shown that a system modeled by (6.10) can also

be described by

S ≡
(
S̄j +N(k)n̄i

)
+

n∆∑
j=1

(
S̃j +N(k)n̄

)
, (7.3)

where

S̃j :

 xj(k + 1) = A(k)xj(k) +B(k)∆j(k)u(k) + L(k)d̄j(k),

yj(k) = Cj(k)xj(k),

and d̄j(k) was defined in (6.13) for each j ∈ {1, · · · , n∆} and k ≥ 0.

Therefore, if instead of considering the system in (6.10), we take into account

the description (7.3) in Assumption 7.1, the results in Lemma 7.2 and Theorem 7.1

will still hold.

The shortcoming of this approach stems from the fact that, typically, the family

of dynamic systems described by (6.10) is smaller than (and contained inside of)

the family of dynamic systems described by the corresponding formulation in (7.3).

Hence, if Assumption 7.1 is satisfied for the original set of eligible models, S, it may

not be satisfied for the modified one.

A similar issue is found when the A matrices of the dynamics of the models

are uncertain, except for the case where Aj(k) for all j ∈ {1, · · · , n∆} and k ≥ 0

are matrices with unitary ranks. However, if indeed rank (Aj(k)) > 1 for some

j ∈ {1, · · · , n∆} and k ≥ 0, an analogous reformulation of Assumption 7.1 has to

be performed, in order for Theorem 7.1 to hold.
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7.4 Simulations

This section presents a case study that illustrates the applicability of the proposed

technique for model falsification. We exploit the example in [159], which considers

a single-link robotic arm, with a revolute elastic joint, rotating in a vertical plane,

as depicted in Fig. 7.5. The dynamics of the system are described by

 J1q̈1 + F`q̇1 + k(q1 − q2) +mg` sin q1 = 0,

Jmq̈2 + Fmq̇2 − k(q1 − q2) = u,
(7.4)

where we omitted the time dependence of the states. The link and the rotor dis-

placements are denoted by q1 and q2, respectively. The link inertia, J`, the motor

rotor inertia, Jm, the elastic constant, k, the link mass, m, the gravity constant,

g, the center of mass, `, and the viscous friction coefficients, F`, Fm, are constant

parameters, whose values are summarized in Table 7.1. The control input, u, is the

torque delivered by the motor.

q1

q2

k

Jl

Figure 7.5: Single-link robotic arm, with a revolute elastic joint, rotating in a vertical

plane.

Similarly to [159], we assume that q1, q2 and q̇2 are available for measurement.
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Table 7.1: Parameters of the single-link robotic arm with revolute elastic joint, in a

vertical plane.

Parameter J` Jm k m g ` F` Fm

Value (in SI units) 2 1 2 4 9.8 0.5 0.5 1

Thus, the model in (7.4) can be rewritten as


ẋ1

ẋ2

ẋ3

ẋ4

 =


0 1 0 0

−k
J`

−F`
J`

k
J`

0

0 0 0 1

k
Jm

0 −k
Jm

−Fm
Jm




x1

x2

x3

x4

+


0

−mg`
J`

sinx1

0

u
Jm

+


0

η

0

0



y =


1 0 0 0

0 0 1 0

0 0 0 1



x1

x2

x3

x4

+


n1

n2

n3


(7.5)

where x1 = q1, x3 = q2, and where η : R+ → R represents the model uncertainty in

the derivative of q̇1, with the constraint

|η| ≤ η̄ = 0.05(mg`/J`) sinx1.

In addition to the model uncertainty proposed in [159], we also consider that k is

uncertain, with the constraint

k ∈ K := [1.65, 2.05] N/m.

The measurement noise is obtained from a random generator with uniform prob-

ability distribution, and with the following bounds:

• |n1| ≤ 0.001 rad;

• |n2| ≤ 0.01 rad;

• |n3| ≤ 0.01 rad/s;
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For the simulations presented next, we also considered that

u = 15 sin(2t)

and that the initial state of the plant is given by x(0) = 0. The system was dis-

cretized with a sampling period of Ts = 250 ms.

Regarding the implementation of the SVOs, there are some points of interest in

this example. The nonlinearity due to the dependence of ẋ2 on sinx1 can be seen

as an exogenous disturbance, since | sinx1| ≤ 1. A similar reasoning can be used

regarding η. The uncertainty in k can also be handled by the SVOs, as explained

in Chapter 6. Indeed, the value of k is assumed to belong to one of the following

intervals:

• K1 := [1.65, 1.80] N/m;

• K2 := [1.80, 1.95] N/m;

• K3 := [1.95, 2.05] N/m.

The first question to arise is whether or not we are able to distinguish among

the 3 a priori eligible (uncertain) models of the plant. In particular, it is desirable

to ascertain an upper bound (whenever it exists) to the number of iterations, N ,

required to select the correct region of uncertainty. As stressed in Section 5.2, the

value of N is dependent on the level of the exogenous disturbances, the measurement

noise, and the control input signal.

Moreover, regions K1 and K2 are clearly not absolutely distinguishable since the

intersection of these two intervals is not the empty set. Indeed, for k = 1.80 N/m,

both K1 and K2 are admissible regions. A similar reasoning can be used regarding

K2 and K3. Therefore, although in practice the aforementioned model falsification

architecture with SVOs can be designed for those regions, it will not be possible to

establish any meaningful results regarding absolute distinguishability, using these

intervals.

This fact is further illustrated in Fig. 7.6, where the absolute distinguishability

of the following two regions is assessed:
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• K̄1 := [1.65, 1.65 + δ] N/m;

• K̄2 := [1.95− δ, 1.95] N/m.

The value of δ is the width of the intervals. As depicted in Fig. 7.6 – which was

obtained with the aforementioned constraints on the exogenous disturbances, mea-

surement noise, and control input –, as we diminish the distance between intervals

K̄1 and K̄2, the number of iterations required to ensure absolute distinguishability

increases.

0 0.05 0.1 0.15
0

50

100

150

δ [N/m]

N

Figure 7.6: Number of iterations, N , required to ensure the absolute distinguisha-

bility of the models with k ∈ K̄1 or k ∈ K̄2.

Now let us suppose (aside from the fact that we cannot provide absolute dis-

tinguishability guarantees for regions K1 and K2, and regions K2 and K3) that we

synthesize the SVOs for the 3 intervals. The idea at this point is to obtain the sets

K̃i, with i = {1, 2, 3}, such that:

a) K̃i ⊆ Ki for i ∈ {1, 2, 3};

b) if k ∈ K̃j, then all except region Kj are invalidated in Nr sampling times.

Let us consider that Nr = 100, i.e., that we are interested in finding the largest

sets K̃i, with i = {1, 2, 3}, satisfying the aforementioned constraints with Nr = 100.
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One way of computing these sets is to grid the space of parameters and to assess the

distinguishability of the models at the points of that grid. In particular, suppose

that we uniformly grid the set K. Then, for each point of the grid, we compute a

upper bound (if it exists) on the number of iterations required to guarantee that all

except the correct model of the plant are falsified, using the methods described in

the previous section. The results are depicted in Fig. 7.7.

1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 2.05
0

20

40
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200

Spring Stiffness [N/m]

N

Figure 7.7: Number of iterations, N , guaranteeing all except one model are falsified,

as a function of the spring stiffness. The green crosses denote the mean points of

the spring stiffness intervals.

From Fig. 7.7, it is apparent that, as we approach to the boundaries of the

spring stiffness intervals, the value of N increases rapidly, as expected. Therefore,

for values of the spring stiffness near 1.75 N/m or near 1.95 N/m, there are no

guarantees that eventually a single model is not falsified. Moreover, if indeed we

consider Nr = 100, then it is straightforward to conclude that the sets K̃i, with

i = {1, 2, 3} and Nr = 100, are defined as

• K̃1 = [1.65, 1.74] N/m;

• K̃2 = [1.85, 1.90] N/m;
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• K̃3 = [1.99, 2.05] N/m.

Finally, we present some time-domain simulations illustrating the behavior of the

proposed model falsification methodology. Figure 7.8 depicts the output of the plant

for values of the spring constant, k, inside each of the intervals Ki, for i = {1, 2, 3}.
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−1.5

−1

−0.5

0

0.5

1

1.5

Time [s]

q 1 [r
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]
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Figure 7.8: Output of the plant for different values of the spring stiffness, k.

We performed 10 Monte-Carlo (MC) simulation runs for each of the following

spring stiffness coefficients:

a) kA = 1.725 N/m;

b) kB = 1.875 N/m;

c) kC = 2.000 N/m.

The green crosses in Fig. 7.7 mark the upper bounds on the number of iterations,

N , required to guarantee the invalidation of all except the correct model, for these

values of the spring constant. Table 7.2 summarizes those theoretical upper bounds

and also presents the results obtained by averaging the 10 MC runs.

From the simulation results, it is clear that the proposed model falsification

strategy is, in general, able to falsify the invalid models of the plant in a significantly
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Table 7.2: Number of iterations required to guarantee the invalidation of all except

the correct model – theoretical vs simulation results.

k [N/m]
Theoretical

Upper Bound

Average of

10 MC Runs

Maximum on

10 MC Runs

kA 48 6.8 7

kB 43 12.4 13

kC 75 13 13

smaller number of iterations than the theoretical upper bound. Nevertheless, we

stress that the upper bounds should only be interpreted as worst-case scenarios.

7.5 Application to MMAC

7.5.1 Introduction

In this section, the problem of Multiple-Model Adaptive Control (MMAC) is ad-

dressed using the SVO-based model falsification technique described in this chapter.

In particular, for the sake of simplicity, we are going to address the case where the

dynamic model of the system to be controlled has a single parametric uncertainty,

ρ ∈ [ρmin, ρmax]. Although several switching MMAC methodologies are available

to solve this problem, they all share the same principles: in terms of design, we

divide the (large) set of parametric uncertainty, Ω, into N (small) subregions, Ωi,

i = {1, · · · , N} – see Fig. 7.9 – and synthesize a non-adaptive controller for them; in

terms of implementation, we try to identify which region the uncertain parameter,

ρ, belongs to, and then use the controller designed for that region. The approach

presented herein discards the regions to which the uncertain parameter, ρ, cannot

belong.

For a list of advantages of this type of control see, for instance, [31]. Several

MMAC architectures have been proposed that provide stability and/or performance
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#2#1 #N

0 rmin rmaxW1 W2 WN
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W

r

Figure 7.9: Uncertainty region, Ω, for the parameter ρ, split into N subsets, Ωi,

i = {1, · · · , N}.

guarantees as long as a set of assumptions are met. For instance, [41] uses a pa-

rameter estimator to select a controller, guaranteeing stability of the closed-loop.

Another MMAC approach, referred to as Robust Multiple-Model Adaptive Con-

trol (RMMAC), which was introduced in [58] and references therein, and that was

previously mentioned in this thesis, uses a bank of Kalman filters for the identifi-

cation system and a hypothesis testing strategy to select the controllers. For this

case, although the simulation results indicate that high levels of performance are

obtained, the only guarantees that can be provided are in terms of stability – see

[69]. In [105], calibrated forecasts are used to guarantee the stability of the closed-

loop. The theory of unfalsified control – see [50] and references therein – uses the

controlled output error to decide whether the selected controller is delivering the

desired performance or not. The authors in [54] use a Lyapunov-based approach to

select controllers, and hence require an in-depth knowledge of the plant. Some of

the assumptions required by these methodologies are often unnatural or cannot be

verified in practice.

The approach adopted in this thesis is somewhat different to the above MMAC

architectures. Instead of trying to identify the correct region, i.e., the region where

the uncertain parameter takes value, by hypothesis testing or parameter estimation,

we exclude the wrong regions. In other words, if the time-evolution of the inputs

and outputs of the plant cannot be explained by a model with uncertain parameter

ρ, such that ρ ∈ Ωi, then region Ωi cannot be the one which the uncertain parameter

belongs to. This is naturally aligned with the SVO-based model falsification strategy

introduced in this chapter.

In summary, the approach provided in this section is to use SVOs to decide
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which non-adaptive controllers should not be selected. Similarly to other MMAC

architectures, we use a bank of observers – in our case, SVOs –, each of which

tuned for a pre-specified region of uncertainty. However, we utilize the observers to

discard regions, rather than to identify them. Using this strategy, we are able to

provide robust stability and performance guarantees for the closed-loop, even when

the model of the plant is uncertain.

7.5.2 MMAC/SVO Architecture

Figure 7.10 depicts one of the MMAC architectures adopted to use with the SVOs,

referred to as MMAC/SVO architecture. As previously mentioned, suppose that,

for the sake of simplicity, the plant depends upon only one uncertain parameter, ρ.

It is known, however, that ρ ∈ Ω, for some set Ω ⊆ R. The methodology presented

herein can obviously be generalized for plants with a higher number of parametric

uncertainties.

... ...

...

Unknown Plant

Set-Valued Obs. #1

Logic

Additional
a priori
information

u(k)
y(k)

u(t)

u (k)1

u (k)2

u (k)N

Switching signal

Sensor
noise

Plant
disturbances

x(k) q(k)

Robust Ctrl. #1

Robust Ctrl. #2

Robust Ctrl. #N

Set-Valued Obs. #2

Set-Valued Obs. #N

X (k)1

X (k)2

X (k)N

Figure 7.10: Multiple-model adaptive control with set-valued observers

(MMAC/SVO) architecture. Xi is the set-valued state estimate provided by SVO

#i.
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We follow very closely the method presented in [58], to design the MMAC/SVO

control system. For starters, we assume that a single and non-adaptive controller

(referred to as Global Non-Adaptive Robust Controller - GNARC) is not able to

achieve the desired performance for the whole uncertainty region. Therefore, we

need to divide this region, Ω, into several smaller regions, say Ω1,Ω2, · · · ,ΩN , such

that Ω1

⋃
Ω2

⋃
· · ·
⋃

ΩN = Ω. In order to do so, we first compute the maximum

(ideal) performance that we can achieve. This is obviously the case where we know

the exact value of the otherwise uncertain parameter, ρ. To a controller designed for

a fixed value of the uncertain parameter, ρ, we call FNARC (Fixed Non-Adaptive

Robust Controller), using the same terminology as in [58].

The design proceeds by defining the desired performance for the closed-loop,

when the parameter ρ is uncertain. Without loss of generality, we assume that,

for each value of the uncertain parameter, ρ, we want the performance of the

MMAC/SVO not to be smaller than a fixed percentage of the corresponding FNARC.

This naturally leads to the splitting of set Ω into smaller subsets, as illustrated in

Fig. 7.11.
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Figure 7.11: Design procedure to split the uncertainty region, Ω, into smaller subsets,

so that the desired performance is achieved inside each of them. In this example, it

is considered that the desired performance is 70% of that of the FNARC.

For each of these subsets Ωi, i = {1, · · · , N}, a controller referred to as LNARC
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(Local Non-Adaptive Robust Controller) is synthesized. Furthermore, an SVO

should also be designed for each of the subsets, using the methodology previously

introduced.

Remark 7.2: We argue that, for any realistic application, these LNARCs should

also be robust to plant model error in addition to parameter ρ. Thus, using an LFT

representation for the system may be useful if, for instance, mixed-µ controllers

are used – see [77, 78]. The LPV/BMI controllers introduced in Chapter 2 are an

example of the type of controllers that can be used in this architecture. �

7.5.3 Controller Selection Algorithm

Having described the architecture and the design procedure of the MMAC/SVO, we

propose an algorithm to select the appropriate controller at each sampling time. In

reference to Fig. 7.10, this subsection is devoted to the description of the behavior

of the block entitled Logic.

Several approaches can be used to tackle this decision problem. At this point, we

adopt the simple solution depicted in Fig. 7.4, for SVO-based model falsification.

This strategy takes into account the fact that, whenever ρ ∈ Ωi, the SVO #i does

never fail, i.e., X̂i(k) is never empty. On the other hand, if ρ /∈ Ωi, then it can

happen that, for some t0, we have X̂i(k) = ∅, for all k ≥ t0.

Thus, Fig. 7.12 depicts the algorithm suggested for selecting the controllers.

In summary, the main idea is to start by using any controller in the initial set of

plausible controllers, and then remove from the loop controllers whose corresponding

plant models have been disqualified. For the sake of simplicity, the controllers are

selected in a sequential fashion, in this case, i.e., if model #1 is invalidated, we

switch to controller #2, while if model #2 is invalidated, we switch to controller

#3, and so on. However, other algorithms can be used, as long as the selected

controller does never correspond to a previously falsified model.

We stress that the main advantage of this algorithm is that, under mild assump-

tions, we can guarantee robust stability and performance for the closed-loop, as

shown in the sequel.
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Initialize
K(1) = K , i = 1, n = 11

Use controller K(n) = Ki

Is
SVO #i
empty?

i = i + 1

n = n + 1

y n

Figure 7.12: Algorithm for the Logic block of the MMAC/SVO architecture for

time-invariant systems.

Remark 7.3: Although the dynamics of the disturbances need not be explicitly

taken into account in the design of the SVOs, they can be key in the selection of

the appropriate model of the plant. Indeed, augmenting the dynamic model of the

plant with that of the disturbances, may result in faster invalidation of models which

would have been plausible, had not the dynamics of the disturbances been known a

priori. An example illustrating this effect is presented in Chapter 8. �

RMS Analysis

Since the MMAC/SVO can be seen as a worst case approach, a controller is not

invalidated unless the input/output sequences cannot be explained by the dynamics

of the closed-loop system. Hence, an enhancement of the MMAC/SVO architecture

is now proposed, based on the fact that, on the one hand, we cannot “exclude”

unfalsified controllers, and that, on the other hand, if a given controller is unlikely

to be the correct one, then one should try another one, if available.

As an example, the Root Mean Square (RMS) of the output error of the closed-

loop system, provides an additional method to assess whether or not we are using the

correct controller at each time. This idea was suggested by Professor Athans, and

can be summarized as follows. Since we can compute a priori the maximum RMS of
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the closed-loop system, given a certain bound on the intensity of the disturbances,

this maximum RMS value can be used to aid in the invalidation of dynamic models.

More specifically, if controller #i is connected to the loop, and the RMS of the

output of the system is greater than the upper bound on the RMS for region #i –

which was computed offline –, then clearly model #i is not the correct one (or the

bounds on the disturbances were violated), if the steady state was already attained.

The main advantage of this method is that we can potentially discard regions

of uncertainty faster than simply using the SVOs. However, as a shortcoming, the

RMS values computed are only valid for steady state, which may not be trivial to

assess in practice.

The integration of other decision schemes with the MMAC/SVO architecture

can be done in a similar way to what was done with the Stability Overlay (SO) – see

Chapter 4. In order to guarantee the properties of the MMAC/SVO architecture

in Fig. 7.10, a model can only be excluded from the set of eligible ones if it is

invalidated by the SVOs. Nevertheless, whenever this set has more than a single

element, we are free to select a controller which has not violated the aforementioned

RMS condition. The resulting algorithm is depicted in Fig. 7.13, where RMSi is

the value of the current RMS of a window of the output, and RMSi is the a priori

bound on that RMS value.

The set S contains all the controllers which have not violated the a priori closed-

loop RMS assumption, whenever connected to the loop. If this set is empty, then we

can select any controller for which the corresponding model has not been falsified by

the SVOs. Otherwise, we can select LNARC #i, as long as i ∈ S and SVO#i 6= ∅.

If none of the indexes in S satisfies SVO#i 6= ∅, then we can select any LNARC #i,

for which SVO#i 6= ∅.

7.5.4 Guaranteed Stability and Performance

Preliminary results on the closed-loop stability and performance guarantees provided

by the MMAC/SVO architecture were presented in [142]. However, the assumptions

in [142], required to guarantee performance, are seldom easy to be checked in prac-
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Figure 7.13: MMAC/SVO-RMS algorithm.
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tice. Since these assumptions essentially amount for the eventual selection of the

appropriate controller, it is natural to use the concept of absolute input distinguisha-

bility, introduced in Chapter 5, to pose these requirements.

Despite of that, the MMAC/SVO approach guarantees a stable closed-loop under

much less restrictive assumptions. Indeed, we first show that, for plants with no

drifting parameters (see Definition 4.1), the MMAC/SVO is able to provide stability

guarantees, by demonstrating that a stabilizing controller is eventually connected

to the loop.

The proof for stability is based upon the fact that the SVOs are non-conservative,

i.e., if X̂i(k) 6= ∅, then the output of the plant, y(k), can be explained by the

previous and current inputs and outputs, and for some ρ ∈ Ωi. This statement will

be explained in a more formal manner in the sequel. Once again, for the sake of

simplicity, we use a plant with only one uncertain parameter.

Consider a system described by x(k + 1) = A(k)x(k) +B(k)u(k) + L(k)d(k)

y(k) = C(k)x(k) +N(k)n(k),
(7.6)

where x(0) = xo, xo ∈ X(0), x(k) ∈ Rn, d(k) ∈ Rnd , n(k) ∈ Rnn , and u(k) ∈ Rnu ,

for k ≥ 0. Moreover, |d| ≤ 1, and |n| ≤ 1, and d(·), n(·) ∈ `2. We note that the

system matrices are equivalently described in an LPV fashion as

A(k) := A(ρ(k)),

B(k) := B(ρ(k)),

L(k) := L(ρ(k)),

C(k) := C(ρ(k)),

N(k) := N(ρ(k)),

where ρ(k) is a vector of parameters for each k ≥ 0. Consider a partitioning of the

uncertainty set, Ω, as described in the previous subsection (Ω = Ω1

⋃
Ω2

⋃
· · ·
⋃

ΩN).

Moreover, we posit the following assumptions.

Assumption 7.3: For each of the uncertainty subsets, Ωi, i = {1, · · · , N}, there

is at least one LNARC, referred to as Ci(·), that is able to asymptotically stabilize

any plant with model (7.6) and ρ ∈ Ωi. �
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Let

X̃(y(k), k) = {x : y(k) = C(k)x+ n, |n| ≤ 1} ,

and

X̄i(u(k), k) = {x : x = A(k)w +B(k)u(k) + L(k)d, w ∈ Xi(k − 1), |d| ≤ 1} .

Assumption 7.4: The solution of the SVO #i is given by

Xi(y(k), u(k), k) = X̄i(u(k), k) ∩ X̃(y(k), k).

In words, the solutions of the SVOs are non-conservative. �

Assumption 7.5: There exists i? ∈ {1, · · · , N} such that

x(k) ∈ Xi?(y(k), u(k), k),

for all k ≥ 0. �

Notice that Assumption 7.5 guarantees that the true plant model belongs to the

family of legal models of at least one of the SVOs.

Assumption 7.6: The closed-loop system with any of the N eligible controllers

does not have a finite escape time. �

We stress that Assumption 7.6 is automatically satisfied if, for instance, all the

N controllers and the plant are Linear Time-Invariant (LTI) systems – see Chapter

4.

Theorem 7.2. Suppose Assumptions 7.3−7.6 are satisfied. Then, the closed-loop

system with the MMAC/SVO scheme is input/output stable.

Proof. We first show that the number of switchings is finite. Then, by contradiction,

we prove that the closed-loop system is input/output stable.

If Xi(y, u, k) = ∅, then y(k) cannot be explained by the uncertain plant model

used by SVO #i. Thus, we switch to a different controller. According to Assumption

7.5, at least for one value of j ∈ {1, · · · , N}, x(k) ∈ Xj(y, u, k),∀k. Hence, the

number of switchings is finite and smaller than N . In other words, for some large

enough to, the controller selected at time instant k ≥ to is always the same.
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Next, suppose that |y(k)| → ∞ as k → ∞. Let Cj(·) be the controller selected

for k ≥ to. According to Assumption 7.4, there is a sequence (d(k), n(k)), with

|n| ≤ 1 and |d| ≤ 1, such that y(k) can be obtained with model (7.6) with ρ ∈

Ωj. However, according to Assumption 7.3, controller Cj(·) is able to stabilize any

plant with ρ ∈ Ωj. Since |d| and |n| are bounded, and according to Assumption

7.6, there cannot exist a sequence (d(k), n(k)) such that |y(k)| → ∞, which is a

contradiction.

Performance Guarantees

Finally, performance guarantees are provided for the closed-loop system using the

MMAC/SVO scheme. It should be noticed that this was the primary reason for the

discussion in Chapter 5, i.e., the quest for a decision subsystem which guarantees

the selection of the appropriate controller, in a finite number of iterations.

For the sake of clarity, we introduce the following notation to represent the

closed-loop system with a given controller. Let the plant be described by (7.6),

with ρ(k) ∈ Ωi? for all k ≥ 0 and some i? ∈ {1, · · · , N}. Denote by CLij(·) the

closed-loop system obtained by interconnecting a plant described by (7.6), where

ρ(k) ∈ Ωi, with the LNARC Cj(·). Further define

ξ(k) :=

d(k)

n(k)

 ,
and let z(·) denote a performance output of system (7.6), defined as

z(k) := Cz(ρ(k))x(k),

for k ≥ 0. Moreover, suppose that the following assumption is satisfied:

Assumption 7.7: There exist γ, λ, σ > 0, such that, for each i ∈ {1, · · · , N}, there

is at least one LNARC, referred to as Ci(·), such that, if Ci(·) is interconnected with

a dynamic system described by (7.6) with ρ(k) ∈ Ωi, for k ≥ ko, then

‖z(k)‖ ≤ γ‖ξ(k)‖+ λe−σ(k−ko)x(ko),

and the dynamics of the closed-loop are asymptotically stable. �
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Remark 7.4: The norm, ‖ · ‖, in Assumption 7.7 can be, for instance, the `2-norm

of signals, i.e.,

‖z(k)‖2
`2

:=
k∑

m=0

|z(m)|2.

In such circumstances, γ is the so-called `2-induced norm of system CLii(·) �

Now the only requirement remaining is that the closed-loop system, for the

different possible interconnections, is always distinguishable.

Assumption 7.8: Let i, j, `,m ∈ {1, · · · , N}, with i 6= ` and/or j 6= m. Then, the

systems CLij(·) and CL`m(·) are absolutely (X?,W )-input distinguishable in NCL

measurements. �

Hence, we are now in conditions of stating the following theorem, which provides

performance guarantees for the closed-loop system:

Theorem 7.3. Consider a plant described by (7.6) and that Assumptions 7.4–7.8

are satisfied, where X? is defined so that Xi(y(k), u(k), k) ⊆ X? for all k ≥ 0 and

i ∈ {1, · · · , N}. Then, the closed-loop system with the MMAC/SVO scheme is

asymptotically stable and satisfies, for k > NCL,

‖z(k)‖ ≤ γ‖ξ(k)‖+ λe−σ(k−NCL)x(NCL).

Proof. Similarly to the proof of Theorem 7.2, we can show that the number of

switchings is finite. In particular, due to Assumption 7.8, the maximum number of

measurements before the last switching is NCL. Hence, if the plant to be controlled

is described by (7.6) with ρ(k) ∈ Ωi? for k ≥ 0, the controller Ci? is selected at time

k? ≤ NCL, which, using Assumption 7.7, concludes the proof.

7.5.5 TV Plants and TV Bound on the Disturbances

Notwithstanding the fact that the architecture proposed in Section 7.5.2, jointly

with the algorithm in Section 7.5.3, can be applied to time-varying plants, they do

not allow for the dynamics of the system to drift from one region of uncertainty

to another. Moreover, the proposed algorithms are not robust to variations or
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large uncertainty on the bounds of the disturbances. In fact, if the bound on the

disturbances is increased from one measurement to another, it may happen that the

correct model of the plant gets disqualified. Therefore, we now extend the previous

results to time-varying plants whose dynamics may not remain in the same region

for all times k ≥ 0, and whose bound on the disturbances may also be time-varying.

In the case of time-varying plants, a model shall never be disqualified “forever”.

Indeed, if the dynamics of the plant drifted at a given time instant, then a previously

discarded controller might be the appropriate one to be used from that moment on.1

In order to proceed with the development of the algorithm for time-varying

plants, we posit the following assumption:

Assumption 7.9: There exists Tmin > 0 such that, if ρ(t) ∈ Ωj, then there exist t1

and t2 such that

a) |t2 − t1| ≥ Tmin;

b) t1 ≤ t ≤ t2;

c) ρ(τ) ∈ Ωj for all τ ∈ [t1, t2].

�

Hence, we propose the architecture depicted in Fig. 7.14 as an extension of the

MMAC/SVO scheme for time-varying plants. The main idea is to have an SVO,

referred to as Global SVO, which is able to provide a set-valued state estimate for

all the admissible time-varying uncertainties of the plant. Therefore, unless none of

the N families of models, assuming that the uncertain parameters are time-varying,

is able to describe the dynamics of the actual plant, the Global SVO does never

provide an empty set as the set-valued estimate of the state.

In order to account for time-variations of the bound on the disturbances acting

upon the plant, we increase the bound on the disturbances used by the SVOs,

whenever all the models have been falsified twice in less than a given amount of time.

This idea is based on Assumption 7.9. Moreover, although we established that the

1A similar line of though was used in the extension of the Stability Overlay (SO) for time-varying

plants – see Chapter 4.
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Figure 7.14: MMAC/SVO architecture for time-varying systems.

(tight) bound on the disturbances is unknown, we assume that an (probably very

conservative) overbound is known a priori:

Assumption 7.10: The disturbances are bounded by

‖d(k)‖ ≤ d̄,∀k≥0,

for some known finite constant d̄. �

Now suppose that the Global SVO, depicted in Fig. 7.14, is computed assuming

a bound on the disturbances given by d̄. Then, it is straightforward to conclude

that the set-valued state estimate provided by this SVO is never going to be empty.

The algorithm controlling the Logic block in Fig. 7.14 is based upon the following

reasoning, and is depicted in Fig. 7.15. In the first sampling time, all the SVOs

(except the Global SVO) assume that the bound on the disturbances is given by

dmax, where dmax satisfies

dmax ≤ d̄.

If all but the Global SVO provide empty set-valued state estimates for the plant,
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it means that none of the N models is able to describe the observed input/output

data. Thus, two scenarios have to be considered:

a) the dynamics of the plant have drifted from one region of uncertainty to an-

other;

b) the tentative bound on the disturbances, dmax, is smaller than the actual tight-

est bound on the disturbances.

In order to distinguish between these two scenarios, we resort to Assumption 7.9.

If the SVOs are reinitialized twice with the set-valued estimate of the Global SVO,

in a time-interval smaller than Tmin, then we conclude that we have to increase the

value of dmax. Otherwise, the falsification of the models may be explained by the

time-variations of the dynamics of the plant. In both circumstances, all the N SVOs

should be reinitialized with the set-valued state estimate of the Global SVO. The

remaining parts of the algorithm are similar to the time-invariant case.

In the algorithm depicted in Fig. 7.15, ∆T (k) stores the amount of time since

the estimates of the SVOs have been reinitialized with that of the Global SVO, and

γ is a (fixed) parameter, with γ > 1. Finally, Ts denotes the sampling period of

the SVOs, and κ > 1 is a constant by which each RMSi is multiplied whenever the

algorithm detects that the bound on the magnitude of the disturbances is greater

than that used during the design phase. As in the time-invariant case, the RMS of

the output is used to potentially accelerate the falsification of the models.

Remark 7.5: If the set-valued state estimate of the Global SVO is bounded, then

so do the set-valued state estimates of the remaining SVOs. This is straightforward

to conclude from the fact that, at each sampling time, the set-valued state estimate

computed by any of the N SVOs is inside the set-valued state estimate of the Global

SVO. �

Stability Guarantees

Using similar arguments to those of the proof of Theorem 7.2, it is straightforward

to prove stability for time-varying plants.
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Figure 7.15: Algorithm for the Logic block of the MMAC/SVO-RMS architecture

for time-varying systems with unknown bound on the disturbances.
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Theorem 7.4. Suppose Assumptions 7.3–7.6, 7.9 and 7.10 are satisfied. Then,

the closed-loop system with the MMAC/SVO architecture for time-varying plants is

input/output stable, for sufficiently large Tmin.

Proof. Using arguments similar to those of the proof of Theorem 7.2 and resort-

ing to the same strategy as in Section 4.5, it is straightforward to show that the

MMAC/SVO stabilizes the closed-loop system.

7.5.6 Simulation: Non-Minimum Phase Plant

We are now going to evaluate the applicability of the MMAC/SVOs scheme through

a simple example. Nevertheless, a more detailed evaluation of the proposed adaptive

control scheme will be presented in Chapter 8.

Consider the following Non-Minimum Phase (NMP) plant, similar to that ex-

amined by other authors of adaptive control studies – see [34, 37]. In particular, let

the corresponding transfer function, G(s), be described by

G(s) =
1.2
(

1
2
s+ 1

) (
− 1
Z

+ 1
)(

2
3
s+ 1

) (
1
3
s+ 1

) (
1
10
s+ 1

) (7.7)

where Z is the uncertain non-minimum phase zero, which is assumed to satisfy

Zmin := 1 ≤ Z ≤ 100 =: Zmax.

The block diagram of the non-minimum phase plant is depicted in Fig. 7.16,

where Wd is described in the sequel. The sensor noise is denoted by n(·) and is a

stochastic input, with zero mean and uniform probability distribution.

NMP Plant y(t)

ξ(k)

u(t)

n(t)

++

Wd

d(t)

Figure 7.16: Non-minimum phase plant block diagram.

The magnitude Bode plot of the transfer function in (7.7) is depicted in Fig.

7.17.
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Figure 7.17: Frequency response of the open-loop non-minimum phase plant, for

different values of Z.

The plant is subject to a low-frequency disturbance, d(t), obtained by driving

a low-pass filter with transfer function Wd(s) described by (7.8), with a uniformly

distributed bounded stochastic input, ξ(t), with zero mean.

Wd(s) :=
d(s)

ξ(s)
:=

α

s+ α
(7.8)

The disturbance low-pass filter frequency response is depicted in Fig. 7.18. It

should be noticed that the cut-off frequency of this filter is a decade below the

smallest value of Z, i.e., Z = 1 rad/s. Hence, jointly with the frequency response of

Fig. 7.17, we conclude that these disturbances hinder the identification process.

Therefore, the dynamics of the plant can be described in state-space form as

 ẋ(t) = Ax(t) +Bu(t) + Lξ(t),

y(t) = Cx(t) + n(t),
(7.9)
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Figure 7.18: Frequency response of the low-pass filter of the disturbances, with

transfer function Wd(s).

where

A =


0 1 0 0

0 0 1 0

−45 −49.5 −14.5 1

0 0 0 −0.1

 , B =


0

0

1

0

 , L =


0

0

0

0.1

 ,
C =

[
54 27− 54

Z
−27

Z
0
]
.

The output equation in (7.9) can, therefore, be written as

y(t) = C̄x(t) + ∆C̃x(t) + n(t), (7.10)

where

C̄ =
[
54 27 0 0

]
+ c̄
[
0 −54 −27 0

]
, c̄ = Zmin

−1+Zmax
−1

2
,

C̃ = c̃
[
0 −54 −27 0

]
, c̃ = Zmin

−1−Zmax
−1

2
,

and where ∆ with |∆| ≤ 1 denotes the uncertainty related to the non-minimum

phase zero.
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Discretizing the dynamics in (7.9) and using the output equation in (7.10), a

description of the plant is obtained that is compatible with the structure in Section

6.3.2.

We further considered a non-noisy output of the plant given by

ỹ(t) = C̄x(t) + ∆C̃x(t),

and a performance variable, z(·), described by

Z(s) = Wp(s)Y (s),

where

Wp(s) = Ap
α

s+ α
, α = 0.1 rad/s. (7.11)

The performance variable is used to evaluate the quality of the disturbance-

rejection controllers. The corner frequency of this performance weight is equal to

that of the disturbance filter described by Wd(s), which indicates that our goal is to

attain high levels of disturbance-rejection in this frequency range.

For the design of the LNARCs, we consider a measurement noise weight of Wn =

10−3, while for the control weight we used a filter described by

Wu(s) =
10(s+ 10)

s+ 1000
.

Finally, we also considered, for controller design purposes, an input uncertain

time-delay of, at most, 0.05 secs. This effect can be modeled by a complex un-

certainty, denoted by ∆un(s), and by a weighting function [77]. In this case, we

defined

Wun(s) =
2.45s

s+ 40
.

Remark 7.6: We stress that, for the sake of simplicity, time-delays are not consid-

ered, in simulation and in the design of the SVOs. �

Remark 7.7: As mentioned in [160], the presence of low-frequency non-minimum

phase zeros constrains the attainable performance of the closed-loop, at low-frequencies.

Indeed, in the present case, the achievable low-frequency disturbance-rejection for

Z = Zmin = 1 rad/sec should be larger than the one achieved for Z = Zmax = 100
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rad/sec. Nevertheless, this is not a shortcoming of the adaptive control method at

hand, but rather a fundamental limitation of this non-minimum phase plant. �

Following the design procedure in [34], the large uncertainty region for the non-

minimum phase zero is divided into the subintervals



Z1 := [4.10, 100.0],

Z2 := [2.38, 4.10],

Z3 := [1.34, 2.38],

Z4 := [1.00, 1.34],

so that the attained closed-loop performance is at least 30% of that obtained had

we known the exact value of Z. The values of Ap in (7.11), obtained by designing a

mixed-µ controller for each of the 4 regions of uncertainty, are summarized in Table

7.3. These mixed-µ controllers provide robust stability and performance guarantees

for each region of uncertainty, as long as the plant is time-invariant.

Table 7.3: Values of Ap and uncertainty intervals for each LNARC.

Compensator Uncertainty Interval Ap

LNARC #1 Z1 := [4.10, 100.0] 298.5

LNARC #2 Z2 := [2.38, 4.10] 107.1

LNARC #3 Z3 := [1.34, 2.38] 42.6

LNARC #4 Z4 := [1.00, 1.34] 26.5

As stressed in Remark 7.7, there are performance limitations that any MMAC

scheme is going to inherit from its local non-adaptive controllers. Indeed, as depicted

in Fig. 7.19, larger values of Z lead to higher attenuations of the disturbances.

Moreover, the controllers synthesized to values of Z closer to 1 rad/sec, guarantee

robust performance for a smaller region of uncertainty than the ones designed for

values of the non-minimum phase zero closer to 100 rad/sec.
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Figure 7.19: Frequency response of the closed-loop system with the corresponding

LNARC controller, from the disturbances, d(·), to the output variable, y(·), for

different values of the non-minimum phase zero.

Model-Mismatch Instability

As described in [34], the feedback interconnection of the plant with Z ∈ Zi, with

LNARC #j, for i 6= j, does not necessarily lead to an unstable closed-loop system.

Hence, we summarize, in Table 7.4, the stability properties of the closed-loop for

the different possible interconnections.

As an example of interpretation of Table 7.4, if Z ∈ Z1, all of the 4 LNARCs are

able to stabilize the plant, though LNARC #1 is the one that yields the highest levels

in terms of performance. Nevertheless, if Z ∈ Z4, controller #1 leads to an unstable

closed-loop system. These phenomena can be interpreted from an intuitive point

of view, by understanding that, typically, controllers that lead to higher levels of

performance at a given frequency range, have larger loop gains at those frequencies.

Hence, LNARC #1 has a low-frequency gain larger than LNARC #4, which leads

to a higher level of performance at that frequency range, whenever there does not

exist model-mismatch, while making the closed-loop system unstable if the model-

mismatch is significant.
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Table 7.4: Model-mismatch stability properties of the plant/controller interconnec-

tion.

LNARC

#1 #2 #3 #4

Z ∈ Z1 S S S S

Z ∈ Z2 CU S S S

Z ∈ Z3 U CU S S

Z ∈ Z4 U U CU S

S: stable

U: unstable

CU: conditionally stable, i.e., stable for some values of Z.

This illustrates the benefits of using adaptive control in this case. By properly

identifying the region of uncertainty of Z, the performance of the closed-loop system

can be significantly increased.

Simulations

We use a sampling time of Tc = 1 ms for the controllers, and a sampling time of

Ts = 20 ms for the SVOs. The discretization of the plant is done based upon the

methodology previously described.

In the following simulations, we consider that the initial LNARC selected is #1,

that is, the mixed-µ controller designed to guarantee robust performance for the

zero uncertainty region Z1. According to the algorithm introduced in Section 7.5.3,

if SVO #1 fails, then we switch to LNARC #2. If SVO #2 also fails, we switch to

LNARC #3, and so on.

The disturbances are bounded by |d(·)| ≤ dmax := 104, and the measurement
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noise is constrained by |n(·)| ≤ 1. The initial state of the plant is given by

x(0) = xo :=
[
0 0 0 0

]T

,

although the only information considered available for the SVOs is that

xo ∈ Xo := {x : |x| ≤ 20}.

Scenario #1: Z ∈ Z1

Let us start by considering that Z = 100 rad/sec, and thus Z ∈ Z1. Under these

circumstances, the correct controller is in fact the first one to be interconnected

with the plant, according to the algorithm suggested in Section 7.5.3. Given that

the model in (7.7), with Z ∈ Z1, is a valid description of the dynamics of the plant,

this region of uncertainty does never get falsified. As a result, the selected controller

is always LNARC #1. The output of the plant in this case is depicted in Fig. 7.20,

for a randomly selected Monte-Carlo run.
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Figure 7.20: Output of the non-minimum phase plant, for Scenario #1, i.e., Z =

100 rad/s ∈ Z1.

Since we are using a controller that attains a high level of performance, the output

of the NMP plant is small, when compared to the maximum allowable amplitude of
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the disturbances. Consequently, the problem of distinguishing between the 4 possible

dynamic models becomes harder – see Section 5.3.1 and [148]. This justifies the fact

that none of the SVOs, in the 10 Monte-Carlo simulations performed, had the ability

to invalidate a model in this scenario.

Scenario #2: Z ∈ Z4

Now, consider that the uncertain non-minimum phase zero, Z, is on the opposite

edge of the uncertainty interval, i.e., Z = 1 rad/sec. Under this scenario, LNARC

#4 is the best controller, from the set of eligible ones. Moreover, the first controller

selected is LNARC #1, which, according to Table 7.4, is a destabilizing controller.

As shown in Fig. 7.21, this incorrect selection of the controller leads to a transient

at the beginning of the simulation.
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Figure 7.21: Output of the non-minimum phase plant, for Scenario #2, i.e., Z =

1 rad/s ∈ Z4.

Nevertheless, after three measurements, the 2 first regions of uncertainty are

invalidated by the SVOs, at once. Thus, at time t = 60 ms, LNARC #3 is intercon-

nected with the plant. One measurement later, this region of uncertainty (region

#3) is also falsified. Therefore, at time t = 80 ms, LNARC #4 is selected. Since
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the model in (7.7), with Z ∈ Z4, is a valid description of the dynamics of the plant,

this region of uncertainty does never get falsified. Therefore, the best controller is

eventually selected, providing high levels of closed-loop performance.

It should be noticed that, contrary to the previous scenario, all but one model

are invalidated by the SVOs. This can also be explained by the considerations in

Section 5.3.1 and [148], which state that, under mild conditions, large amplitude

signals promote the distinguishability dynamic models.

Moreover, this leads to the conclusion that the controller selection algorithm in

Section 7.5.3 is indeed the adequate heuristics to select the LNARCs, if our goal is

to switch as fast as possible to the best controller. To see this, consider that the

initial controller is LNARC #4. In this case, if Z ∈ Z4, then the selected controlled

would be the adequate one. However, if, for instance, Z ∈ Z1, then the closed-loop

system would still be stable, as described in Table 7.4. Thus, this would hinder the

distinguishability of the eligible dynamic models. A similar reasoning can be applied

to other selections of initial controllers.

7.5.7 Simulation: MSD Plant

As a second example of the applicability of the MMAC/SVOs scheme, we now

consider the Mass-Spring-Dashpot (MSD) plant depicted in Fig. 7.22, where the

control input is collocated with the disturbance.

k

m

y

d

u

1

b

Figure 7.22: Mass-Spring-Dashpot (MSD) plant. The control input is the position

of the right part of the spring and dashpot.

The continuous-time model of the MSD plant is derived in the sequel. We denote

y(t) as the position of the mass and u(t) the control input, that is, the position of
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the right-end of the spring and dashpot. The disturbances are not considered, for

now, since they act upon the plant in the same way the control input does. Hence,

we have

mÿ(t) = k1 (u(t)− y(t)) + b (u̇(t)− ẏ(t)) . (7.12)

where

m = 1 kg,

b = 0.1 N/(m/s),

|d| ≤ 1,

|n| ≤ 0.1,

k1 ∈
[
k̄1 − k̃1, k̄1 + k̃1

]
=: K (N/m).

Therefore, using the Laplace transform of y(t) and u(t), denoted by Y (s) and

U(s), respectively, (7.12) can be rewritten as

ms2Y (s) = k1 (U(s)− Y (s)) + b (sU(s)− sY (s)) . (7.13)

Therefore, (7.12) can be written in state-space form as ẋ(t) = Ax(t) +Bu(t) + Ld(t),

y(t) = Cx(t) + n(t),

where n(t) denotes the measurements noise and

A =

−b −k1

1 0

 ,
B = L =

[
1 0

]T
,

C =
[
b k1

]
.

We use a sampling time of Tc = 1 ms for the controllers, and a sampling time of

Ts = 500 ms for the SVOs. The discretization of the plant is done based upon the

methodology previously described.

The uncertainty region considered is K = [0.25, 9.25] N/m. This (large) region

was divided into the following 3 regions, Ki, for i = {1, 2, 3}, and, for each region, a

mixed-µ controller that is able to yield a certain level of performance (in this case,
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70% of the performance we would obtain, had we known the actual value of the

spring constant) was synthesized:

K1 := [0.25, 5.0] N/m,

K2 := [5.0, 7.0] N/m,

K3 := [7.0, 9.25] N/m.

In the following simulations, we consider that the initial LNARC selected is

C1(·), that is, the mixed-µ controller designed to guarantee robust performance for

the uncertainty region K1. According to the algorithm introduced in Section 7.5.3,

if SVO #1 fails, then we switch to controller C2(·). If SVO #2 also fails, we switch

to controller C3(·). Notice that at least one of three SVOs cannot fail.

Scenario #1: MMAC/SVO

In this first scenario, we use the MMAC/SVO algorithm described in Fig. 7.12, i.e.,

we rely exclusively on the SVOs to discard dynamic models of the plant, regardless

of the achieved RMS performance.

The first simulation was obtained by using k1 ∈ K1. In particular, let

k1 = 1 N/m.

Since we start with controller C1(·), there is no need for switching. The result is

depicted in Fig. 7.23.

For the second simulation run, we used

k1 = 6 N/m ∈ K2.

The initial controller is C1(·), i.e., we assume that the uncertain plant belongs to

K1. However, after 5 measurements, SVO #1 is not able to explain the measured

output, and hence we switch to controller C2(·). Since SVO #2 does not fail, we

continue using controller C2(·), as depicted in Fig. 7.24.

For the last simulation with the MMAC/SVO algorithm, we used a model with

k1 = 9 N/m ∈ K3.
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Figure 7.23: Output of the closed-loop for the MSD-plant with k1 ∈ K1, for the

MMAC/SVO.
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Figure 7.24: Output of the closed-loop for the MSD-plant with k1 ∈ K2, for the

MMAC/SVO. The red dashed line indicates the time instant at which the SVO #1

failed, and hence the logic switched to LNARC #2.
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As depicted in Fig. 7.25, SVOs #1 and #2 fail at times t = 1.5 s and t = 2 s,

respectively. Although C2(·) is able to stabilize the plant, the algorithm can still

decide to switch to controller C3(·), since the SVO #2 fails.
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Figure 7.25: Output of the closed-loop for the MSD-plant with k1 ∈ K3, for the

MMAC/SVO. The red dashed lines indicate the time instants at which the SVO #1

and #2 failed, and hence the logic switched to controller #3.

It should be noted that, the smaller the amplitudes of the input and output

signals, the harder it is, in general, to discard an uncertainty region, because the

models become less distinguishable. However, we stress that, for the values of the

spring constant used, all the controllers were able to stabilize the plant. Nevertheless,

the algorithm always picked the controller that provided the performance level we

were expecting.

Remark 7.8: For this plant, we have to solve around 10 to 30 linear programs, up

to 20 times per iteration, which requires approximately 500 ms or less in a Core 2

Duo PentiumTM processor at 2.0 Ghz. �
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Scenario #2: MMAC/SVO-RMS

As previously stressed, the MMAC/SVO can be seen as a worst case approach,

in the sense that models are not invalidated unless the observed input/output se-

quences cannot be explained by the dynamics of the closed-loop system. In order

to accelerate the decision subsystem of the proposed adaptive control scheme, an

algorithm was proposed – see Fig. 7.15 – which takes into account the RMS of the

closed-loop system. Hence, the following simulations illustrate the goodness of this

approach, when compared to the “classical” MMAC/SVO algorithm in Fig. 7.12.

As in the previous scenario, the first simulation was obtained by using

k1 = 1 N/m ∈ K1.

Once again, since we start with controller C1(·), there is no need for switching, and

thus we obtain the results depicted in Fig. 7.23.

For the second simulation run, we considered that

k1 = 6 N/m ∈ K2.

While with the MMAC/SVO we required 5 measurements to invalidate model

#1, with the MMAC/SVO-RMS this model is invalidated in a single measurement.

Therefore, at time t = 0.5 s we switch to controller C2(·). Since SVO #2 does not

fail, we continue using controller C2(·), as depicted in Fig. 7.26. It should be noted

that, since now the amplitude of the output signal is considerably smaller than the

one obtained with the classical MMAC/SVO algorithm, the invalidation of dynamic

models through the SVOs gets hindered. In particular, in this case, we are not able

to invalidate model #2 using the SVOs.

In comparison with the results in Fig. 7.24, the results in Fig. 7.26 clearly show

a pronounced increase in terms of performance. Indeed, the transients observed are

considerably smaller, since the time required to switch to the correct controller is

also smaller, and by a factor of 5.

For the sake of completeness, suppose that

k1 = 9 N/m ∈ K3.
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Figure 7.26: Output of the closed-loop for the MSD-plant with k1 ∈ K2, for the

MMAC/SVO-RMS. The black dashed line indicates the time instant at which model

#1 was invalidated due to the RMS of the output, and hence the logic switched to

LNARC #2.
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As depicted in Fig. 7.27, SVO #1 fails at time t = 1.5 s. However, even before that,

models #1 and #2 are invalidated through RMS considerations, at times t = 0.5 s

and t = 1 s, respectively. Therefore, by the time SVO #1 invalidates the correspond-

ing dynamic model, the selected controller is already LNARC #3. The benefits in

terms of reduced transients, due to the faster response of the MMAC/SVO-RMS

algorithm, can be observed by comparing the results depicted in Fig. 7.25 with

those in Fig. 7.27.
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Figure 7.27: Output of the closed-loop for the MSD-plant with k1 ∈ K3, for the

MMAC/SVO-RMS. The red dashed lines indicate the time instants at which the

SVO #1 and #2 failed, and hence the logic switched to controller #3.

A more detailed comparison of the MMAC/SVO with the MMAC/SVO-RMS

will be presented in Chapter 8, by using a considerably harder control problem.



7.6. APPLICATION TO FDI 245

7.6 Application to FDI

7.6.1 Introduction

The field of Fault Detection and Isolation (FDI) has been studied since the early

70’s [161], and several techniques have, since then, been applied to different types

of systems. An FDI device is key in several applications and, in particular, in those

that are safety critical. Common examples of systems equipped with FDI devices

include aircrafts and a wide range of industrial processes such as the ones described

in the following references – [128, 131, 134, 136–139, 162, 163]. An FDI system must

be able to bear with different types of faults in sensors and/or actuators, which can

occur abruptly or slowly in time. Moreover, model uncertainty (such as unmodeled

dynamics) and disturbances must never be interpreted as faults. Notwithstanding

the hundreds (or maybe thousands!) of papers in the literature concerning this topic,

there are still some open questions related to the performance guarantees provided

by these devices.

An active deterministic model-based Fault Detection (FD) system (see [137] for a

description of the typical FD classes available in the literature) is usually composed

of two parts: a filter – see Fig. 7.28 – that generates residuals, which should be large

under faulty environments; and a decision threshold, which is used to decide whether

a fault is present or not – see [127, 129, 136, 137, 161, 164–168] and references therein.

The isolation of the fault can, in some cases, be done using a similar approach, i.e.,

by designing filters for families of faults, and identifying the most likely fault as that

associated to the filter with the smallest residuals.

As stressed in Chapter 5, the main idea in such architectures stems from the

design of filters that are more sensitive to faults than to disturbances and model

uncertainty. This can be achieved, for instance, by using geometric considerations

regarding the plant, as in [126–129], or by optimizing a particular norm minimization

objective, such as theH∞- or l1-norm – see[130–134]. The later approach provides, in

general, important robustness properties, as stressed in [130, 135–137], by explicitly

accounting for model uncertainty.
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Figure 7.28: Residual generation in a classical fault detection (FD) architecture.

As a caveat, these methodologies are, in general, conservative or can only be

applied to a restrict class of systems. Moreover, the thresholds used to declare a

fault are typically time-varying and highly dependent on the model uncertainty and

on the amplitude of the exogenous disturbances and measurement noise.

The FDI strategy proposed in this section uses a different philosophy. Instead of

identifying the most likely model of the faulty plant, we discard models that are not

compatible with the observations. As shown in the sequel, this method guarantees

that there will not be false alarms, as long as the model of the non-faulty plant

remains valid. Moreover, we do not need to compute the decision threshold used to

declare whether or not a fault has occurred. To this end, we resort to the model

falsification technique introduced in this chapter. In addition, another advantage of

the SVO-based methodology presented herein stems from the fact that it is able to

deal with linear time-varying uncertain plants.

7.6.2 Types of Faults

We focus our attention in three broad classes of failures that can be found in the

literature, namely system dynamics failures, actuator failures, and sensor failures.

We present, in the sequel, an outline of the description of each of the aforementioned

classes of failures. Moreover, we recall that it is assumed that the model of the plant,
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whether it is faulty or not, can be represented by

 x(k + 1) = A
(
ρ(k)

)
x(k) +B

(
ρ(k)

)
u(k) + L

(
ρ(k)

)
d(k),

y(k) = C
(
ρ(k)

)
x(k) +N

(
ρ(k)

)
n(k).

(7.14)

System dynamics failures

System dynamics failures can be used to describe significant changes in the model

of the plant that can be in general interpreted as changes in one or more elements

of matrix A of the dynamic system in (7.14). These changes can be modeled by the

parametric uncertainties in (7.14) and, thus, we can use SVOs to detect and isolate

such a class of faults, as described in the sequel.

Typical examples of such failures include icing and broken surfaces in aircrafts

[137].

Actuators failures

Another important type of failures occurs in the actuators. Such faults can, in

general, be described by changes in matrix B in (7.14), and/or changes in the input

vectors, u(·). Mathematically, this can be described by

 x(k + 1) = A(k)x(k) + A∆(k)x(k) + Ld(k)d(k) +B(k)u(k) +M(k)m(k),

y(k) = C(k)x(k) + n(k),

(7.15)

where M(k)m(k) accounts for the fault. It should be noticed that this model can

describe a broad range of actuator faults, as summarized in Table 7.5 for a single

control input plant – see [137] and references therein for further details.

The model described by (7.15) is clearly compatible with (7.14) and, hence, the

SVOs can also be used to detect and isolate actuator faults.
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Table 7.5: Modeling of common actuator faults.

Type of Fault Modeling

Hard-over (Saturation) M(k) = B(k) and m(k) = −u(k) + usat

Loss-of-Effectiveness
M(k) = B(k) and

m(k) = −u(k) + αu(k), α ∈ R

Floating M(k) = B(k) and m(k) = −u(k)

Bias (Stuck)
M(k) = B(k) and

m(k) = −u(k) + β, β ∈ R

Noise M(k) = B(k) and m(k) = noise

Sensors failures

Finally, sensors failures can also be treated in a similar manner. Consider the

following description of the plant, x(k + 1) = A(k)x(k) + A∆(k)x(k) + Ld(k)d(k) +B(k)u(k),

y(k) = C(k)x(k) + n(k) +Q(k)q(k),
(7.16)

where Q(k)q(k) accounts for the sensor fault. Table 7.6 summarizes the most com-

mon sensor faults and corresponding models.

Table 7.6: Modeling of common sensor faults.

Type of Fault Modeling

Dead sensor Q(k) = C(k) and q(k) = −x(k)

Loss-of-Effectiveness Q(k) = C(k) and q(k) = −αx(k), α > 0

Biased sensor Q(k) = C(k) and q(k) = β, β ∈ R

Random drift Q(k) = C(k) and q(k) = random variable

Similarly to what happened in the previous cases, the model described by (7.16)
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is also compatible with (7.14) and, therefore, we can use the SVOs for fault detection

and isolation of sensor failures.

7.6.3 FD/SVO Architecture

In this subsection, an SVO-based method to detect faults is introduced. Since a fault

can be defined as a deviation of the plant dynamics from the nominal model, an SVO

can be used to detect such a mismatch between the predicted and the actual output

of the system. As further stressed in the sequel, this nominal model of the plant

must account for unmodeled dynamics, exogenous disturbances and measurement

noise.

We use the following proposition to detect faulty behaviors of plants that are

modeled by systems represented by (7.14).

Proposition 7.1. Consider a non-faulty plant described by (7.14) and a correspond-

ing SVO, as introduced in Chapter 6. Then, if X̂(k) = ∅ for some k ≥ 0, a fault

has occurred at some time k0, where k0 ≤ k.

Proof. The results is straightforward from Lemma 7.1.

Using Proposition 7.1, the architecture depicted in Fig. 7.29 can be used to tackle

the problem of fault detection for discrete-time linear time-varying plants. Notice

that the FD filter is composed of an SVO and a Logic block, which decides whether

a fault is diagnosed or not, according to the emptiness or not of the set-valued

estimate of the state at each sampling time.

The sufficient condition in Proposition 7.1 guarantees that there will be no false

alarms, unless model (7.14) does not properly describe the nominal plant. It does

not, however, provide any guarantees in terms of fault detection, after a certain fault

has occurred in the actual system.

In order to guarantee the detection of faults, we pose the following assumption.

Let S1 denote the dynamic model of the non-faulty plant, and S2 represent a dynamic

model of the plant with a given fault, f .
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Figure 7.29: Fault Detection (FD) architecture for uncertain plants using a Set-

Valued Observer (SVO).

Assumption 7.11: S1 and S2 are absolutely (Xo, U,W )-input distinguishable in

N sampling times. �

The following result is straightforward to obtain from Theorem 7.1.

Proposition 7.2. Suppose that Assumptions 7.2 and 7.11 are satisfied. Then, the

fault f is detected in at most N iterations after it occurs.

Hence, using this approach, we have a theoretical tool which provides us, a

priori, guarantees of fault detection, while guaranteeing that there are not going to

occur any false alarms, under certain assumptions. However, there are also some

shortcomings related to this approach:

a) A false alarm can occur if the model described by (7.14) is not a good approx-

imation of the actual dynamics of the plant.

b) Assumption 7.11 may not be satisfied in practice in many examples, although

the probability of fault detection may be close to 100%. Notice that this

happens because we are using a worst-case type of approach.
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7.6.4 FDI/SVO Architectures

The fault isolation techniques available in the literature aim to identify a very precise

faulty behavior, after a general fault is detected. This means that, unlike an FD

filter, an FDI filter should not only be able to detect a faulty behavior of a plant, but

also to provide information regarding its location. In particular, FDI filters should

be able to separate between the three broad types of failures enumerated in Section

7.6.2.

The proposed SVO-based technique is also suitable for fault isolation, as long as

the corresponding model of the fault is considered during the design of the SVOs.

The main idea in this case is to resort to model invalidation, as follows. We recover

the example of Section 5.2 to illustrate the use of model falsification for fault de-

tection and isolation. Suppose that there are three possible faulty models, M#1,

M#2 and M#3, for a given plant, plus a nominal model, M#4. We are interested

in deciding which model (if any) is able to justify the input/output data that we

are obtaining from the sensors and actuators’ command. Therefore, assume that, at

a given initial time, to, all the four models are plausible, as depicted in Fig. 7.30.

Further suppose that, at time t1, model M#4 is invalidated, i.e., the sensors read-

ings cannot be explained by model M#4. Hence, since this is the nominal model,

we conclude that a fault has occurred.

Figure 7.30: Example of the time-evolution of a set of models that are able to

describe the input/output behavior of a given plant.

Moreover, consider that, at time t2, model M#2 is invalidated and that, finally,

model M#1 is invalidated at time t3. Then, we conclude that the only model capable

of explaining the input/output time-series generated by the plant is model M#3.

Thus, we have properly detected a fault at time t1, and isolated this fault at time
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t4.

Architecture I

Consider, for instance, a loss-of-effectiveness type of fault in an actuator. As de-

scribed in Section 7.6.2, this fault can be modeled by multiplying the actuator input

by a constant λ ∈ [0, 1]. Therefore, consider an SVO, as described in Chapter 6,

designed for a plant with this type of uncertainty. Then, such an SVO would vali-

date observations from a model with any value of λ ∈ [0, 1] and, in particular, for

λ = 1, which corresponds to the nominal plant.
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Figure 7.31: Fault Detection and Isolation (FDI) Architecture I for uncertain plants

using set-valued observers (SVOs).

Indeed, the architecture described in the sequel, referred to as Architecture I and

depicted in Fig. 7.31, assumes that the fault isolation filters provide valid set-valued

estimates for the state of plant, not only for the faulty plant, with a specific fault,

but also for the non-faulty plant. In addition, one SVO for the non-faulty (probably

uncertain and time-varying) plant – referred to as Nominal SVO – can be used to

detect the fault. As previously mentioned, the set-valued estimate for the state of
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the plant, obtained from this observer, is non-empty, if the plant does not present a

faulty behavior. If the state estimate of the Nominal SVO is the empty set, a fault

has occurred. A fault is completely isolated whenever a single fault isolation filter

has a non-empty set-valued state estimation.

Remark 7.9: Despite the names of the filters, all the SVOs should be robust against

model uncertainty. Thus, the Nominal SVO is in fact a robust SVO, as in Chapter

6, but designed for the dynamic model of the non-faulty plant. �

However, under certain circumstances, it may not be convenient to assume that

the plants modeled by the fault isolation filters include the nominal model of the

plant. As an example, suppose that we are interested in detecting faults

f1, f2, · · · , fN .

If we use Architecture I, one FD filter and N fault isolation filters are required.

Each of these fault isolation filters computes two set-valued estimates for the state

of the plant: one for the non-faulty model, X̂nom; and one for the faulty plant, with

the corresponding failure, X̂failure #i. Moreover, the SVOs require these set-valued

estimates to be convex regions. Hence, the set-valued estimate of each fault isolation

filter can be written as X̂i = co
{
X̂nom, X̂failure #i

}
. This can add conservatism to the

solution, and thus the isolation of the faults may become more difficult. A solution

to overcome this problem is presented in the sequel.

Architecture II

The architecture described in what follows, referred to as Architecture II, requires

two additional SVOs, besides the faults isolation SVOs, namely:

a) one SVO for the non-faulty (probably uncertain and time-varying) plant –

referred to as Nominal SVO ;

b) another SVO – referred to as Global SVO – providing set-valued estimates of

the state, which are valid not only for the non-faulty plant, but also for the

faulty plant, with any of the considered faults.
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The Nominal SVO is used for fault detection only. If the state estimate of this

SVO is the empty set, then a fault has occurred. Hence, the fault isolation SVOs are

initialized with the state estimate of the Global SVO. A fault is completely isolated

whenever a single fault isolation SVO has a non-empty set-valued state estimation.
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Figure 7.32: Fault Detection and Isolation (FDI) Architecture II for uncertain plants

using Set-Valued Observers (SVOs).

The proposed FDI architecture is depicted in Fig. 7.32. It should be stressed

that the FD filters that are designed for specific faults, are only initialized with the

set-valued state estimate of the Global SVO when they are signaled by the nominal

FD filter that a fault has occurred.

Architecture II is a general approach which, however, may lead to some practical

problems, since the uncertainty on the set-valued state estimate of the aforemen-

tioned Global SVO can be very large, which, in turn, can increase the time required

to isolate a fault.
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7.6.5 FD Example #1: Uncertain System

We are now going to analyze a series of experiments, designed to illustrate the wide

applicability of the SVO-based FDI technique introduced in this section.

The first simulation at hand exploits the example described in [134, 169]. Let

the linearized discrete-time model of a simplified longitudinal flight control system

be described by x(k + 1) = [A+ A∆ (δ1, δ2, δ3, δ4, δ5, δ6)]x(k) +Dp,1w(k)

y(k) = Cx(k) +Dp,2w(k),
(7.17)

where the elements of the state vector

x(·) =
[
ηy(·) ωz(·) δz(·)

]T

are the normal velocity, ηy(·), the pitch rate, ωz(·), and the pitch angle, δz(·). The

system matrices are

A =


0.8950 −0.1083 −0.3872

0.0015 0.8912 −0.0672

0 0.7368 0

 , C = I3×3,

Dp,1 =


0.1 0 0

0 0.1 0

0 0 0.01

 , Dp,2 = 0.1× I3×3,

and the map A∆ : R6 → R3×3 is given by

A∆ (δ1, δ2, δ3, δ4, δ5, δ6) =
6∑
i=1

Aiδi,

where

A1 =


−1 0 0

0 0 0

0 0 0

 , A2 =


0 −1 0

0 0 0

0 0 0

 , A3 =


0 0 −1

0 0 0

0 0 0

 ,

A4 =


0 0 0

−1 0 0

0 0 0

 , A5 =


0 0 0

0 −1 0

0 0 0

 , A6 =


0 0 0

0 0 −1

0 0 0

 ,
with
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• |δ1| ≤ 0.05818;

• |δ2| ≤ 0.00704;

• |δ3| ≤ 0.02517;

• |δ4| ≤ 0.00010;

• |δ5| ≤ 0.05793

• and |δ6| ≤ 0.00440.

Suppose that, at a given time k, the set-valued estimate of possible states of the

plant is given by X(k), where X(k) := Set (P (k), p(k)) is a convex polytope. For a

given valid δ∗, and noticing that C = I3×3, we can rewrite (7.17) as

a) x(k + 1) = [A+ A∆(δ∗)]x(k) + Dp,1w(k) = [A+ A∆(δ∗)] (y(k)−Dp,2w(k)) +

Dp1w(k);

b) y(k) = x(k) +Dp,2w(k);

c) x(k + 1) = [A+ A∆(δ∗)]x(k) +Dp,1w(k).

Therefore, we can write the following restrictions for x(k + 1):

a) x(k + 1) = [A+ A∆(δ∗)] (y(k)−Dp,2w(k)) +Dp,1w(k);

b) P (k)y(k)− P (k)Dp,2w(k) ≤ p(k);

c) P (k) [A+ A∆(δ∗)]−1 x(k + 1)− P (k) [A+ A∆(δ∗)]−1Dp,1w(k) ≤ p(k),

which can be readily implemented as an SVO, since these restrictions define a convex

polytope. Moreover, using the results in Chapter 6, we conclude that the convex

hull of the set-valued estimates of the state, for the vertices of the hyper-rectangle of

the eligible realizations of δ, contains all the values of x(k + 1) that are compatible

with the observations.
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We replicate the simulations in [134] in order to evaluate the behavior of the FD

filter with SVOs. The disturbances are given by

w(k) =


w1(k)

w2(k)

w3(k)

 =


0.7 sin(kTs)

0.5 sin(1.5kTs)

0.5 sin(0.75kTs)


where Ts = 10 ms is the sampling period. The bound considered by the SVOs for

the disturbances amplitude is |w(k)| ≤ 0.951. Finally, we assume that the initial

state is inside a cube, centered at the origin, and all of whose sides are 20 units long.

The uncertain parameters in vector δ are assigned to their upper bounds. A

sensor fault is then added to the system at time t = 6 s, by making the reading of

the normal velocity, ηy, 0.6 times the actual system velocity. This fault is detected

by the FD filter with SVOs in one measurement, as depicted in Fig. 7.33. Thus, at

time t = 6.01 s, the FD filter with SVOs indicates a faulty behavior of the system.

0 20 40 60 80 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

S
en

so
r 

ef
fe

ct
iv

en
es

s

0 20 40 60 80 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F

au
lt 

de
te

ct
io

n 
(0

=
no
−

fa
ul

t, 
1=

fa
ul

t)

Figure 7.33: Fault detection of a plant with an uncertain dynamic model. The

dashed (green) lines illustrate whether the set-valued estimate of the corresponding

SVO is empty (1) or not (0).
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7.6.6 FD Example #2: Linear Periodic System

As a second illustration of the applicability of the FD filter with SVOs, we use the

example of a linear observable 3-periodic discrete-time system in [128], described by x(k + 1) = A(k)x(k) +B(k)u(k) +M(k)m(k) + L(k)d(k)

y(k) = C(k)x(k),
(7.18)

where A(k + 3) = A(k), B(k + 3) = B(k), C(k + 3) = C(k), M(k + 3) = M(k) and

L(k + 3) = L(k). The fault vector is represented by m(k) and the disturbances are

denoted by d(k). Furthermore,

A(0) =


3 0 −1

−1 0 1

1 1 0

 , A(1) =


1 0 1

2 −1 0

0 2 3

 , A(2) =


0 3 1

1 2 0

−1 0 1

 ,

B(0) =


0

0

1

 , B(1) =


0

1

0

 , B(2) =


2

0

0

 ,

C(0) =
[
2 0 3

]
, C(1) =

[
0 1 −1

]
, C(2) =

[
1 0 2

]
,

M(0) =


1

3

0

 , M(1) =


0

2

6

 , M(2) =


0

0

1

 ,

L(0) =


0

0

1

 , L(1) =


0

1

0

 , L(2) =


2

0

0

 .
The implementation of an SVO for this system is straightforward from Chapter

6. Notice that the SVO need not know the future system matrices at every sampling

time, which allows accounting for time-varying systems in a very natural manner.

Hence, a set-valued estimate for the state of a periodic discrete-time system can be

generated and used for fault diagnosis.
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In this simulation, we consider that the faultm(k) is a step signal, with amplitude

0.3, starting at time k = 40. Similarly to what happened in the previous example,

the fault is detected in the following sampling time, that is, at time k = 41, as

illustrated in Fig. 7.34.
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Figure 7.34: Fault detection of a linear periodic plant.

7.6.7 FD Example #3: LTV System

In the following simulation, we illustrate the use of SVOs for FD of a Linear Time-

Varying (LTV) plant. We consider the example in [170], for comparison purposes.

The LTV system analyzed in this subsection is described by ẋ(t) = A(t)x(t) +B(t)u(t) + Ld(t)d(t) +Bf (t)f(t)

y(t) = C(t)x(t) +D(t)u(t) +Dd(t)d(t) +Df (t)f(t)
(7.19)

where f(t) is the fault signal, and

A(t) =

−0.1 1− e−t/50

0 −0.2

 , Ld(t) =

0.1 0

0.1 0

 ,
B(t) =

0.1

0.1

 , Bf (t) =

0

5

 , C(t) =
[
0.1 0.1

]
,

D(t) =
[
0
]
, Dd(t) =

[
0.1 0.1

]
, Df (t) =

[
0
]
.
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We repeat the simulation in [170], where it is considered that

u(t) = 0,

d(t) =

0.2 sin(0.5t)

0.2 cos(0.5t)

 ,
f(t) =

 0, t < 20 s,

0.1, t ≥ 20 s.

For the design of the FD-SVO, we assumed |d| ≤ 0.2. The system (7.19) was dis-

cretized using a sampling period of Ts = 100 ms. The simulation results are depicted

in Fig. 7.35. The fault starts at t = 20 s and is detected 1 s later. In [170], the
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Figure 7.35: Fault detection of a Linear Time-Varying (LTV) plant.

residuals of the H∞ FD filter can only identify a clear mismatch between the output

and the plant model after nearly 5 s, which indicates a significant improvement in

terms of response of the FD method. Moreover, even if we use conservative bounds

for the plant disturbances, the results are not strongly deteriorated. As an example,

if we assume that |d| ≤ 0.4 in the design of the FD-SVO, then the time-interval

required to detect the fault would be 1.6 s, and therefore the fault would still be

diagnosed faster than with an H∞ FD filter.
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7.6.8 FD Example #4: Nonlinear System

In this subsection, an example is provided showing how, in some special cases, it is

possible to design SVOs for nonlinear models. Consider a plant described by the

following dynamics: 
x(k + 1) =

a(k) 0.1

0 0.1

+ d(k),

y(k) = x(k) + n(k),

(7.20)

where |d| ≤ 1, |n| ≤ 1, a(k) := f(x(k)) := 0.1 sinx1(k), and x1(k) is the first

component of vector x(k). We further consider that d(·) and n(·) follow a uniform

distribution. Define

ā(k) := max
x∈X̂(k)

f (x)

and

a(k) := min
x∈X̂(k)

f (x) .

Consider a system described by
x(k + 1) =

θ(k) 0.1

0 0.1

+ d(k),

y(k) = x(k) + n(k),

(7.21)

where |∆| ≤ 1 and θ(k) = ā(k)+a(k)+∆(ā(k)−a(k))
2

. Notice that

a(k) ∈
{
a : a =

ā(k) + a(k) + ∆ (ā(k)− a(k))

2
, |∆| ≤ 1

}
.

Therefore, the solutions to (7.20) are contained in the set of solutions to (7.21).

Notwithstanding the conservatism added due to this relaxation, Fig. 7.36 shows

that, at least for the present example, the performance of the FD algorithm is not

deteriorated. In this case, we assumed that, at t = 10 s, the effectiveness of the

sensor that measures the first state of the plant is decreased by 80%. The sampling

period is Ts = 100 ms.

The fault is diagnosed in nearly 200 ms. Hence, describing a nonlinear system

by a linear uncertain time-varying dynamic model is a technique that, combined
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Figure 7.36: Fault detection of a nonlinear plant.

with SVOs, can be used for fault detection, despite the conservatism that may be

added to the solution. Having conservative SVOs means that faults may be masked

by model uncertainty and thus not properly detected. Nevertheless, we are still able

to guarantee that no false alarms will occur.

7.6.9 FDI Example #1: Robotic Arm

We now recover the simulation example of Section 7.4, which was taken from [159],

to show an illustration of the use of the SVOs not only for FD, but also for the

isolation of the faults. In this example, a single-link robotic arm, with a revolute

elastic joint, rotating in a vertical plane, is considered. The dynamics of the system

are described by (7.4).

Similarly to [159], we assume that q1, q2 and q̇2 are available for measurement.
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Thus, the model in (7.4) can be rewritten as


ẋ1

ẋ2

ẋ3

ẋ4

 =

 0 1 0 0
−k
J`

−F`
J`

k
J`

0

0 0 0 1
k
Jm

0 −k
Jm

−Fm
Jm



x1

x2

x3

x4

+


0

−mg`
J`

sinx1

0

u
Jm

+


0

η

0

0



y =


1 0 0 0

0 0 1 0

0 0 0 1



x1

x2

x3

x4

+


0

d2

d3

+Rθr(t− T )

(7.22)

where x1 = q1, x3 = q2, and where η : R+ → R represents the model uncertainty in

the derivative of q1, with the constraint |η| ≤ η̄ = 0.05(mg`/J`) sinx1. In addition

to the model uncertainty proposed in [159], we also consider that k is uncertain,

with the constraint k ∈ [1, 1.1] N/m. Moreover, (7.22) also comprises sensor faults

in the term Rθr(t − To). The map r : R → R signals an abrupt fault occurring at

time instant To, and is described by

r(t) =

 0, t < To

1, t ≥ To
.

The parameter θ ∈ [0, 0.2] is the magnitude of the fault, and R is the corresponding

direction. In particular, two sensor faults are considered:

a) Fault #1: sensor bias in the measurement of y2, represented by R = R1 =[
0 1 0

]T

,

b) Fault #2: sensor bias in the measurement of y3, represented by R = R2 =[
0 0 1

]T

.

As in [159], the unknown measurement noise is modeled by

d2 = 0.01 sin(5t), and d3 = 0.01 sin(2t).

For the following simulations, we also considered that u = 8 sin(t/3) and that the

initial state of the plant is given by x(0) = 0. Moreover, we assumed that θ = 0.15,
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To = 5 s, and k = kmin = 1 N/m. For the design of the SVOs, we only assumed that

k = kmin + δk,

for some δk ∈ ∆k = [0, 0.1] N/m.

The aforementioned model was discretized with a sampling period Ts = 500

ms and, using the FDI Architecture I, described in Section 7.6.4, i.e., without the

Global SVO, three SVOs were designed, namely, one for the non-faulty plant, one

for fault #1, and another for fault #2.

Remark 7.10: The sensor faults considered (bias) can easily be accounted for during

the design of the SVOs for the fault isolation filters in Fig. 7.31, by considering such

faults as increased measurement noise. �

The results for the detection and isolation of fault #1, i.e., the bias in y2, are

depicted in Fig. 7.37. In this case, the fault is detected and isolated in one mea-

surement, despite the uncertainties on the model of the plant.
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Figure 7.37: Fault #1 detection and isolation using SVOs. The bias in y2 is detected

and isolated in one iteration, i.e., in 500 ms.
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The detection of fault #2 requires also a single iteration of the SVOs. Never-

theless, 6 measurements are necessary for the isolation of the fault. Thus, during

the first 3 s after the occurrence of the same fault, the input/output sequence of the

plant is compatible with the model of the plant used by filter #2.
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Figure 7.38: Fault #2 detection and isolation using SVOs. The bias in y3 is detected

in one measurement and isolated in six, i.e., in 3 s.

It should be noticed that the uncertainty in k highly increases the difficulty

on the FDI process. To see this, we used model (7.22) with an increasingly larger

uncertainty in k, to assess the effects of this type of uncertainty on the time required

to isolate the faults. The results obtained for 10 Monte-Carlo runs are depicted in

Fig. 7.39. As previously, we considered that k = kmin = 1 N/m, while for the design

of the SVOs, we only assumed that k = kmin + δk, for some δk ∈ ∆k. As expected,

the number of iterations required to isolate the faults increases with the uncertainty

in k.
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Figure 7.39: Time required to isolate faults #1 and #2 versus the uncertainty in k.

7.6.10 FDI Example #2: Aircraft Longitudinal Dynamics

In this subsection, we study the performance of the SVO-based FDI strategy devel-

oped in this chapter, when applied to an aircraft LPV longitudinal model.

The dynamics of an aircraft are highly nonlinear, and depend on several (time-

varying) parameters, such as the dynamic pressure and the aerodynamic coefficients.

However, in constant altitude steady-state flight, these dynamics are well-described

by LPV models, which depend upon the airspeed. In particular, consider the aircraft

LPV longitudinal model presented in [171]. This model can be described by the

following linearized equations:

du
dt
−Xuu+ g cos Θoθ = 0,

−Zuu+ V dα
dt
− Zαα + (V + Zq)q + g sin Θoθ = Zδeδe,

−Muu−Mα̇
dα
dt
−Mαα + dq

dt
−Mqq = Mδeδe,

dθ
dt

= q.

(7.23)

The longitudinal states are the forward airspeed, u (which should not be confused

with the control input in (7.14)), the pitch angle, θ, the angle-of-attach, α, and the

pitch rate, q. The parameters of the model are the stability and control derivatives
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(described in the sequel), the magnitude of the gravity vector, g, the pitch trimming

angle, Θo, and the airspeed, V , i.e., the magnitude of the velocity of the aircraft

relative to the fluid. Moreover, δe is the deviation of the elevator angle.

As explained in detail in [171], by defining x(t) and y(t) as

x(t) :=


u(t)

θ(t)

α(t)

q(t)

 , y(t) :=


u(t)

θ(t)

α(t)

 ,

the dynamics in (7.23) can be rewritten as the following continuous-time LPV model: d
dt
x(t) = A(V, ξ(V ))x(t) +B(V, ξ(V ))δe(t),

y(t) = Cx(t),
(7.24)

where

A(V, ξ(V )) = [aij],

a11 = Xu, a12 = −g cos Θo, a13 = Xα,

a14 = 0, a21 = 0, a22 = 0,

a23 = 0, a24 = 1, a31 = Zu
V
,

a32 = −g sin Θo
V

, a33 = Zα
V
, a34 = 1 + Zq

V
,

a41 = Mu +Mα̇
Zu
V
, a42 = −Mα̇

g sin Θo
V

,

a43 = Mα +Mα̇
Zα
V
, a44 = Mq +Mα̇

(
1 + Zq

V

)
,

B(V, ξ(V )) =


0

0

Zδe
V

Mδe +Mα̇
Zδe
V

 , C =


1 0 0 0

0 1 0 0

0 0 1 0

 .

The stability and control derivatives (SCDs) are concatenated in vector ξ(V ),

i.e.,

ξ(V ) = [Xu, Xα, Zu, Zα, Zq, Mu, Mα, Mα̇, Mq, Zδe , Mδe ].

For a nominal airspeed of Vo = 150 m/s, the numeric values of the SCDs are sum-

marized in Table 7.7.
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Table 7.7: Stability and control derivatives for Vo = 150 m/s.

SCD Value SCD Value

Xu −0.0298 Xα 12.609

Zu −0.3065 Zα −161.54

Zq −1.5464 Mu 0.0013

Mα −7.9295 Mq −1.8485

Mα̇ 0.1167 Zδe −11.374

Mδe −5.9544

The LPV model in (7.24) is going to be used in simulation as a realization of the

dynamics of the aircraft, and to design the SVOs for the FDI method described in

this chapter.

Simulations

We now use the aforementioned aircraft model for the longitudinal axis, discretized

with a sampling period Ts = 200 ms.

Thereafter, a fault detection filter as in Section 7.6.3 was synthesized in order

to diagnose faults in the longitudinal dynamics of the aircraft. For the simulations,

both the exogenous disturbances, d(k), and the sensors noise, n(k), were generated

using a uniform distribution. Moreover, four fault isolation filters were also designed

using the approach in Section 7.6.4, in order to isolate the following failures in the

aircraft:

a) FDI #1: loss-of-effectiveness (LOE) in the forward velocity, u, sensor;

b) FDI #2: LOE in the pitch angle, θ, sensor;

c) FDI #3: LOE in the angle-of-attach, α, sensor;

d) FDI #4: LOE in the elevator, δe.
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The FDI architecture used is depicted in Fig. 7.40. In this case, the FDI filters

were designed so that loss-of-effectiveness type of faults can be diagnosed. Thus,

as explained in detail in Section 7.6.4, the FDI filters need not be reset whenever a

fault is detected by the nominal filter.

Uncertain Aircraft Model
u(k)

y(k)

Sensor
noise

Plant
disturbances

d(k) n(k)

FDI signals

FDI Filter w/SVOs

FDI Pitch Angle Sensor

Nominal FD Filter

FDI Forward Airspeed Sensor

FDI Angle-of-attack Sensor

FDI Elevator

Figure 7.40: FDI architecture using SVOs for the aircraft longitudinal model.

An LQG controller was designed for the aircraft linearized model, around the

nominal airspeed of Vo = 150 m/s, in order to be able to generate faults in the

actuator.

Two different scenarios are going to be analyzed in the sequel. The first one

consists in generating abrupt (or hard) faults in the sensors/actuator. We start

by considering a hard fault in the elevator. In particular, for t ≥ 20 s, the elevator

becomes stuck at zero, i.e., δe(t) = 0 for t ≥ 20 s. For this configuration, the average

results for 5 Monte-Carlo runs are depicted in Fig. 7.41. The faults were detected

in less than 3 measurements, i.e., in less than 600 ms, and isolated in less than 1 s.

A similar trial was tested for a hard failure in the forward speed sensor of the

aircraft. Suppose that, for t ≥ 20 s, the effectiveness of the forward speed sensor

is decreased by 40%, i.e., the reading acquired from the sensor corresponds to 60%

of the true forward speed of the aircraft. For this case, the results obtained by

averaging 5 Monte-Carlos runs are illustrated in Fig. 7.42. The faults were detected
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Figure 7.41: Hard fault in the elevator of the aircraft. The results shown were

obtained by averaging 5 Monte-Carlo runs. After nearly 1 s, the only FDI filter that

is able to explain the observations is FDI #4. Therefore, the fault in the elevator is

isolated in nearly 1 s.

and isolated in less than 2 measurements, which is equivalent to 400 ms. In fact, in

most cases, only one measurement was required to isolate this fault.

Remark 7.11: In order to give some insight regarding why the failures in the forward

speed sensor are, in these simulations, more quickly detected and isolated than the

faults in the elevator, we stress that the changes in the forward speed affect not only

the state trajectory u(·), but also the dynamics of the model. To see this, notice

that A(·, ·) and B(·, ·) in (7.24) depend upon the airspeed, V (·), which is obviously

related to u(·). �

It should be noticed, however, that hard faults are, in general, “easier” for de-

tection. Indeed, for the second scenario, we consider smooth (or soft) faults in the

sensors/actuator, thus representing more realistic failures.

Suppose that the effectiveness of the elevator suffers the variation depicted in

Fig. 7.43, i.e., the effectiveness of the actuator decreases linearly during 2 s. In this

case, the FD filter with SVOs takes nearly 600 ms to detect the fault, as shown in

Fig. 7.43. Moreover, the fault is isolated in 2 s. In comparison with the previous
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Figure 7.42: Hard fault in the forward speed sensor. The fault in the forward speed

sensor is isolated in nearly 400 ms.

scenario (hard failures), the FDI system requires more time to detect and isolate

the faults, as expected.
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Figure 7.43: Soft fault in the elevator of the aircraft. The fault in the elevator is

isolated in nearly 2 s.

The results for a soft fault in the forward speed sensor are depicted in Fig. 7.44.
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In this situation, the results are not significantly affected by the smoothness of the

fault. Indeed, only 2 measurements are required to isolate the fault. The same

reasoning as in Remark 7.11 applies to this case.
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Figure 7.44: Soft fault in the forward speed sensor. The fault in the forward speed

sensor is isolated in nearly 400 ms.

7.7 Conclusions

This chapter addressed the problem of model falsification using Set-Valued Observers

(SVOs), for uncertain Linear Parameter-Varying (LPV) systems. The main goal

of this chapter was to develop a series of architectures and algorithms that, under

certain conditions, can provide guarantees in terms of model selection. In particular,

the model falsification techniques developed in this chapter take advantage of the

absolute input distinguishability concept, introduced in Chapter 5, to ensure that a

single model is selected after a given (finite) number of measurements. Moreover,

the results in Chapter 6 are used to guarantee that a plausible model of a plant

is never invalidated. Unlike some of the solutions available in the literature, the

methods suggested to implement this model falsification technique are recursive.

One of the possible applications of the model falsification approach developed
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in this chapter is related to Multiple-Model Adaptive Control (MMAC). Thus, this

chapter also introduced the MMAC/SVO scheme, which yields stability and perfor-

mance guarantees under several uncertain and time-varying scenarios.

As a second example of the applicability of this model falsification method, this

chapter described the use of this technique in Fault Detection and Isolation (FDI).

In this case, we are able to guarantee that, under certain circumstances, a fault

is always detected and isolated in a finite number of measurements, and that false

alarms are avoided. Moreover, all the properties of the SVOs of Chapter 6 are

inherited, which means that uncertain LPV models can be handled.

Although several numerical simulations, illustrating the applicability of the afore-

mentioned model falsification technique, were presented in this chapter, the MMAC/SVO

scheme was not analyzed in detail. Therefore, the following chapter is devoted to

the (thorough) comparison between the MMAC/SVO and RMMAC/BMI schemes,

when applied to a double Mass-Spring-Dashpot (MSD) system.





Chapter 8

Comparison of MMAC/SVO vs

RMMAC/BMI

8.1 Introduction

In the previous chapter, a novel adaptive control architecture, referred to as Multiple-

Model Adaptive Control using Set-Valued Observers (MMAC/SVO), was intro-

duced. Although some simulation results were presented in order to illustrate

the behavior of the proposed adaptive control method, it was not clear how the

MMAC/SVO compares with other adaptive control schemes. Therefore, this chapter

is devoted to an insightful comparison between the MMAC/SVO and another well-

known adaptive control architecture, referred to as Robust Multiple-Model Adaptive

Control (RMMAC).

As previously mentioned in this thesis – see Chapter 1 –, the RMMAC is a

multiple-model approach that computes and uses the posterior probabilities of the

uncertain parameters of the process model being in a specific region to switch or

blend the outputs of a set of controllers, each of which designed for a given un-

certainty region. The estimation part is done by a bank of Kalman filters (KFs),

while for the control part a set of mixed-µ controllers is used – see Fig. 8.1, where

the Local Non-Adaptive Robust Controllers (LNARCs) are the mixed-µ controllers,

in the original RMMAC architecture. For further details, the interested reader is

275
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Figure 8.1: RMMAC/BMI architecture.

referred to [57–59].

As shown in Chapter 3, the mixed-µ controllers of the RMMAC can be sub-

stituted by LPV/BMI controllers – see Chapter 2 – in order to account for time-

variations of the uncertain parameters of the dynamics of the plant. The design

specifications of the LPV/BMI controllers are similar to those of the mixed-µ con-

trollers, but assuming nonzero bounds on the rate of variation of the uncertain

parameters of the plant. Since the design assumptions are very similar in both

cases, except for the time-variation of the parameter, little effort is needed in order

to “upgrade” the standard RMMAC method to this novel architecture. In reference

to Fig. 8.1, the LNARCs are now LPV/BMI controllers.

8.1.1 Main Contributions and Organization

The key contributions of this chapter are as follows:

a) An insightful practical comparison between the RMMAC/BMI and the MMAC/SVO

architectures;

b) The application of the methodology presented in the previous chapter to in-
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tegrate the MMAC/SVO with another heuristic, using RMS considerations

regarding the closed-loop system.

The remainder of this chapter is organized as follows: in Section 8.2, the dou-

ble Mass-Spring-Dashpot (MSD) plant is revisited; Section 8.3 presents several

Monte-Carlo simulations, illustrating the advantages and shortcomings of the RM-

MAC/BMI architecture, while a method to integrate the MMAC/SVO with closed-

loop RMS considerations is used; finally, in Section 8.4, the results obtained are

discussed.

8.2 Mass-Spring-Dashpot Plant

In Section 3.2, a time-varying double Mass-Spring-Dashpot (MSD) plant was used

in order to evaluate the performance of the RMMAC, with mixed-µ and LPV/BMI

controllers. In the remainder of this chapter, an MSD plant is also used, but con-

sidering no input time-delay, as depicted in Fig. 8.2.

m1 m2

k1 k2

b1 b2

u(t)

d(t)
x (t)1 y(t)=x (t)2

m1 m2

k1 k2

b1 b2

u(t)

d(t)x (t)1 y(t)=x (t)2

t

Figure 8.2: Mass-spring-dashpot plant.

In this case, the uncertain parameter is the spring stiffness, k1(·), which is as-

sumed to be time-varying, but with known bounds on the rate of time-variation.

Moreover, it is assumed that

∀t≥0, k1(t) ∈ K := [0.25 1.75] N/m.

The state-space description of the dynamics of the MSD system, excluding the

dynamics of the disturbances, is given by ẋ(t) = A(k1)x(t) +Bu(t) + Ld(t),

y(t) = Cx(t) + θ(t),
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where

xT(t) =
[
x1(t) x2(t) x3(t) x4(t)

]
is the state of the plant, and

A(k1) =


0 0 1 0

0 0 0 1

− k1

m1

k1

m1
− b1
m1

b1
m1

k1

m2
−k1+k2

m2

b1
m2

− b1+b2
m2

 , B =


0

0

1
m1

0

 , L =


0

0

0

1

 ,

C =
[
0 1 0 0

]
.

where

m1 = m2 = 1 kg, k2 = 0.15 N/m, b1 = b2 = 0.1 N/(m/s).

The disturbance force, d(·), shown in Fig. 8.2 is generated by driving a low-pass

filter, with transfer function Wd(s), with continuous-time bounded Gaussian noise

ξ(·), with zero mean, bound of Γd̄ and intensity of ΓΞ, according to

d(s) = sat

(
α

s+ α
ξ(s),Γd̄

)
= sat

(
Wd(s)ξ(s),Γd̄

)
,

where Γ = 1, Ξ = 1, and d̄ = 3, for the nominal case, and where

sat(x, y) =


x, if −y ≤ x ≤ y,

y, if x > y,

−y, if x < −y,

for y ≥ 0. We consider that the sensor noise, θ(·), is also obtained from a Gaussian

distribution, with zero mean and intensity 10−6, saturated by n̄ = 0.003. The reader

is referred to [34, 57–59] for further details on the dynamics of the MSD system.

Following the RMMAC/BMI synthesis methodology and using the same design

choices as the ones described in [58, 59], we obtain N = 4 LNARCs – which are

mixed-µ controllers in the original RMMAC design – in order to achieve at least 70%

of the performance we would have obtained, had we known the value of the uncertain

parameter, k1. The 4 regions of uncertainty are summarized in Table 8.1. Then,

as explained in [49], the mixed-µ controllers are replaced by BMI/LPV controllers
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Table 8.1: Regions of uncertainty for the spring stiffness, k1.

Region Number Spring Stiffness Uncertainty [N/m]

#1 [1.02, 1.75]

#2 [0.64, 1.02]

#3 [0.40, 0.64]

#4 [0.25, 0.40]

with similar specifications, but assuming nonzero bounds on the rate of variation of

the parameter, k1, which results in the RMMAC/BMI adaptive control scheme. In

this design, we assume a bound of 0.001 (N/m)/s for the slope (time-variation) of

the parameter k1.

One SVO for each region of uncertainty was designed, using a sampling time of

Ts = 100 ms, and considering a bound on the disturbances of

∀k, |d(k)| ≤ d1
max := 3 N.

Moreover, a Global SVO was synthesized for the whole region of uncertainty, i.e.,

for k1 = [0.25, 1.75] N/m, and assuming no constraints for the time-rate of variation

of the uncertain parameter, k1. Moreover, for the Global SVO, it was considered

that the disturbances were bounded by

∀k, |d(k)| ≤ d̄SVO := 30 N.

Two algorithms for the selection of the controllers are going to be used. In the

first case, we consider the simplest MMAC/SVO architecture and algorithm, where

the selection of the controllers is performed in a sequential manner, i.e., we start by

using LNARC #1 and switch to LNARC #i+ 1 (or to model #i+ j, for j > 1 and

as small as possible, if model #i+ 1 was previously falsified) whenever model #i is

invalidated. If all the SVOs are invalidated, then we switch to LNARC #1 and reset

the set-valued estimates of the SVOs with that of the Global SVO, as illustrated in

Fig. 8.3.
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Are
all SVOs
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Figure 8.3: Algorithm for the sequential selection of controllers, in the MMAC/SVO

architecture for time-varying systems.
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The second algorithm that will be used in simulation was described in the pre-

vious chapter, and is depicted in Fig. 7.15.

8.3 Simulations

A set of simulations will be presented in what follows, in order to compare the

behavior of the MMAC/SVO with that of the RMMAC/BMI, when applied to the

MSD plant previously described. Although several Monte-Carlo simulations have

been performed, only a representative set will be considered here for analysis.

8.3.1 k1 = 0.25 N - Forced Instability

Consider that Γ = 1 and let k1 = 0.25 N/m, which means that the dynamics of

the plant can be described by model #4. We now analyze the mismatch-stability

properties of the MMAC/SVO, when compared to those of the RMMAC/BMI.

This can be achieved by forcing the closed-loop to become unstable, during a

small amount of time. In the present example, we force the decision subsystems

of both the MMAC/SVO and the RMMAC/BMI to select the LPV/BMI controller

synthesized for the region of uncertainty #1, during 100 ms. Notice that, as stressed

in [34] for the case where µ-compensators are used, the controller for the region of

uncertainty #1 is a destabilizing controller for a model in region #4.

Therefore, consider that, for t ∈ [100, 100.1] s, the decision subsystems of both

architectures select controller #4. The results obtained for a typical Monte-Carlo

simulation are depicted in Fig. 8.4.

In this case, the MMAC/SVO performs significantly worse than the RMMAC/BMI,

due to the large transients observed before the former adaptive control laws selects

the appropriate controller. A physical interpretation of this fact is described in

Remark 8.2.

The MMAC/SVO is eventually able to switch to controller #4, nearly 14 secs

after the forced model-mismatch instability, as depicted in Fig. 8.5. However, before

forcing the instability of the system, the MMAC/SVO was not able to falsify region
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Figure 8.4: Output of the MSD plant, for forced instability and k1 = 0.25 N/m.
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Figure 8.5: Controller selection, for forced instability and k1 = 0.25 N/m.

This example highlights some of the shortcomings of the MMAC/SVO, which

are going to be addressed in the sequel.

8.3.2 k1 = 1.75 N - Forced Instability

As happened with the previous case, let Γ = 1, but assume that k1 = 1.75 N/m,

which means that the dynamics of the plant can be described by model #1. Anal-

ogously to the previous example, we force the decision subsystems of both the

MMAC/SVO and the RMMAC/BMI to select the LPV/BMI controller synthesized

for the region of uncertainty #4, during 100 ms. We stress that the controller for
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the region of uncertainty #4 is a destabilizing controller for a model in region #1.

Hence, consider that, for t ∈ [100, 100.1] s, the decision subsystems of both

architectures select controller #4. The results obtained for a typical Monte-Carlo

run are depicted in Fig. 8.6.
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Figure 8.6: Output of the MSD plant, for forced instability and k1 = 1.75 N/m.

The performance of the MMAC/SVO, for this case, is considerably better than

that of the RMMAC/BMI. As illustrated in Fig. 8.7, the MMAC/SVO algorithm

only requires a single measurement to correctly invalidate model #4, and hence

switch back to controller #1.
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Figure 8.7: Controller selection, for forced instability and k1 = 1.75 N/m.

Remark 8.1: In the MMAC/SVO design, as soon as model #4 is invalidated,

controller #1 is selected again, as described in Fig. 8.3. To see this, note that,
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in order to force the selection of model #4, we have to impose the falsification of

models #1,#2 and #3. Hence, if model #4 is also falsified, we reinitialize the SVOs

with the set-valued state estimate of the Global SVO, and connect controller #1 to

the loop immediately. �

Remark 8.2: The large transient observed with the MMAC/SVO architecture,

when k1 = 0.25 N/m and the model-mismatch instability is forced, can intuitively

be explained by the following physical considerations. We start by recalling that we

are only measuring the position of mass m2. If k1 is small, in particular, k1 = 0.25

N/m, then the system is considerably slower than that for k1 ∈ [1.02, 1.75] N/m.

Therefore, for small k1, the energy transferred by the control input, u(·), to mass m1,

will take longer to impact on mass m2. Since LPV/BMI controller #4 (designed for

k1 ∈ [1.02, 1.75] N/m) assumes a fast response of the system, it will try to quickly

compensate for the delay observed in the position of mass m2, as the controller will

“blame” the disturbances for this unexpected (slow) behavior of the plant. This

over-compensation will naturally lead to large amplitude signals in a small amount

of time. �

8.3.3 MMAC/SVO-RMS: k1 = 0.25 N/m - Forced Instability

The deterioration in terms of performance of the MMAC/SVO, when compared to

the RMMAC/BMI, was largely due to the transients observed whenever a new con-

troller had to be selected. Indeed, since the MMAC/SVO can be seen as a worst case

approach, a controller is not invalidated unless the input/output sequences cannot

be explained by the dynamics of the closed-loop system. Hence, an enhancement of

the MMAC/SVO architecture, referred to as MMAC/SVO-RMS, was proposed in

the previous chapter, that takes into account the RMS of the output error.

For the case of the MSD plant, depicted in Fig. 8.2, the upper bounds on the

RMS of the closed-loop, in steady state, are summarized in Fig. 8.8.

We start by repeating the first simulation, for which we considered k1 = 0.25

N/m, with forced model-mismatch instability at time t = 100 secs. The output of

the MSD plant, interconnected with what we call the MMAC/SVO-RMS adaptive
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0.25 0.40 0.64 1.02 1.75 k1

#1 #2 #3 #4

max RMS0.039 0.045 0.046 0.063

Region of
Uncertainty

Figure 8.8: Maximum values of the RMS in steady state, for the closed-loop, for

each region of the spring stiffness uncertainty.

control scheme, is depicted in Fig. 8.9.
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Figure 8.9: Output of the MSD plant, for forced instability and k1 = 0.25 N/m,

using the RMMAC/BMI and the MMAC/SVO-RMS control architectures.

The transient of the MMAC/SVO-RMS is still considerably larger than that of

the RMMAC/BMI, whenever we force the model-mismatch instability. Nevertheless,

we obtain a remarkable improvement when comparing these results with those of the

MMAC/SVO in the previous simulations. In fact, not only the MMAC/SVO-RMS

is able to select the appropriate controller in about 6 secs, but also it recovers from

the forced instability in less than 8 secs.

8.3.4 MMAC/SVO-RMS: k1 = 1.75 N/m - Forced Instability

We now consider that k1 = 1.75 N/m. For this configuration, it was shown that the

performance of the MMAC/SVO was larger than that of the RMMAC/BMI. The

results obtained using also RMS considerations are depicted in Fig. 8.11 and Fig.



286 CHAPTER 8. COMPARISON OF MMAC/SVO VS RMMAC/BMI

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

C
tr

l. 
#1

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

C
tr

l. 
#2

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

C
tr

l. 
#3

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

C
tr

l. 
#4

Time [s]

 

 

RMMAC/BMI
MMAC/SVO

Figure 8.10: Controller selection, for forced instability and k1 = 0.25 N/m.

8.12.

0 10 20 30 40 50 60 70 80 90 100

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time [s]

y 2 [m
]

 

 

MMAC/SVO
RMMAC/BMI

Figure 8.11: Output of the MSD plant, for forced instability and k1 = 1.75 N/m,

using the RMMAC/BMI and the MMAC/SVO-RMS control architectures.

The MMAC/SVO-RMS shows a considerably smaller transient when compared

to that of the RMMAC/BMI. Indeed, it only requires one measurement to invalidate

model #4, as happened with the MMAC/SVO algorithm without RMS considera-

tions.
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Figure 8.12: Controller selection, for forced instability and k1 = 1.75 N/m.

8.3.5 MMAC/SVO-RMS: Time-Varying k1

In the following simulation, we consider that the spring stiffness is time-varying and

described by

k1(k) = 1.00 + 0.75 sin(ωkTs) N/m,

where

ω =
2π

1000
rad/s,

as illustrated in Fig. 8.13. As previously, consider also that Γ = 1, which means

that we are using the nominal values of the intensity and maximum magnitude of

the exogenous disturbances.

Figure 8.14 depicts the results obtained for a typical Monte-Carlo run. In com-

parison with the RMMAC/BMI, the MMAC/SVO-RMS shows considerably larger

transients, whenever the spring stiffness drifts from one region of uncertainty to

another.

Figure 8.15 shows the controllers selected by each adaptive control scheme, at

each time. The MMAC/SVO-RMS is, in general, slower than the RMMAC/BMI,

in the identification of the correct region of uncertainty of k1. Moreover, the

MMAC/SVO was not able, in this MC simulation, to select LNARC #4, when

the uncertain parameter was inside the corresponding uncertainty region. This hap-

pens because the LPV/BMI controller designed for k1 ∈ [0.4, 0.64] N/m displays a

plausible performance, in terms of expected RMS of the output. Therefore, neither
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Figure 8.13: Time-varying spring stiffness, k1(·).
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Figure 8.14: Output of the double MSD plant, for the time-varying spring stiffness

depicted in Fig. 8.13.
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the SVOs, nor the RMS analysis, are able to falsify region of uncertainty #3, and

thus the controller designed to this region is used.
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Figure 8.15: MMAC/SVO and RMMAC/BMI controller selection, for the time-

varying spring stiffness depicted in Fig. 8.13.

Therefore, this simulation illustrates one of the weaknesses of the MMAC/SVO-

RMS, regarding the time required to identify the region of uncertainty of the pa-

rameters. In terms of closed-loop behavior, this delay in the decision subsystem

translates into large transients at the output of the plant.

8.3.6 MMAC/SVO-RMS: Time-Varying k1 and Intensity of

the Disturbances

Consider that the spring stiffness is time-varying and described by

k1(k) = 1.00 + 0.75 sin(ωkTs) N/m,

as illustrated in Fig. 8.13, and where

ω =
2π

1000
rad/s.

However, let Γ follow the time-evolution depicted in Fig. 8.16.
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Figure 8.16: Time-varying magnitude of the disturbances.

Figure 8.17 depicts the results obtained for a typical Monte-Carlo run. Once

again, the MMAC/SVO-RMS shows some large transients whenever the controllers

are switched. Nevertheless, contrary to the RMMAC/BMI, it eventually selects

the correct controller, as illustrated in Fig. 8.18. The controller selection of the

Kalman filters was omitted, since the decision subsystem of the RMMAC/BMI is

not able to converge to any controller for values of Γ greater than 3. Therefore,

the RMMAC/BMI keeps switching, every sampling time, between the 4 available

controllers.

At t ≈ 200 secs, the RMS of the output is larger than expected, according to

Fig. 8.8. Thus, we switch to the next available controller, which is LNARC #2. At

about the same time, regions of uncertainty #3 and #4 are invalidated by the SVOs.

Since the RMS of the output obtained with the LPV/BMI controller designed for

k1 ∈ [0.4, 0.64] N/m – i.e., controller #2 – is also larger than expected, due to the

increase of the intensity of the disturbances, we switch back to controller #1.
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Figure 8.17: Output of the double MSD plant, for the time-varying spring stiffness

depicted in Fig. 8.13 and for Γ as in Fig. 8.16.
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Figure 8.18: MMAC/SVO and RMMAC/BMI controller selection, for the time-

varying spring stiffness depicted in Fig. 8.13 and for Γ as in Fig. 8.16.
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8.3.7 MMAC/SVO-RMS: TV k1 and Intensity of the Dis-

turbances – No Disturbances’ Model

As a last example, we consider that the model of the disturbances is not available

during the design of the SVOs. Therefore, these dynamics are not taken into account

by these observers, which intuitively means that they have no information regarding

the bandwidth of the exogenous disturbances. It should be noted that this fact

pronouncedly toughens the identification problem.

For the simulation, consider that the spring stiffness is time-varying and de-

scribed by

k1(k) = 1.00 + 0.75 sin(ωkTs) N/m,

as depicted in Fig. 8.13, and where

ω =
2π

1000
rad/s.

Moreover, let Γ follow the time-evolution depicted in Fig. 8.16.

Figure 8.17 depicts the results obtained. As expected, in this case, the MMAC/SVO-

RMS shows larger transients than in the case where the model of the disturbances

was known. Nevertheless, the MMAC/SVO-RMS is still able to eventually select

the appropriate controller, even though the performance is deteriorated.

The controllers selected by the MMAC/SVO-RMS, at each time, are illustrated

in 8.20. The controller selection of the Kalman filters was omitted, since the decision

subsystem of the RMMAC/BMI is not able to converge to any controller for values

of Γ greater than 3.

8.4 Conclusions

In this chapter, several simulations illustrated the applicability of the Multiple-

Model Adaptive Control using Set-Valued Observers (MMAC/SVO) scheme to a

difficult adaptive control problem, namely, the Mass-Spring-Dashpot (MSD) plant.

In order to evaluate the behavior of the MMAC/SVO scheme, the performance
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Figure 8.19: Output of the double MSD plant, for the time-varying spring stiffness

depicted in Fig. 8.13 and for Γ as in Fig. 8.16, for the case where the model of the

disturbances is not known a priori by the SVOs.
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Figure 8.20: MMAC/SVO and RMMAC/BMI controller selection, for the time-

varying spring stiffness depicted in Fig. 8.13 and for Γ as in Fig. 8.16, for the case

where the model of the disturbances is not known a priori by the SVOs.
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obtained with this method was compared to that attained by the Robust Multiple-

Model Adaptive Control scheme with LPV/BMI controllers (RMMAC/BMI). How-

ever, it is stressed that the RMMAC/BMI and the MMAC/SVO are established

under different assumptions. In particular, the RMMAC/BMI considers a stochas-

tic setup, where some information regarding the probability density functions of the

exogenous disturbances and measurement noise is available. Furthermore, the RM-

MAC/BMI assumes that the plant to be controlled is Linear Time-Invariant (LTI)

or slowly time-varying. The MMAC/SVO, however, considers a deterministic setup,

where no information is available regarding the exogenous disturbances and mea-

surement noise, except that these signals are bounded. Moreover, the MMAC/SVO

can handle time-varying plants and provides stability and performance guarantees

under mild conditions on the input signals – see Chapter 7.

The results obtained indicate that the RMMAC/BMI typically yields faster re-

sponses to time-variations of the uncertain parameters of the plant. In terms of the

output of the closed-loop system, this translates into smaller transients.

In order to overcome this problem, the RMS of the output of the closed-loop

system was used to potentially invalidate controllers quicker. The Monte-Carlo

simulations performed indicate that this method indeed improves significantly the

performance of the overall system, leading to smaller transients.

However, using RMS considerations also has its own shortcomings. On the one

hand, we can only invalidate controllers using such an approach, if the system has

attained a steady-state. On the other hand, if the intensity of the disturbances is

not known a priori, then it is not possible to compute the RMS of the output of the

closed-loop system.

In summary, the MMAC/SVO architecture is endowed with important stability

and performance guarantees, while yielding results in practice which are comparable

to those obtained by the RMMAC/BMI, when applied to an MSD plant. Moreover,

the Monte-Carlo simulations performed indicate that the MMAC/SVO is robust

against variations on the uncertain parameters of the plant and on the intensity of

the exogenous disturbances, and that the lack of knowledge regarding the dynam-
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ics of the disturbances does not significantly impact on the performance obtained.

Nevertheless, the performance of the proposed architecture can be pronouncedly

inferior, when compared to that obtained with adaptive control schemes based on

stochastic assumptions on the exogenous disturbances, such as the RMMAC/BMI.

Therefore, it is possible to improve the overall performance of the MMAC/SVO, by

integrating this adaptive control scheme with other heuristics, based on the problem

at hand.





Chapter 9

Conclusions and Future Directions

The main goal of this thesis was the development of a methodology to design ro-

bust adaptive controllers for uncertain Linear Parameter Varying (LPV) systems,

with stability and performance guarantees. The strategy adopted was to divide the

problem at hand into the design of a decision and a control subsystems.

For the control subsystem, a thorough methodology was developed that allows

the synthesis of Linear Time-Invariant (LTI) robust controllers for uncertain LPV

plants, with performance guarantees at least as good as those provided by the equiv-

alent mixed-µ design, resorting to Bilinear Matrix Inequalities (BMIs). It was shown

in simulation that, for systems with parametric real uncertainties, these controllers,

referred to as LPV/BMI controllers, are able to significantly reduce the conservatism

added by the µ approach. Moreover, the proposed methodology is also able to cope

with time-variations of the uncertain parameters of the plant. Nevertheless, in refer-

ence to controller design, the LPV/BMI approach is considerably more demanding

in terms of (off-line) computations, than the µ synthesis.

Regarding the decision subsystem, two solutions were proposed. The first one is

referred to as the Stability Overlay (SO) for adaptive control of a class of nonlinear

time-varying plants. The SO can be implemented in parallel with a wide range of

“performance-based” adaptive control laws, i.e., adaptive control laws that seek to

improve closed-loop performance, but may be susceptible to instability in the pres-

ence of unaccounted model uncertainty. In this architecture, the performance-based

297
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adaptive control law designates candidate controllers based on performance consid-

erations, while the SO supervises this selection based upon online robust stability

considerations. A particular selection of a performance-based adaptive control law

need not be specified. Rather, this selection can be from a wide range of adaptive

control schemes. As an example, it was shown how to integrate the SO with the

so-called Robust Multiple-Model Adaptive Control (RMMAC) method.

The second solution proposed for the decision subsystem is based upon model

falsification. In particular, the work on Set-Valued Observers (SVOs) was extended

to uncertain LPV plants, with special attention to the development of solutions to

the main associated numerical and computational issues. The main idea in model

falsification using SVOs is to invalidate dynamic uncertain LPV models, based on:

a) the control input signals; b) the measured output of the plant; c) the a priori

known bounds on the magnitude of the exogenous disturbances and measurement

noise. The chief advantage of this approach is that the SVOs are able to perform

such a task in an iterative manner. However, the on-line computational requirements

of this technique can become prohibitive for plants with a large number of states.

The proposed model falsification approach using SVOs was applied both to ro-

bust Multiple-Model Adaptive Control (MMAC) and to Fault Detection and Isola-

tion (FDI). In terms of robust control using SVOs, the main advantages are that:

a) we are able to provide guarantees, under mild assumptions, in terms of robust

stability and performance of the closed-loop;

b) the model of the dynamics of the plant to be controlled can contain uncertain

time-varying terms.

The architecture developed is referred to as MMAC/SVO.

Regarding FDI, the proposed methodology has the following advantages:

a) we are able to provide guarantees, under mild assumptions, that a given fault

is always detected, and that false alarms are avoided;

b) the model of the dynamics of the plant to be diagnosed can contain uncertain

time-varying terms.



9.1. FUTURE DIRECTIONS 299

The main disadvantage of this model falsification approach is the on-line computa-

tional burden associated with the SVOs.

9.1 Future Directions

Several issues related to the problem of robust adaptive control of uncertain LPV

systems are yet to be addressed. In particular, some future research directions are

enumerated in what follows:

a) The LPV/BMI controllers described in this thesis consider that the dynamics

of the plant depend upon time-varying uncertain (real) parameters. More-

over, they also account for unmodeled dynamics, exogenous disturbances, and

measurement noise. Nevertheless, it may happen that the plant also depends

upon parameters which are measured on-line. Such information could be used

to schedule the controller, in a similar manner to what is done in classical

LPV control. Thus, a possible future direction of research is to extend the

LPV/BMI controllers to the case where some of the plants’ time-varying pa-

rameters are uncertain, while others are measured on-line.

b) An extension of the SO to handle nonlinear plants with finite escape time

would be of interest, since it is clearly important to detect instability as soon

as possible. Not only such an approach could be applied to a much larger

class of dynamic systems, but also it would enhance the performance of the

closed-loop system. A simple solution to this problem would be to “disqualify”

controllers that lead the output of the plant to large values in a small amount

of time. Such a formulation, however, may not be trivial, since we would have

to guarantee that the sampling frequency is sufficiently high to detect such

fast variations in the output.

c) If the bound on the amplitude of the disturbances is unknown, the perfor-

mance of the closed-loop with the MMAC/SVO architecture may become

considerably deteriorated. Therefore, it would be interesting to extend the
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MMAC/SVO architecture to the case where the a priori bound on the mag-

nitude of the disturbances can be decreased, in the light of the strategy used

by the SO, i.e., if the magnitude of the performance output is small enough,

then we allow for the reuse of SVOs with smaller bounds on the magnitude of

the disturbances.

d) The guarantees of convergence of the SVOs provided in this thesis require that

a certain, potentially large, number of previous measurements is used. This

fact may be responsible for a pronounced hike in terms of computations. How-

ever, for LTI systems, it is well known that we can describe the corresponding

dynamics through a coprime factorization, with several interesting properties.

In particular, under certain mild conditions, we can write the discrete LTI

system G as

G = MN−1,

where M and N are also (discrete) LTI systems, but with arbitrary pole lo-

cation. If the poles of these systems are placed near the origin, then we can

design SVOs for M and N with typically faster convergence rates. As a short-

coming, instead of having one SVO for system G, we would have two, i.e., one

SVO for system M and another for system N . Nonetheless, the development

of this design technique, in particular for time-varying systems, may lead to

significant improvements in terms of computational requirements.

e) Further research on the design and implementation of SVOs is also needed.

Indeed, it would be interesting to compare the MMAC/SVO using different

types of SVOs. In particular, a comparison between the SVOs developed in

this thesis and the ellipsoid-approach is needed, in order to evaluate the degree

of conservatism added by each technique. It should be noticed that, on the one

hand, the bounding ellipsoids typically require a much smaller computational

burden, when compared to that of the SVOs developed in this thesis. On the

other hand, these SVOs are potentially less conservative than the bounding

ellipsoids.
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f) Similarly to what was done with the SO, the MMAC/SVO architecture can be

integrated with other adaptive control algorithms. Such an approach poten-

tially leads to higher levels of performance, while guaranteeing stability and

performance even in a worst-case scenario. Therefore, due to its model falsifi-

cation nature, the MMAC/SVO architecture can be seen as a “safety net” for

other adaptive control methodologies. However, in this case we would be able

to guarantee not only stability, but also performance.

g) The SVOs considered in this thesis do not account for unknown time-delays

in the input of the plant. Two possible solutions for this shortcoming are

as follows. A simple approach is to consider that these time-delays can be

treated as uncertainty in the input. Indeed, for small time-delays, we can add

uncertainty on the input signal in order to model these effects. The second

solution, which is possibly more interesting but also harder to implement,

is to have several SVOs, each of which “tuned” for a particular time-delay.

Thereafter, model falsification methods could be used not only to handle the

time-delay, but also to identify it.
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