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Lisbon, Portugal

msilveira@isr.ist.utl.pt jsm@isr.ist.utl.pt

Abstract—Alzheimer’s disease (AD) final is one of the most
frequent type of dementia. Currently there is no cure for AD and
early diagnosis is crucial to the development of treatments that can
delay the disease progression.

Brain imaging can be a biomarker for Alzheimer’s disease. This
has been shown in several works with MR Images, but in the case
of functional imaging such as PET, further investigation is still
needed to determine their ability to diagnose AD, especially at the
early stage of Mild Cognitive Impairment (MCI).

In this paper we study the use of PET images of the ADNI
database for the diagnosis of AD and MCI. We adopt a Boosting
classification method, a technique based on a mixture of simple
classifiers, which performs feature selection concurrently with the
segmentation thus is well suited to high dimensional problems. The
Boosting classifier achieved an accuracy of 90.97% in the detection
of AD and 79.63% in the detection of MCI.

I. I NTRODUCTION

Alzheimer’s disease (AD) is one of the most frequent type
of dementia. Most commonly it affects elderly people and
therefore it is expected to increase due to the aging of the
population. Currently there is no cure for AD and there is
a great interest in the development of treatments that can
delay its progression, especially if diagnosis is providedat
an early stage where those treatments would have the most
impact.

Mild Cognitive Impairment (MCI) is the diagnosis given
to individuals who have cognitive impairments beyond what
is expected for their age and education, but that do not
interfere significantly with their daily activities. MCI is
considered to be a transitional state between the normal
cognitive changes of aging and the earliest clinical manifes-
tations of dementia. It is presently a topic of great interest,
particularly the amnestic subtype of MCI which is likely to
be a clinical precursor of AD.

Currently, the diagnosis of AD and MCI is based primarily
on clinical and neuropsychological assessments. Neuroimag-
ing has also been recognized as a powerful tool to analyze
brain changes. However, the analysis of brain images is a dif-
ficult task because the spatial pattern of brain degeneration in

Data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. As such, the
investigators within the ADNI contributed to the design andimplementation
of ADNI and/or provided data but did not participate in analysis or writing
of this report.

AD and MCI is highly variable and complex. Consequently,
several attempts are being made to develop automated tools
that will allow a more sensitive and consistent analysis.

Most of these attempts have focused on the diagnosis
of AD from MRI. The diagnosis of MCI from MRI is a
more challenging problem which received less attention. In
the case of PET images, further investigation is still needed
to determine their ability to diagnose AD, especially at the
early stage of MCI.

A. State of the Art

The majority of the developed tools has focused on
examining the volumetry or shape of a small number of brain
structures such as the hippocampus [1], or the gray matter
volume [2]. These techniques rely heavily on manual or
semi-automatic extraction of the structures of interest, which
is by no means a straightforward task. Furthermore, they are
limited by the fact that the brain atrophy usually involves
many brain regions and different regions are affected at
different stages of the disease.

Therefore, current techniques are focusing on the use
of the entire brain pattern. However, since a brain volume
contains thousands of voxels which represent variables and
the number of subjects is generally smaller, this task suffers
from the so called ’curse of dimensionality’, which results
in highly non convex distributions. To handle non convex
distributions globally nonlinear classifiers should be used.

Many of the traditional classifiers have been used such
as discriminant analysis [3], neural networks [4], Nearest
Mean Classifier (NMC) [5] and Fisher linear discriminant
(FLD) [6]. Kernel methods, namely Support Vector Ma-
chines (SVM), have also been used in [6], [7], [8] with
success.

To obviate the ’curse of dimensionality’ problem, most
methods use data reduction techniques such as Principal
Components Analysis (PCA) [7], [9] or Partial Least-
Squares (PLS) [3] which are not appropriate to nonlinear
and heterogeneous data. In [8] an SVM was used for feature
reduction prior to classification with another SVM, which
is computationally very expensive. More recently, a variant
of Linear Programming Boosting which imposes spatial
continuity of the voxels selected by the classifier has been



proposed in [10], but MCI was not considered and no
comparison was made with the original Boosting classifier.

In this paper, we propose the use of a Boosting classifier, a
nonlinear method based on a mixture of classifiers (ensemble
method), which is able to automatically select the most
important features concurrently with the classification, thus
is well suited to high dimensional problems. We apply this
classifier to the intensity of FDG-PET brain images from
the ADNI database and investigate its ability to differentiate
between individuals with Alzheimer’s disease (AD), mild
cognitive impairment (MCI), and normal control subjects
(NC).

The remainder of this paper is organized as follows:
section 2 describes the data used and the Boosting classifier,
section 3 describes the experimental results and section 4
concludes the paper.

II. M ATERIALS AND METHODS

A. Data

Our data consists of 268 FDG-PET scans taken from
the Alzheimers Disease Neuroimaging Initiative (ADNI)
database (http://www.loni.ucla.edu/ADNI/). ADNI provides
a listing of all PET scans considered to have potential
issues that may effect results of image analysis, none of
these scans were used. Of the 268 scans, 81 were from
Control Normals (CN), 113 from MCI subjects and 74
from AD subjects. Some clinical and Neuropsychological
characteristics of each group are summarized in Table I.

Group Normal MCI AD
Age (m±sd) 77.3±4.7 76.4±7.3 76.5±6.8
Sex (M/F) 53/28 75/38 45/29
MMSE (m±sd) 29.1±1.2 26.2±2.7 21.1±4.1

Table I
CLINICAL AND NEUROPSYCHOLOGICAL CHARACTERISTICS OF EACH

GROUP(MEAN ± STANDARD DEVIATION ).

The PET images downloaded from the ADNI database
had been processed in order to make PET data from dif-
ferent systems more similar. The processing included co-
registration to their baseline PET scan and reorientation into
a standard space, intensity normalization and conversion to
a uniform isotropic resolution of 8 mm FWHM. The image
matrices were 128x128x60 and intensity values ranged from
0 to 32700 in all scans. Extra-cranial voxels were excluded
from the analysis.

B. The Boosting Algorithm

The Boosting algorithms belong to the class of ensemble
methods which combine the output of several simple classi-
fiers to form a complex one. In this work we use Adabost
[11] where the simple classifiers are learned sequentially.

They are called weak classifiers because they are not ex-
pected to classify data well. However, at each round of learn-
ing, the performance of the next weak classifier is boosted by
a re-weighting of the examples in order to emphasize those
that were incorrectly classified in the previous round. The
final strong classifier is a weighted combination of the weak
classifiers followed by a thresholding operation. Moreover
each classifier is constrained to depend on a single feature,
thus feature selection is performed.

Let xi ∈ R
n denote the training patterns,i = 1, ..., N and

yi ∈ {0, 1} denote the corresponding classification. Each
pattern has a weightwi ∈ [0, 1] which is initially given by
w1,i = 1

2m
, 1

2l
for yi = 0, 1 respectively, wherem and l

are the number of negatives and positives, respectively. Let
hj denote a weak classifier,j = 1, ...,. Each weak classifier
hj consists of a featurefj (the j-th component of pattern
x), a thresholdθj and a paritypj ∈ {−1, 1} indicating the
direction of the inequality sign:

hj(x) =

{

1 pjfj(x) < θj

0 otherwise
(1)

The parameters of each weak classifier are learned from
the data by minimizing:

εt,j =

N
∑

i=1

wt,i |hj(xi) − yi| (2)

and the weak classifier with the lowest errorεt = min
j

εt,j

is chosen. After each round,t, the weights are updated by:

wt+1,i = wt,iβ
1−ei

t (3)

where βt = εt/(1 − εt) and ei = 0 if example xi was
correctly classified andei = 1 otherwise. The weights are
subsequently normalized. This procedure is iterated T times,
where T is the number of features to be selected and also
the number of weak classifiers used.

The final classifier is given by:

h(x) =







1
T
∑

t=1

αtht(x) ≥ 1

2

T
∑

t=1

αt

0 otherwise
(4)

whereαt = log (1/βt).

III. R ESULTS

The Boosting method was applied to the detection of AD
vs NC, MCI vs NC and AD vs MCI, using the voxels
intensities as features. 150 features were used. In order
to evaluate the generalization performance of the method,
we used 10-fold cross validation, and averaged the testing
set accuracy over the 10 folds. We compared these results
with those obtained by the SVM classifier which is the
most widely used in this context. For the SVM classifier,
the RBF kernel was used and the model parameters (C,γ)



were estimated within each training fold by cross validation.
Additionally we applied the SVM classifier to the features
selected by the Boosting classifer (BSVM). In this case,
those features that were selected by Boosting more than once
were not replicated. Table II sumarizes the results.

Group NC/AD NC/MCI MCI/AD
Boosting (%) 90.97 79.63 70.00
SVM (%) 86.11 74.07 68.75
BSVM (%) 86.80 71.52 59.72

Table II
ACCURACY OF THE DIFFERENT CLASSIFIERS.

From Table II we conclude that the Boosting classifier
performs better than SVM method in the three problems,
leading to an accuracy improvement of 3-5%. The Boosting
method achieves an accuracy of 90.97% in the detection of
AD vs NC. The results obtained by this classifier in the
detection of MCI are also very interesting, since accuracy is
close to 80%. This clearly states that the proposed approach
can still be useful for the automatic detection of MCI from
PET images although the decision errors increased 10%. The
most difficult problem is clearly the discrimination between
AD and MCI. Even in this case, the Boosting classifier
can provide a tentative classification with an accuracy of
70.00%. Boosting alone also performs better than Boosted
SVM (BSVM).
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Figure 1. ROC curves for the three problems.

Fig. 1 shows the ROC curves for the boosting classifier.
These curve were obtained by changing the threshold (right
hand side in 4) in order to accept class 1 with larger (or
lower) probability. This curve shows possible tradeoffs be-
tween sensitivity and specificity. The best solution depends
on the application and can be chosen by the user. The
performance of the SVM classifier is also displayed in the

figure with an asterisk. We can easily conclude that the
boosting classifier performs better in all cases (it is above).

In addition, the Boosting classifier was trained to dis-
criminate between all AD and NC subjects and was then
applied to the MCI cases. The output of the classifier for
each PET scan is shown in Fig. 2 where NC subjects are
shown in red, AD in blue and MCI in black. The training
data patterns associated to AD and NC are well separated
as expected but the same cannot be said about MCI test
patterns. The classifier output is uniformly distributed inthe
range of interest in such cases, which suggests that there is
a continuous transition between these two states.
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Figure 2. Output of Boosting classifier trained with NC and ADand tested
on MCI data. (NC and AD training patterns are shown in red and blue,
respectively, and MCI test patterns in black).

The features selected by the Boosting classifier were
sparsely located in several regions throughout the brain,
including the hippocampus, the posterior cyngulate and the
inferior temporal lobe bilaterally, which suggests a wide-
spread pattern of brain atrophy. This is illustrated in Fig.3
where some of these features are shown in red superimposed
on one of the PET scans. Of the selected features,51.5%
were located in the left cerebral hemisphere while48.5%
were on the right hemisphere which indicates that the
changes related to AD are bilateral.

IV. CONCLUSIONS

This paper describes the application of the Boosting
classifier to detect Alzheimer’s disease (AD), Mild Cognitive
Impairment (MCI) and to discriminate between both condi-
tions using PET scans. The Boosting classifier adopted in
this paper is able to select a small number of voxels from
the whole volume and provide a robust classification of the
input using an ensemble of weak classifiers, each of them
depending on the intensity of a single voxel.

The classifier was trained and evaluated by cross-
validation, using a subset of the ADNI database with 268



Figure 3. Some of the features selected by the Boosting Classifier.

scans. Despite the fact that intensities depend on registration
and normalization, we obtained accuracies of 90.97% in
the detection of AD, 79.63% for MCI and an accuracy of
70.00% in the discrimination between both. The method
outperformed the widely used SVM classifier, and has lower
computational complexity. The method also outperformed
other state-of-the-art techniques which used PET images of
the same database [10].

We have also applied the Boosting classifier, trained to
discriminate AD from NC, to scans of people with MCI.
In the case of MCI scans, the output of the classifier is
uniformly distributed in the range of interest, suggestingthat
there is a continuous transition between both states.

We conclude that the Boosting classifier can be used for
AD and MCI detection with PET images. Future work will
include the use of multi-class classifiers in order to jointly
distinguish between the three classes (AD, MCI, NC).
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