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Abstract— This paper proposes a parametric, multivariate
method for the joint detection and segmentation of brain
activation based on fMRI data. The proposed technique uses
region based level sets to separate between the activated and
non-activated regions and performs, at each iteration of level set
evolution, a separate multivariate linear model (MLM) analysis
in each of the two regions. Simulations using synthetic data
generated based on typical experimental parameters and noise
levels showed a false positive rate of 6% and a false negative rate
of 2% for the results obtained with the proposed technique. The
performance of the level sets method was further investigated by
analysing empirical fMRI data from two subjects performing a
visual and a motor task. Our results indicate that the proposed
technique provides brain activation results comparable to those
obtained by a standard univariate approach, with the advantage
that it does not require the definition of a significance threshold.

I. INTRODUCTION

Blood Oxygen Level Dependent (BOLD) functional Mag-
netic Resonance Imaging (fMRI) is a completely non-
invasive tool used to identify brain regions activated in
association with an experimental manipulation, such as a
visual stimulus or a motor task. Although fMRI techniques
have gained great popularity in the fundamental study of
brain function, their translation into the clinical practice
has been hindered by the lack of reliability of the results,
particularly in uncooperative patients or highly pathological
conditions. This is mostly due to the commonly high noise
levels in the data and the requirement for multiple image pre-
processing steps, followed by the statistical modeling of pre-
processed images, in order to obtain the final brain activation
maps [1].

The statistical analysis of fMRI data is most often carried
out through a massively univariate approach, whereby a
General Lineal Model (GLM) describing the experimental
manipulation, as well as any confound variables, is adjusted
to each voxel’s time series in order to yield a 3D map
of model parameter estimates. Following model estimation,
the activated regions are identified by using an inference
approach. Usually,t-tests are performed on each voxel to
yield Z statistical maps of increased brain activity during the
stimuli/task. Because it is physiologically plausible that brain
activation should occur in clusters of voxels rather than at
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isolated voxels, the spatial correlation between neighbouring
voxels should be taken into account. The theory of Gaussian
Random Fields (GRF) is then employed to accomplish max-
imum height thresholding of theZ-score images at specified
significance levels,p-value, of false-positive probabilities,
corrected for multiple comparisons [2].

The final results, in terms of voxels showing significant
BOLD signal changes associated with the experimental
manipulation, strongly depend on the pre-processing and
modeling choices, and so does the validity of the inferences
made upon the statistical tests used. In particular, the choice
of the significance level used for thresholding the statistical
maps is associated with a certain degree of subjectivity.

On the other hand, non-parametric, multivariate methods
have also been proposed for the analysis of fMRI brain
activation data. These include clustering [3], independent
component analysis (ICA) [4] and self-organizing mapping
[5]. Both supervised and unsupervised machine learning
methods, such as Support Vector Machines (SVM), have
more recently been applied too [6], [7]. Although these
methods do not depend on underlying model assumptions,
and may therefore provide a more flexible tool in exploratory
analyses, the interpretation of the results may be compro-
mised.

In this paper, we propose a parametric, multivariate
method to perform brain activation detection while simul-
taneously providing a segmentation of activated from non-
activated regions. The proposed technique uses the region
based level set method which imposes regularization and
naturally takes into account the spatial correlation among
neighbouring voxels. The level set method does not require
the definition of a significance threshold, makes no assump-
tion about the shape or number of clusters and is very flexible
because it is able to change the topology of the detected
regions since the contour automatically splits and merges.At
each iteration of level set evolution, a separate multivariate
linear model (MLM) analysis is performed in each of the
two regions, which results in increased robustness of the
parameter estimates when compared to standard univariate
methods.

The remainder of this paper is organized as follows:
section II describes the proposed method for fMRI brain
activation detection and segmentation, section III describes
the experimental results and section IV concludes the paper.

II. PROPOSEDMETHOD

The proposed technique uses a 3D implementation of the
region based level sets method [8] to separate between the
activated and non activated regions and performs, at each



iteration of level set evolution, a separate multivariate linear
model analysis in each of the two regions.

A. Level set method

In this work we assume that the fMRI image, denoted
by y, is formed by two 3D regionsΩ1 and Ω2 containing
activated and non-activated voxels, respectively. These two
regions are separated by a curveC, and each regionΩ1 and
Ω2 is modeled by probability density functionsp1 and p2,
respectively. The segmentation is obtained by minimizing the
following energy function [8]:

E(C, p1, p2) = −λ1

∫

Ω1

logp1(y|θ1)dΩ

−λ2

∫

Ω2

logp2(y|θ2)dΩ+ µ lenght(C)
(1)

The first two terms of this equation are data fitting terms and
the last term is a regularizing term that depends on the length
of the curve;µ , λ1 andλ2 are positive weighting parameters.

Using the level set formulation [9], embedding the curve
C as the zero level setC(t) = {(x)|φ(t,x) = 0} of a higher
dimensional level set functionΦ(t,x) this energy function
can be rewritten as:

E(Φ, p1, p2) = −
∫

Ω

[H(Φ) logp1(y|θ1)+

(1−H(Φ)) logp2(y|θ2)]dΩ+ µ
∫

Ω

∇H(Φ)dΩ

(2)

where H is the Heaviside function,H(z) = 1 if z ≥ 0 and
H(z) = 0 if z < 0. FunctionΦ(t,x) represents regionΩ1 for
Φ > 0 andΩ2 for Φ < 0. Therefore, the Heaviside function
is used to distinguish the two regions.

In practice a regularized version of the Heaviside function
is used:

Hε(z) = 0.5

[

1+
2
π

arctan
( z

ε

)

]

(3)

Keeping p1 and p2 fixed, Φ is evolved according to the
following motion Partial Differential Equation (PDE):

∂Φ
∂ t

=δε(Φ)[µdiv

(

∇Φ
|∇Φ|

)

−λ1 logp1(y|θ̂1)

+λ2 logp2(y|θ̂2)]

(4)

whereδε(Φ) is the Dirac delta functionδε(z) = δ
δ z Hε(z).

The contour is roughly initialized by the user in the
expected activation region. Then, the algorithm estimatesin
alternate steps the contour and the PDF’s of both regions,p1

and p2. The way the estimates ofp1 and p2 are updated is
described in the following section.

B. Density estimation

In this work, the probability density functionsp1 and
p2 are estimated from the fMRI data in regionsΩ1 and
Ω2, respectively. In each region, we assume the multivariate
linear model:

Y = Xβ + ε (5)

whereY denotes the NT×1 matrix obtained by concatenating
the fMRI data of N voxels with T time points,X denotes
the NT×k experimental paradigm including k inputs driving
brain activation andβ denotes the corresponding k×1 pa-
rameter estimates. These parameter estimates are obtained
by Linear Least Squares fitting of the BOLD signal, which
amounts to modeling the residualsε in each region as
N(0,σ2

m), m = 1,2. Therefore, the following densities are
obtained forp1 and p2:

pm(y|θm) =
1√

2πσm
exp

(

− (y−Bmx)
2σ2

m

2
)

(6)

The estimation of parametersβ1 and β2 should be per-
formed separately for the activated and non-activated regions
because the two regions will in general have different num-
bers of voxels.

III. E XPERIMENTAL VALIDATION

This section presents results of the application of the
proposed method to both synthetic and empirical fMRI data
and compares them with the results obtained using a standard
univariate GLM approach.

A. Synthetic Data

Synthetic data were generated based on a 3D head phan-
tom with volume size 64×64×30, where two rectangular
activation regions were defined (10×10×10 and 5×15×5
voxels, respectively). A block design paradigm alternating
ten 18sec periods of activation and ten 18sec periods of
rest, with repetition timeT R = 3000ms, yielding a total
of T = 122 time points, was considered. The simulated
activation signals in each region were then created by
convolving this paradigm with a canonical Gamma-variate
Haemodynamic Response Function (HRF), as implemented
in SPM99 (http://www.fil.ion.ucl.ac.uk.pt) [10], withβ = 10.
Noisy data were then obtained by adding zero mean Gaussian
noise to the simulated data, such that the SNR was 0 dB.
Figure 1 shows the simulated data and the results of the
proposed method. In these images the initial contour is
overlaid in yellow and the final contour in red.

It can be seen that, although the initial region selected
by the user is quite distant from the final segmentation and
does not contain the two activated regions, the algorithm is
able to converge to the correct boundary. This example also
illustrates the ability of the contour to split automatically into
two separate regions, since the activated regions are disjoint.
In this example, the proposed method obtainedβ = 9.96 in
the activated region andβ = 3.2e−16 in the non-activated
regions, which is very close to the true values. The resulting



Fig. 1. Segmentation results with synthetic data. Left: Results of the
proposed method shown in red and initialization shown in yellow. Right:
Simulated activation regions shown in red.

segmentation had a false positive rate of 6% and a false
negative rate of 2%.

B. Real Data

Empirical fMRI brain activation data from a visual stim-
ulation experiment (visual) and a motor task experiment
(motor) were used. Both datasets were collected from healthy
volunteers on 1.5T MRI systems, usingT2*-weighted echo-
planar imaging (EPI). In the visual experiment, 120 volumes
were acquired withT R = 3000ms and a voxel resolution of
3,5×3,5×4,0mm. In the motor experiment, 150 volumes
were acquired withT R = 2000ms and a voxel resolution of
3,4×3,4×5,0mm.

The visual experiment consisted in a block design alter-
nating ten 18sec periods of a visual stimulus presentation
and ten 18sec periods of fixation. The motor experiment
consisted in a block design alternating five 30sec periods of
right-hand thumb-digit apposition with five 30sec periods of
rest.

Datasets were pre-processed and analyzed for BOLD
signal change detection using the FEAT software
(http://www.fmrib.ox.ac.uk/fsl). The following pre-
processing steps were performed on each BOLD time
series: motion correction [11]; non-brain removal [12];
mean-based intensity normalization of all volumes by
the same factor; spatial smoothing (Gaussian kernel,
5mm FWHM) and high-pass temporal filtering (Gaussian-
weighted least squares straight line fitting, 50sec cut-off).

A GLM was defined by modeling each stimulus/task
period (VisualStimulus or MotorTask) as a square function
of width equal to the period duration convolved with a canon-
ical Gamma-variate HRF [10]. For the standard univariate
approach, a GLM with local autocorrelation correction was
used to test for stimulus/task-related activity changes [13],
[14]. Linear contrasts between each stimulus/task condition
and the respective control conditions were then calculated
and t-tests were performed to yield statistical maps of
increased brain activity during the stimuli/task (namely,
Visual vs Fixation andMotorTask vs Rest). Finally, cluster
thresholding was performed by employing the theory of
Gaussian Random Fields (GRF) to accomplish maximum-
height thresholding of theZ-score images at specified signifi-
cance levels,p-value, of false-positive probabilities, corrected
for multiple comparisons [2].

Fig. 2. Segmentation results obtained for the visual stimulation experiment.
Left: Results of the proposed method shown in red and initialization shown
in yellow. Right: Results of standard univariate GLM.

Figure 2 shows the results obtained for a visual stimulation
experiment. It can be seen that the results of the proposed
method are very consistent with the results obtained by the
standard GLM technique. As expected, the visual cortex, as
well as an extended network of visual processing regions,
are identified. The main difference observed between the two
methods is the extent of the activation in the frontal regions,
which is larger for the standard technique.

Figure 3 shows the results obtained for the motor task
experiment. Again, it can be seen that the results of the
proposed method are very consistent with the results obtained
by the standard GLM technique. Here, the left primary



Fig. 3. Segmentation results obtained for the motor task experiment. Left:
Results of the proposed method shown in red and initialization shown in
yellow. Right: Results of standard univariate GLM.

motor cortex, as well as the right cerebellum, are identified,
which correctly corresponds to the activity associated with
the movement of the right hand.

IV. CONCLUSIONS

We proposed a method to jointly perform brain activation
detection and segmentation of fMRI images. The method
uses 3D region based level sets and performs a separate
multivariate linear model (MLM) analysis in each region
(activated and non-activated). Simulations using synthetic
data produced very encouraging results, with a false positive
rate of 6% and a false negative rate of 2%. We then compared
our proposed technique with the standard univariate GLM
approach, by using applying both to the analysis of two
empirical fMRI datasets. The two methods exhibited similar
performance, in terms of the localization of the detected
activation areas.

The proposed multivariate method has the advantage that
it does not require the definition of a significance threshold,
which is implicit in the derivation of activation clusters based
on univariate GLM approaches. On the other hand, the fact
that a model underlies the identification of the activation
brain areas avoids the interpretation limitations of non-
parametric, multivariate techniques. However, one limitation
of our model is the fact that it assumes that all voxels in the
activated region exhibit the same level of activation (same
parameter estimateβ ). Therefore, future work will focus on
the development of a more general model accounting for
different activation levels. Moreover, more comprehensive

simulation studies and the application of the methods to a
larger number of empirical datasets are required in order to
establish the validity of the proposed methodology.

In summary, our encouraging preliminary results suggest
that level sets may provide a useful parametric, multivari-
ate tool for the automatic segmentation of brain activation
regions in fMRI studies, particularly in situations where
the subjective choice of significance thresholds should be
avoided.
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