Joint fMRI brain activation detection and segmentation using Level Sets
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Abstract— This paper proposes a parametric, multivariate isolated voxels, the spatial correlation between neighhgu
method for the joint detection and segmentation of brain yoxels should be taken into account. The theory of Gaussian

activation based on fMRI data. The proposed technique uses panqom Fields (GRF) is then employed to accomplish max-
region based level sets to separate between the activated and.

non-activated regions and performs, at each iteration of levelet imum height thresholding of th-score images at specified

evolution, a separate multivariate linear model (MLM) analysis ~ Significance levelsp-value, of false-positive probabilities,
in each of the two regions. Simulations using synthetic data corrected for multiple comparisons [2].
I@Jenfratﬁd bé(\jse? (Im tYPiQ?l eXpterif?ZL}téﬂ Péirafmftefs antd nOiSte The final results, in terms of voxels showing significant
evels showed a false positive rate of 6% and a false negative rate ; ; ; ;
of 2% for the results ogtained with the proposed technigue. The BOL.D S|gnal changes associated with the eXper.Imemal
performance of the level sets method was further investigatedyb manlp.ulatlon,. strongly depend on thg .pre—proce.ssmg and
analysing empirical fMRI data from two subjects performinga  modeling choices, and so does the validity of the inferences
visual and a motor task. Our results indicate that the proposed made upon the statistical tests used. In particular, theeeho
technique provides brain activation results comparable to those of the significance level used for thresholding the statdti
obtained by a standard univariate approach, with the advantage 1,5 i5 associated with a certain degree of subjectivity.
that it does not require the definition of a significance threshold. On the other hand, non-parametric, multivariate methods
. INTRODUCTION have also been proposed for the analysis of fMRI brain
_ activation data. These include clustering [3], indepehden
Blood Oxygen Level Dependent (BOLD) functional Mag-component analysis (ICA) [4] and self-organizing mapping
netic Resonance Imaging (fMRI) is a completely nonis g sypervised and unsupervised machine learning
invasive tool used to identify brain regions activated Mhethods, such as Support Vector Machines (SVM), have
association with an experimental manipulation, such as Rore recently been applied too [6], [7]. Although these
visual sti_mulus or a motor t_ask_. Although fMRI teChnique%ethods do not depend on underlying model assumptions,
have gained great popularity in the fundamental study f,y may therefore provide a more flexible tool in exploratory

brain function, their translation into the clinical prami analyses, the interpretation of the results may be compro-
has been hindered by the lack of reliability of the results,icaq.

particularly in uncooperative patients or highly pathabad In this paper, we propose a parametric, multivariate

cond|t|_0ns. This is mostly due_ to the commonly hlgh NOIS§ethod to perform brain activation detection while simul-
levels in the data and the requirement for multiple image pr‘?aneously providing a segmentation of activated from non-
processing steps, followed by the statistical modelingret p _ivated regions. The proposed technique uses the region
processed images, in order to obtain the final brain activati o <o jevel set method which imposes regularization and
maps [1]. - , ) . naturally takes into account the spatial correlation among
The statistical analysis of fMRI data is most often carrieq,gighpouring voxels. The level set method does not require
out through a massively univariate approach, whereby @e gefinition of a significance threshold, makes no assump-
General Lineal Model (GLM) describing the experimentaljon apout the shape or number of clusters and is very flexible
manipulation, as well as any confound variables, is adilistg)q .4 se it is able to change the topology of the detected
to each voxel's time series in order to yield a 3D maRegions since the contour automatically splits and meres.
of model parameter estimates. Following model estimatioR,, -1, iteration of level set evolution, a separate multtari
the activated regions are identified by using an inferengg,aar model (MLM) analysis is performed in each of the
approach. Usuallyt-tests are performed on each voxel 0, regions, which results in increased robustness of the

yield Z statistical maps of increased brain activity during th%arameter estimates when compared to standard univariate
stimuli/task. Because it is physiologically plausiblettbeain 1 athods.

activation should occur in clusters of voxels rather than at The remainder of this paper is organized as follows:
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iteration of level set evolution, a separate multivariatedr B. Density estimation

model analysis in each of the two regions. In this work, the probability density functionp; and

p, are estimated from the fMRI data in regiof¥ and

A. Level set method Qp, respectively. In each region, we assume the multivariate
In this work we assume that the fMRI image, denotedinear model:

by vy, is formed by two 3D region$2; and Q, containing

activated and non-activated voxels, respectively. Thege t Y=XB+¢ (5)

regions are separated by a cuf@eand each regio®; and

Q, is modeled by probability density functions and po,

respectively. The segmentation is obtained by minimizireg t

following energy function [8]:

whereY denotes the NX1 matrix obtained by concatenating
the fMRI data of N voxels with T time pointsX denotes
the NTxk experimental paradigm including k inputs driving
brain activation and3 denotes the corresponding<k pa-
rameter estimates. These parameter estimates are obtained
E(C, py, p2) = —/\1/Iog pL(y|61)dQ by Linear Least Sq_uares fitting_of the_ BOLD signql, which
amounts to modeling the residuaks in each region as
o (1) N(0,02), m= 1,2. Therefore, the following densities are

M / log p2(y|62)dQ + pilenght (C) obtained forp; and pz:
oA )
6 _ 1 (y_ Bmx) 6
The first two terms of this equation are data fitting terms and Pm(Y|6m) = V270 expl — 202 (6)

the last term is a regularizing term that depends on thehengt

of the curve;u, A; andA, are positive weighting parameters. The estimation of parametef® and 3, should be per-
Using the level set formulation [9], embedding the curvdormed separately for the activated and non-activatednagi

C as the zero level s&(t) = {(x)|@(t,x) = 0} of a higher because the two regions will in general have different num-

dimensional level set functiom(t,x) this energy function bers of voxels.

can be rewritten as: [1l. EXPERIMENTAL VALIDATION

This section presents results of the application of the
E(®,p1, p2) = _/[H((p) logps1(y|61)+ proposed method to both synthetic and empirical fMRI data
and compares them with the results obtained using a standard
univariate GLM approach.

A. Synthetic Data

(2) Synthetic data were generated based on a 3D head phan-
) o ) ) tom with volume size 6464x30, where two rectangular
whereH is the Heaviside functionti(z) = 1 if z>0 and  civation regions were defined ($¥@0x10 and 5¢15x5
H(2) =0 if z< 0. Function®(t,x) represents regiof; for \qyels respectively). A block design paradigm alterrgatin
® > 0 andQ, for ® < 0. Therefore, the Heaviside funct|0nten 18sec periods of activation and ten H8c periods of

is used to distinguish the two regions. o _ rest, with repetition timeTR = 3000ms, yielding a total
In practice a regularized version of the Heaviside functiogs T — 122 time points, was considered. The simulated
is used: activation signals in each region were then created by
2 convolving this paradigm with a canonical Gamma-variate
He(2) =0.5 {1+ arctan(z)] (3) Haemodynamic Response Function (HRF), as implemented
n € in SPM99 (http://www.fil.ion.ucl.ac.uk.pt) [10], witg = 10.
Keeping p1 and p, fixed, ® is evolved according to the No_lsy data were then obtained by adding zero mean Gaussian
following motion Partial Differential Equation (PDE): noise to the simulated data, such that the SNR was 0 dB.
Figure 1 shows the simulated data and the results of the
proposed method. In these images the initial contour is

Q
(1~ H(®))logpa(y|62)]dQ+ 1 | CH(@)dQ
Q

o® zég(q))[udiv(m) — A1logps(y] él> overlaid in yellow and the final contour in red.
0| (4) It can be seen that, although the initial region selected
+ Az2log pa(y|62)] by the user is quite distant from the final segmentation and
does not contain the two activated regions, the algorithm is
where (@) is the Dirac delta functiod(z) = %Hg(z). able to converge to the correct boundary. This example also

The contour is roughly initialized by the user in theillustrates the ability of the contour to split automatigahto
expected activation region. Then, the algorithm estimates two separate regions, since the activated regions ardrtisjo
alternate steps the contour and the PDF’s of both regions, In this example, the proposed method obtaiifleg 9.96 in
and p2. The way the estimates qf; and p, are updated is the activated region anfl = 3.2e— 16 in the non-activated
described in the following section. regions, which is very close to the true values. The regultin



A GLM was defined by modeling each stimulus/task
period Yisual Simulus or MotorTask) as a square function
of width equal to the period duration convolved with a canon-
ical Gamma-variate HRF [10]. For the standard univariate
approach, a GLM with local autocorrelation correction was
used to test for stimulus/task-related activity changey, [1
[14]. Linear contrasts between each stimulus/task carditi
and the respective control conditions were then calculated
and t-tests were performed to yield statistical maps of
increased brain activity during the stimuli/task (namely,
Visual vs Fixation and Motor Task vs Rest). Finally, cluster
thresholding was performed by employing the theory of
Gaussian Random Fields (GRF) to accomplish maximum-
height thresholding of th&-score images at specified signifi-
cance levelsp-value, of false-positive probabilities, corrected
for multiple comparisons [2].

Fig. 1. Segmentation results with synthetic data. Left: Resof the
proposed method shown in red and initialization shown inoyellRight:
Simulated activation regions shown in red.

segmentation had a false positive rate of 6% and a false
negative rate of 2%.

B. Real Data

Empirical fMRI brain activation data from a visual stim-
ulation experiment \fsual) and a motor task experiment
(motor) were used. Both datasets were collected from healthy
volunteers on 1.5T MRI systems, usiig*-weighted echo-
planar imaging (EPI). In the visual experiment, 120 volumes
were acquired witif R= 3000ms and a voxel resolution of
3,5x 3,5x4,0mm. In the motor experiment, 150 volumes

were acquired withf R=2000ms and a voxel resolution of
3,4x3,4x5,0mm. Fig. 2. Segmentation results obtained for the visual stirmariaxperiment.

The visual experiment consisted in a block design altet'—eﬁ: Results of the proposed method shown in red and irgtitbn shown

. ) - : ~~1In yellow. Right: Results of standard univariate GLM.
nating ten 1&ec periods of a visual stimulus presentation
and ten 1&ec periods of fixation. The motor experiment
consisted in a block design alternating fivesd0 periods of Figure 2 shows the results obtained for a visual stimulation
right-hand thumb-digit apposition with five 36 periods of experiment. It can be seen that the results of the proposed
rest. method are very consistent with the results obtained by the
Datasets were pre-processed and analyzed for BOL®andard GLM technique. As expected, the visual cortex, as
signal change detection using the FEAT softwaravell as an extended network of visual processing regions,
(http://www.fmrib.ox.ac.uk/fsl). The following pre- are identified. The main difference observed between the two
processing steps were performed on each BOLD timeethods is the extent of the activation in the frontal regjon
series: motion correction [11]; non-brain removal [12]which is larger for the standard technique.
mean-based intensity normalization of all volumes by Figure 3 shows the results obtained for the motor task
the same factor; spatial smoothing (Gaussian kernedxperiment. Again, it can be seen that the results of the
5mm FWHM) and high-pass temporal filtering (Gaussianproposed method are very consistent with the results adain
weighted least squares straight line fitting,s86 cut-off). by the standard GLM technique. Here, the left primary




simulation studies and the application of the methods to a
larger number of empirical datasets are required in order to
establish the validity of the proposed methodology.

In summary, our encouraging preliminary results suggest
that level sets may provide a useful parametric, multivari-
ate tool for the automatic segmentation of brain activation

the

regions in fMRI studies, particularly in situations where

subjective choice of significance thresholds should be

avoided.

[1]
Fig. 3. Segmentation results obtained for the motor task @xpet. Left: [2]
Results of the proposed method shown in red and initialinasicown in
yellow. Right: Results of standard univariate GLM.

(3]

motor cortex, as well as the right cerebellum, are identified
which correctly corresponds to the activity associated wit 4]
the movement of the right hand.

IV. CONCLUSIONS

We proposed a method to jointly perform brain activation[s]
detection and segmentation of fMRI images. The method
uses 3D region based level sets and performs a separa%ﬁ:
multivariate linear model (MLM) analysis in each region [
(activated and non-activated). Simulations using syithet
data produced very encouraging results, with a false pesiti [7]
rate of 6% and a false negative rate of 2%. We then compared
our proposed technique with the standard univariate GLM
approach, by using applying both to the analysis of twol8l
empirical fMRI datasets. The two methods exhibited similar
performance, in terms of the localization of the detecte
activation areas.

The proposed multivariate method has the advantage tf%?]
it does not require the definition of a significance threshold
which is implicit in the derivation of activation clusteraged [11]
on univariate GLM approaches. On the other hand, the fact
that a model underlies the identification of the activation
brain areas avoids the interpretation limitations of nont2]
parametric, multivariate techniques. However, one litiita ;5
of our model is the fact that it assumes that all voxels in the
activated region exhibit the same level of activation (same
parameter estimatB). Therefore, future work will focus on [14]
the development of a more general model accounting for
different activation levels. Moreover, more compreheasiv
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